Academic literature on the topic 'Spin-crossover'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spin-crossover.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Spin-crossover"

1

Delgado, Teresa, and Mélanie Villard. "Spin Crossover Nanoparticles." Journal of Chemical Education 99, no. 2 (January 19, 2022): 1026–35. http://dx.doi.org/10.1021/acs.jchemed.1c00990.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Takahashi, Kazuyuki. "Spin-Crossover Complexes." Inorganics 6, no. 1 (March 1, 2018): 32. http://dx.doi.org/10.3390/inorganics6010032.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Murray, Keith S., Hiroki Oshio, and José Antonio Real. "Spin-Crossover Complexes." European Journal of Inorganic Chemistry 2013, no. 5-6 (February 18, 2013): 577–80. http://dx.doi.org/10.1002/ejic.201300062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Yazdani, Saeed, Jared Phillips, Thilini K. Ekanayaka, Ruihua Cheng, and Peter A. Dowben. "The Influence of the Substrate on the Functionality of Spin Crossover Molecular Materials." Molecules 28, no. 9 (April 26, 2023): 3735. http://dx.doi.org/10.3390/molecules28093735.

Full text
Abstract:
Spin crossover complexes are a route toward designing molecular devices with a facile readout due to the change in conductance that accompanies the change in spin state. Because substrate effects are important for any molecular device, there are increased efforts to characterize the influence of the substrate on the spin state transition. Several classes of spin crossover molecules deposited on different types of surface, including metallic and non-metallic substrates, are comprehensively reviewed here. While some non-metallic substrates like graphite seem to be promising from experimental measurements, theoretical and experimental studies indicate that 2D semiconductor surfaces will have minimum interaction with spin crossover molecules. Most metallic substrates, such as Au and Cu, tend to suppress changes in spin state and affect the spin state switching process due to the interaction at the molecule–substrate interface that lock spin crossover molecules in a particular spin state or mixed spin state. Of course, the influence of the substrate on a spin crossover thin film depends on the molecular film thickness and perhaps the method used to deposit the molecular film.
APA, Harvard, Vancouver, ISO, and other styles
5

Gütlich, Philipp, Ana B. Gaspar, and Yann Garcia. "Spin state switching in iron coordination compounds." Beilstein Journal of Organic Chemistry 9 (February 15, 2013): 342–91. http://dx.doi.org/10.3762/bjoc.9.39.

Full text
Abstract:
The article deals with coordination compounds of iron(II) that may exhibit thermally induced spin transition, known as spin crossover, depending on the nature of the coordinating ligand sphere. Spin transition in such compounds also occurs under pressure and irradiation with light. The spin states involved have different magnetic and optical properties suitable for their detection and characterization. Spin crossover compounds, though known for more than eight decades, have become most attractive in recent years and are extensively studied by chemists and physicists. The switching properties make such materials potential candidates for practical applications in thermal and pressure sensors as well as optical devices. The article begins with a brief description of the principle of molecular spin state switching using simple concepts of ligand field theory. Conditions to be fulfilled in order to observe spin crossover will be explained and general remarks regarding the chemical nature that is important for the occurrence of spin crossover will be made. A subsequent section describes the molecular consequences of spin crossover and the variety of physical techniques usually applied for their characterization. The effects of light irradiation (LIESST) and application of pressure are subjects of two separate sections. The major part of this account concentrates on selected spin crossover compounds of iron(II), with particular emphasis on the chemical and physical influences on the spin crossover behavior. The vast variety of compounds exhibiting this fascinating switching phenomenon encompasses mono-, oligo- and polynuclear iron(II) complexes and cages, polymeric 1D, 2D and 3D systems, nanomaterials, and polyfunctional materials that combine spin crossover with another physical or chemical property.
APA, Harvard, Vancouver, ISO, and other styles
6

Hao, Hua, Ting Jia, Xiaohong Zheng, and Zhi Zeng. "Bias induced spin transitions of spin crossover molecules: the role of charging effect." Physical Chemistry Chemical Physics 19, no. 11 (2017): 7652–58. http://dx.doi.org/10.1039/c6cp08265c.

Full text
Abstract:
A new mechanism is proposed to understand the recently observed spin transition of spin crossover molecules from low spin to high spin under bias voltages and it is closely related to one additional electron on the spin crossover molecules.
APA, Harvard, Vancouver, ISO, and other styles
7

Wu, Wei-Wei, Si-Guo Wu, Yan-Cong Chen, Guo-Zhang Huang, Bang-Heng Lyu, Zhao-Ping Ni, and Ming-Liang Tong. "Spin-crossover in an organic–inorganic hybrid perovskite." Chemical Communications 56, no. 33 (2020): 4551–54. http://dx.doi.org/10.1039/d0cc00992j.

Full text
Abstract:
The first spin-crossover complex with an organic–inorganic hybrid perovskite structure is reported, which displays three-step spin-crossover, light-induced excited spin-state trapping and spin-state dependent fluorescence properties.
APA, Harvard, Vancouver, ISO, and other styles
8

Mukherjee, Saikat, Dmitry A. Fedorov, and Sergey A. Varganov. "Modeling Spin-Crossover Dynamics." Annual Review of Physical Chemistry 72, no. 1 (April 20, 2021): 515–40. http://dx.doi.org/10.1146/annurev-physchem-101419-012625.

Full text
Abstract:
In this article, we review nonadiabatic molecular dynamics (NAMD) methods for modeling spin-crossover transitions. First, we discuss different representations of electronic states employed in the grid-based and direct NAMD simulations. The nature of interstate couplings in different representations is highlighted, with the main focus on nonadiabatic and spin-orbit couplings. Second, we describe three NAMD methods that have been used to simulate spin-crossover dynamics, including trajectory surface hopping, ab initio multiple spawning, and multiconfiguration time-dependent Hartree. Some aspects of employing different electronic structure methods to obtain information about potential energy surfaces and interstate couplings for NAMD simulations are also discussed. Third, representative applications of NAMD to spin crossovers in molecular systems of different sizes and complexities are highlighted. Finally, we pose several fundamental questions related to spin-dependent processes. These questions should be possible to address with future methodological developments in NAMD.
APA, Harvard, Vancouver, ISO, and other styles
9

Quintero, Carlos M., Gautier Félix, Iurii Suleimanov, José Sánchez Costa, Gábor Molnár, Lionel Salmon, William Nicolazzi, and Azzedine Bousseksou. "Hybrid spin-crossover nanostructures." Beilstein Journal of Nanotechnology 5 (November 25, 2014): 2230–39. http://dx.doi.org/10.3762/bjnano.5.232.

Full text
Abstract:
This review reports on the recent progress in the synthesis, modelling and application of hybrid spin-crossover materials, including core–shell nanoparticles and multilayer thin films or nanopatterns. These systems combine, often in synergy, different physical properties (optical, magnetic, mechanical and electrical) of their constituents with the switching properties of spin-crossover complexes, providing access to materials with unprecedented capabilities.
APA, Harvard, Vancouver, ISO, and other styles
10

Maciążek, E., T. Groń, A. W. Pacyna, T. Mydlarz, B. Zawisza, and J. Krok-Kowalski. "Spin Crossover in CuxCoyCrzSe4Semiconductors." Acta Physica Polonica A 119, no. 5 (May 2011): 711–13. http://dx.doi.org/10.12693/aphyspola.119.711.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Spin-crossover"

1

Bauer, Wolfgang. "Understanding Spin Crossover: A Contribution." Diss., lmu, 2011. http://nbn-resolving.de/urn:nbn:de:bvb:19-131697.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bergen, Elvira [Verfasser]. "Multifunctional Spin Crossover Complexes / Elvira Bergen." Mainz : Universitätsbibliothek der Johannes Gutenberg-Universität Mainz, 2021. http://d-nb.info/1225796032/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Craig, Gavin. "Advanced Study of Switchable Spin Crossover Compounds." Doctoral thesis, Universitat de Barcelona, 2013. http://hdl.handle.net/10803/119688.

Full text
Abstract:
Systems based on the organic ligand 3-bpp display a wide variety of magnetic behaviour, and have been studied in depth in the field of spin crossover (SCO). However, despite the apparent richness of SCO behaviour observed for 3-bpp systems, at the time of undertaking this thesis there were no published examples of the use of synthetic derivatives of 3-bpp in this field of research. This was remarked upon by Olguín and Brooker, who attributed this lack of 3-bpp analogues not to a lack of interest, but to “synthetic issues”. Therefore, the initial challenge set out was to develop a methodology that would allow the synthesis of functionalised 3-bpp ligands. Once obtained, these ligands would then be used for the generation of mononuclear Fe(II) compounds, with a view to study their macroscopic properties. Provided that this strategy was successful, and depending on the availability of structural data, an attempt would then be made to outline correlations between the observed magnetic properties and the relationship between the lattice entities, both spin-active and –inactive. The development of this work is detailed over the course of the ten Chapters. The first is an Introduction, primarily to the general field of SCO, the theory underlying its occurrence and its potential utility, but also describes the latest advances in the field before focussing on the family of 3-bpp systems. Chapter 2 contains the synthetic procedures and experimental details for the physical characterisation of the compounds obtained. Chapter 3 then describes the development of the novel polypyrazolyl ligands that have been designed for the subsequent investigation of their coordination chemistry. The magneto-structural properties of a new [Fe(3-bpp)2]2+ salt are described, and the compound shown to display a gradual spin crossover. Chapters 4 and 5 provide an in-depth study of a mononuclear compound, [Fe(H4L)2](ClO4)2•H2O•2(CH3)2CO (1), containing one of the polypyrazolyl ligands. A strongly cooperative spin transition is found to be intimately related to the structure and level of disorder within the lattice. This conclusion is supported by a description of the thermally trapped crystal structure. The photo-physical properties of 1 are then described, through the study of its meta-stable HS phase, which is distinct to the thermally trapped meta-stable HS phase. A Raman spectroscopy study of the system is then used to observe photo-switching within the hysteresis loop, and as a means of following the pressure-induced spin switch. Chapters 6 and 7 use compound 1 as the basis of an investigation into the effect of varying the anions and solvents within the lattice on the magnetic properties and crystal packing. A case where the spin crossover becomes more cooperative on ageing the compound is described. Chapter 8 details the compounds obtained using another 3-bpp derivative, which results in the formation of distorted structures that do not display SCO. In Chapter 9, the structural data provided by this thesis is collated with that found in the CSD for mononuclear Fe(II) systems with 3-bpp ligands. The data is then analysed from two points of view: a first, which involves previously defined parameters for the distortion of the cations, both in terms of their shape and in terms of the coordination sphere using Continuous Symmetry Measures. And a second, which uses Hirshfeld surface analysis to look at the bonding motifs and intermolecular interactions that are observed in the novel compounds obtained in this thesis. Chapter 10 offers conclusions based on the results obtained in this thesis.
A pesar de la riqueza de los comportamientos de la transición de espín de los sistemas basados en el ligando 3-bpp, no se ha estudiado ningún derivado del ligando. Así pues, el reto inicial de esta tesis fue el de desarrollar ligandos derivados del 3-bpp. Estos se utilizarían en la síntesis de compuestos mononucleares de Fe(II), para estudiar sus propiedades macroscópicas. Este trabajo se detalla a lo largo de nueve capítulos. El capítulo 2 contiene los procedimientos experimentales para la síntesis y caracterización de los compuestos obtenidos. El capítulo 3 describe el desarrollo de los ligandos que fueron utilizados en la química de coordinación. Se detallan las propiedades magneto-estructurales de una nueva sal [Fe(3-bpp)2](ClO4)2 que presenta una transición de espín gradual. Los capítulos 4 y 5 estudian el compuesto [Fe(H4L)2](ClO4)2•H2O•2(CH3)2CO (1). Se observa que una transición de alta cooperatividad se asocia al desorden cristalográfico. Se procede a describir las propiedades foto-físicas del compuesto, mediante el estudio de su fase meta-estable de espín alto inducido por irradiación. Un estudio de espectroscopia de Raman se llevó a cabo, permitiendo así la observación de un proceso de “photo-switch” dentro del ciclo de histéresis. Los espectros obtenidos sirvieron para seguir la transición al aplicar una presión externa. Los capítulos 6 y 7 investigan el efecto de los aniones y disolventes sobre las propiedades magnéticas y el empaquetamiento estructural del compuesto 1. Se describe un caso dónde un proceso de envejecimiento del compuesto lleva a que se aumente su grado de cooperatividad. En el capítulo 8, se utiliza otro derivado del 3-bpp para preparar unos compuestos mononucleares de Fe(II). Debido a la deformación estructural presentada por estos compuestos, no se observa una transición de espín. En el capítulo 9, se recogen los datos estructurales obtenidos a lo largo de la tesis, y se combinan con los datos disponibles en el CSD para compuestos mononucleares de Fe(II). Se analizan los datos para medir la forma y distorsión de los cationes, y para estudiar los tipos de interacción intermolecular mediante los análisis de superficies de Hirshfeld. El capítulo 10 saca unas conclusiones basadas en los resultados descritos en los capítulos anteriores.
APA, Harvard, Vancouver, ISO, and other styles
4

Bauer, Wolfgang [Verfasser]. "Understanding Spin Crossover: A Contribution / Wolfgang Bauer." München : Verlag Dr. Hut, 2011. http://d-nb.info/1014848571/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Tovee, Clare Anne. "Metal complexes exhibiting spin crossover and fluorescence." Thesis, University of Leeds, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509875.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Dong, Xu. "Ultrafast infrared spectroscopy applied to spin crossover materials." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S111/document.

Full text
Abstract:
Ces dix dernières années ont vu émerger des avancées technologiques majeures, nous permettant capturer une image instantanée des processus physique. L'amélioration systématique de la résolution temporelle de ces instants, grâce aux lasers (de différente sorte) aux impulsions ultracourtes, a joué un rôle important dans l'exploration des transitions de phases photo-induites dans différents matériaux, et leur potentiel applicatif. Néanmoins, ce progrès technologique incontestable a poussé à ses limites notre capacité de décrire les phénomènes hors-équilibre très complexes qui pilotent les transitions. Ils sont intrinsèquement multi-échelles dans le temps et dans l'espace, s'étalant de la femtoseconde aux plusieurs jours, et de la dimension atomique jusqu'à celle d'un cristal macroscopique. Les expériences résolues en temps permettent de séparer temporellement différents dégrées de liberté et les phénomènes pilotés par ceux-ci, au lieu d'observer seulement leur moyenne statistique. La première étape (processus photo-induit) de cette séquence temporelle est liée à l'absorption d'un photon, la deuxième (élastique) est pilotée par la dilation du volume macroscopique du matériau, et la troisième étape (thermique) est due aux effets de chaleur. Cette approche séquentielle offre de nouvelles possibilités pour mieux comprendre comment impacter les matériaux de façon contrôlée et efficace. Les lasers opérant dans le moyen infrarouge (mid IR) permettent de suivre le déroulement d'une transition de phase par le changement de vibrations des molécules/liaisons ciblées. Cette spécificité au site moléculaire combinée avec la résolution en temps ultracourte devrait ouvrir une nouvelle fenêtre d'observation des phénomènes qui échappaient aux études scientifique. Ce travail de thèse a commencé exactement dans cet esprit. L'effort majeur a été dédié à l'application de la spectroscopie mid IR ultrarapide aux matériaux présentant une conversion de l'état de spin, [Fe(3-MeO-SalEen)]2PF6 en particulier. La principale difficulté de ce travail consistait à décrypter le contenu spectral des molécules hors-équilibre. Nous avons découvert que l'approche utilisé dans les spectroscopies résolues en temps de plus haute énergie (UV/VIS) ne suffit pas pour étudier la problématique posé dans le cadre de cette thèse. Une nouvelle approche a été pensée pour modéliser les spectres résolus en temps, et celle-ci consistait à séparer la réponse spectrale en deux contributions : le transfert de poids spectral, et un décalage spectral. J'ai pu démontrer que ces deux contributions suivent sensiblement le changement d'état de spin, et la pression (dilatation du volume). L'analyse de données basée sur ce modèle, corrobore les résultats obtenus jusqu'alors avec d'autres techniques. Sur l'échelle de temps ultracourts, plus difficile à modéliser, nous avons pu néanmoins résoudre très clairement le refroidissement vibrationnelle (VC) de l'état électronique haut spin -chaud. A ma connaissance, ce phénomène dans un système solide présentant crossover de spin n'a jamais été observé directement
The past few decades have seen great advancements in technology that allow us to capture the picture of a physical process, as the adage “seeing is believing” implies how people understand the world. The increasing temporal resolution of lasers played an important role in the study of materials, among which materials exhibiting photo-induced phase transition are of great importance thanks to their potential for future applications. However, as we proceed further and further in the investigation of the mechanism of phase transition, we found ourselves confronted with the very complex nature of phase transition dynamics. It is intrinsically multi-scale in time and space, from femtosecond to days and from atomic dimensions to macroscopic distances. Time resolved experiments disentangle different degrees of freedom and different phenomena in a step-like manner, rather than providing a statistical average. The first step is photo induced due to absorption of photons, the second step (elastic step) is pressure induced due to volume dilation, and the third step is temperature induced due to dissipation of heat. This step-like approach offers an opportunity to understand the mechanism, so that we could effectively impact the materials and possibly control phase transition. Mid IR lasers have a unique advantage of monitoring phase transition through vibrational modes on specific molecular sites. Implementing ultrafast mid IR spectroscopy in phase transition materials should be therefore very insightful in discovering new phenomena and revealing hidden mechanism. This PhD project, focusing on mid IR technique, started exactly in this context. The main effort is dedicated to the application of ultrafast mid IR spectroscopy to the spin crossover solids, [Fe(3-MeO-SalEen)]2PF6. The major challenge in this work was to comprehend the shape of transient mid IR spectra. We found out that this is conceptually different from the experiences accumulated in UV/VIS spectroscopy. A suitable model had to be developed, separating the transient IR spectra into two contributions: spectral weight transfer and spectral shift. I demonstrated that these two components are sensitive to the spin change and pressure effect (volume dilation), respectively. Data analysis based on the new model shows consistency with previously published results. On the ultrafast timescale, more difficult to fit our model to, vibrational cooling (VC) of electronically hot HS state has been very well resolved. To the best of my knowledge, direct observation of VC in solid state SCO compound by IR spectroscopy has not been reported earlier
APA, Harvard, Vancouver, ISO, and other styles
7

Thompson, Amber L. "Structure-property correlations in novel spin crossover materials." Thesis, Durham University, 2004. http://etheses.dur.ac.uk/2997/.

Full text
Abstract:
In complexes where the energy difference between the high and low spin state of the metal is of the order of k(_b)T, temperature can be used to induce a spin crossover transition (SC). In some cases, at very low temperatures, irradiation can induce excitation to a meta-stable high spin state. At low temperatures, this Light-Induced Excited Spin-State Trapped (LIESST) state is generally long lived, enabling structural examination. The results presented herein refer to a wide range of iron(II) spin crossover materials which have been structurally studied in both thermal and light induced states. These fall into three categories; mononuclear, dinuclear and polymeric. The mononuclear complexes studied include FeL[H(_2)B(Pz)(_2)](_2) L = 2,2'-bipyridine (1) and 1,10-phenanthroline (2), of which 2 was found to undergo a change in symmetry in addition to the change in spin state, leading to a novel light induced polymorphism that has not been previously seen. Two dinuclear compounds with step transitions have been examined. While {[N(CN)(_2)](FeBpl)(_2)}(PF(_6))(_3) undergoes a gradual transition, the transitions in [Fe(Btz)(NCS)(_2)](_2)Bpmd are abrupt and the latter also undergoes LIESST but with a rapid relaxation that has not been observed previously with any other technique. While the origin of this relaxation is uncertain, the structure of this excited state has been studied under constant irradiation. The largest structural study of three dimensional SC materials has been carried out, including bimetallic polymers with [Au(CN)(_2)], [Ag(CN)(_2)]-, [Ag(_2)(CN)(_3)]- and [Pd(CN)(_4)](^2-) bridging ligands. These anionic bridges have been shown to enhance cooperativity between iron centres leading to abrupt transitions and hysteresis. These materials have been shown to undergo LIESST, crystalline state allosterism, and thermo-chromism. Such multi-property materials have a high potential for technological applications.
APA, Harvard, Vancouver, ISO, and other styles
8

Shepherd, Helena Jane. "Spin crossover under extreme conditions : a structural approach." Thesis, Durham University, 2009. http://etheses.dur.ac.uk/228/.

Full text
Abstract:
Structural studies of several iron complexes that show spin crossover (SCO) properties are presented and intrinsic links between the structure and properties have been established for these systems. X-ray diffraction experiments of samples under extremes of temperature and pressure and after irradiation with laser light have been performed to characterise the structure of these various compounds. The incomplete thermal SCO observed in the dinuclear species [2 4,4’- bipy]•2MeOH has been investigated, revealing a complex series of crystallographic phase transitions that result in a material with a mixture of high spin (HS) and low spin (LS) states that displays long-range order at low temperature. The meta-stable high spin (HS*) state that arises as a result of the Light Induced Excited Spin State Trapping (LIESST) effect has also been structurally characterised at 30 K. Further single crystal X-ray diffraction experiments at high pressure have shown that it is possible to achieve a complete spin transition to a fully LS state, which is not thermally accessible. Another species that shows crystallographic ordering of mixed spin states is an FeIII complex with a hexadentate Schiff base ligand, which has been studied using both single crystal and powder diffraction techniques. The structure of the photo-induced HS* state of [Fe(bapbpy) NCS)2] has been determined at 30 K from diffraction data which comprise contributions from both the HS* state and the residual LS component of the crystal, which is non-merrohedrally twinned. The structure of [Fe(picen)(NCS)2] has been determined at 30 K after a range of cooling speeds, showing that cooling of the sample results in partial population of the HS* state. The photo-induced HS* state, and that induced by thermal trapping are shown to be structurally similar. A gradual spin transition has been identified purely from structural analysis in an FeII complex with a hexadentate N6-donating ligand. The gradual nature of the spin transition may be attributed to the poor cooperativiy observed between iron centres. This study shows how structural features can be used to gain insights into some of the more unusual aspects of the SCO phenomenon such as stepped spin transitions, ordered mixed spin intermediate phases, trapping of meta-stable states as a result of light irradiation or temperature and pressure-induced spin transitions.
APA, Harvard, Vancouver, ISO, and other styles
9

Money, Victoria A. "Structural studies of iron (II) spin crossover compounds." Thesis, Durham University, 2004. http://etheses.dur.ac.uk/2987/.

Full text
Abstract:
The drive for ever smaller and faster computers has, in recent years, caused much research interest to be focussed on the development of new materials in which individual molecules or assemblies of molecules can be used for information processing. Materials which show spin crossover behaviour have great potential for use not only in molecular computing but also in applications such as optical switches and display devices and are of fundamental interest due to their importance in biological and geological systems. The results of comprehensive variable temperature and excited state crystallographic studies into the spin crossover behaviour of a family of iron (II) spin crossover complexes based on the 2,6-di(pyrazol-l-yl)pyridine ligand are presented herein. A fascinating aspect of spin crossover materials is their ability to undergo a transition from the low spin state to a metastable high spin state, with a very long lifetime, on irradiation. Crystallographic information on the structure of the metastable high spin state formed as a result of irradiation is very rare. Full structural analyses of the metastable state are reported for [FeLl(_2)](BF(_4))(_2), [Fe(L3)(_2)](BF(_4))(_2), [Fe(L3)(_2)](C1O(_4))(_2) and [Fe(L4)(_2)](BF(_4))(_2) (LI = 2,6- di(pyrazol-l-yl)pyridine, L3 = 2,6-(dipyrazol-l-yl)-4-hydroxymethylpyridine, L4 = 2,6-di(3-methylpyrazol-1 -yl)pyridine). These studies have shown that, unlike other reported materials, the metastable high spin state is structurally identical to that reached as a result of the thermal spin transition. [Fe(L4)(_2)](BF(_4)) (_2)1/3H(_2)O is shown to have a fascinating complexity of spin crossover behaviour including the existence of a number of metastable states. The effect of dehydration on the spin crossover behaviour has been determined. Spin crossover compounds are extremely sensitive to changes in pressure; nonetheless there have been very few studies of the effect of pressure on the structure of these materials. The structure of the pressure induced low spin state at ambient temperature and 4.5 kbar is reported for [FeLl2](BF4)2. The crystallographic results are supported throughout by SQUID magnetometry studies.
APA, Harvard, Vancouver, ISO, and other styles
10

Kershaw, Cook Laurence Jonas. "Crystal engineering and bifunctionality in spin-crossover materials." Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/7760/.

Full text
Abstract:
This thesis focuses on crystal engineering metal salts of 2,2’:6’,2’’-terpyridine and 2,6-di(pyrazol-1’-yl)pyridine to tune and better understand the cooperative spin crossover in the solid state and incorporation of a second functionality towards bifunctional spin crossover materials. Chapter 1 can be considered an introduction to the phenomenon of spin crossover in first row transition metal complexes and outlines its discovery, recent developments and progression towards real-world application. Chaper 2 is a discussion of the methodology of synthetic efforts undertaken in the acquisition of the wealth of tris-chelating organic compounds whose coordination chemistry is the subject of later chapters. Chapter 3 details the spectroscopic, electrochemical and magnetic properties of cobalt(II) and iron(II) complexes of tris-azinyl analogues of 2,2’:6’,2’’-terpyridine in efforts towards tuning their electronic spin-equilibria. Chapter 4 presents a series of novel ruthenium(II) based materials exhibiting enhanced room temperature emission and their incorporation into an inert spin crossover host material. Retention of parent functionalities is screened for over an operable temperature regime. Chapter 5 concerns iron(II) complex salts of 2,6-di(pyrazol-1’-yl)pyridine derivatives, whose ligand backbones are modified in an attempt to tune the solid state spin crossover behaviour both electronically and sterically. Chapter 6 is an account of all synthetic procedures carried out during this work, their standard characterisation and details the instrumentation performed on all materials which are the subject of discussion in this thesis.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Spin-crossover"

1

Okimoto, Yoichi, Tomohiko Saitoh, Yoshihiko Kobayashi, and Sumio Ishihara, eds. Spin-Crossover Cobaltite. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-7929-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

HALCROW, MALCOLM A., ed. Spin-Crossover Materials. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118519301.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Halcrow, Malcolm A. Spin-crossover materials: Properties and applications. Chichester, West Sussex, United Kingdom: Wiley, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Gütlich, P., and H. A. Goodwin, eds. Spin Crossover in Transition Metal Compounds I. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b40394-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gütlich, P., and H. A. Goodwin. Spin Crossover in Transition Metal Compounds II. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b93641.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gütlich, P., and H. A. Goodwin. Spin Crossover in Transition Metal Compounds III. Berlin, Heidelberg: Springer Berlin Heidelberg, 2004. http://dx.doi.org/10.1007/b96439.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Berman, Gennady P., Evgeny N. Bulgakov, and Darryl D. Holm. Crossover-Time in Quantum Boson and Spin Systems. Berlin, Heidelberg: Springer Berlin Heidelberg, 1994. http://dx.doi.org/10.1007/978-3-540-48415-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Berman, Gennady P. Crossover-time in quantum boson and spin systems. Berlin: Springer-Verlag, 1994.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1931-, Jameson Reginald F., and Linert W, eds. The law of mass action. Berlin: Springer, 2001.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Spin-Crossover Complexes. MDPI, 2018. http://dx.doi.org/10.3390/books978-3-03842-826-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Spin-crossover"

1

Murray, Keith S. "The Development of Spin-Crossover Research." In Spin-Crossover Materials, 1–54. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118519301.ch1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Shores, Matthew P., Christina M. Klug, and Stephanie R. Fiedler. "Spin-State Switching in Solution." In Spin-Crossover Materials, 281–301. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118519301.ch10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Zhao-Yang Li, Osamu Sato, Zi-Shuo Yao, Soonchul Kang, and Shinji Kanegawa. "Multifunctional Materials Combining Spin-Crossover with Conductivity and Magnetic Ordering." In Spin-Crossover Materials, 303–19. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118519301.ch11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Hayami, Shinya. "Amphiphilic and Liquid Crystalline Spin-Crossover Complexes." In Spin-Crossover Materials, 321–45. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118519301.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shepherd, Helena J., Carlos M. Quintero, Gábor Molnár, Lionel Salmon, and Azzedine Bousseksou. "Luminescent Spin-Crossover Materials." In Spin-Crossover Materials, 347–73. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118519301.ch13.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Martinho, Paulo Nuno, Cyril Rajnak, and Mario Ruben. "Nanoparticles, Thin Films and Surface Patterns from Spin-Crossover Materials and Electrical Spin State Control." In Spin-Crossover Materials, 375–404. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118519301.ch14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chergui, Majed. "Ultrafast Studies of the Light-Induced Spin Change in Fe(II)-Polypyridine Complexes." In Spin-Crossover Materials, 405–24. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118519301.ch15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Varret, François, Christian Chong, Ahmed Slimani, Damien Garrot, Yann Garcia, and Anil D. Naik. "Real-Time Observation of Spin-Transitions by Optical Microscopy." In Spin-Crossover Materials, 425–41. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118519301.ch16.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Deeth, Robert J., Christopher M. Handley, and Benjamin J. Houghton. "Theoretical Prediction of Spin-Crossover at the Molecular Level." In Spin-Crossover Materials, 443–54. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118519301.ch17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Enachescu, Cristian, Masamichi Nishino, and Seiji Miyashita. "Theoretical Descriptions of Spin-Transitions in Bulk Lattices." In Spin-Crossover Materials, 455–74. Oxford, UK: John Wiley & Sons Ltd, 2013. http://dx.doi.org/10.1002/9781118519301.ch18.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Spin-crossover"

1

Chai, Ruike, Nikita Liedienov, Alejandro Orellana Silla, Danyang Su, Fei Wang, José Antonio Real, Georgiy Levchenko, and Dongchang Li. "Structure and Magnetic Properties of Hofmann-Like Iron(II) Spin-Crossover Compound." In 2024 IEEE 42nd International Conference on Electronics and Nanotechnology (ELNANO), 266–69. IEEE, 2024. https://doi.org/10.1109/elnano63394.2024.10756823.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Calvez, Stéphane, Lijun Zhang, Jesukpego Anorld Capo Chichi, Yuteng Zhang, Lionel Salmon, Gábor Molnár, Karl Ridier, and Azzedine Bousseksou. "Visible-light modulators and power limiters based on spin crossover material thin films." In 2024 24th International Conference on Transparent Optical Networks (ICTON), 1–4. IEEE, 2024. http://dx.doi.org/10.1109/icton62926.2024.10648037.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Capo Chichi, Jesukpego Anorld, Isabelle Séguy, Henri Camon, Stéphane Calvez, Alejandro Enriquez Cabrera, Lijun Zhang, Yuteng Zhang, et al. "Visible-light modulators and power limitators based on spin crossover material thin films." In Organic Photonic Materials and Devices XXVII, edited by Ileana Rau, Okihiro Sugihara, and William M. Shensky, 8. SPIE, 2025. https://doi.org/10.1117/12.3042766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Varret, F., K. Boukheddaden, C. Chong, and A. Goujon. "Like-spin domains (LSDs) in spin-crossover solids ?" In INTERMAG 2006 - IEEE International Magnetics Conference. IEEE, 2006. http://dx.doi.org/10.1109/intmag.2006.376314.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Nurdin, W. B., K. D. Schotte, Abarrul Ikram, Agus Purwanto, Sutiarso, Anne Zulfia, Sunit Hendrana, and Zeily Nurachman. "Dynamical Temperature Study for Spin-Crossover." In NEUTRON AND X-RAY SCATTERING 2007: The International Conference. AIP, 2008. http://dx.doi.org/10.1063/1.2906067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yarema, Vadym S., Sergiy V. Yarema, and Iurii V. Gudyma. "2D spin-crossover hexagonal molecular nanoparticles." In International Conference Correlation Optics (COR2023), edited by Oleg V. Angelsky and Claudia Yu Zenkova. SPIE, 2024. http://dx.doi.org/10.1117/12.3015574.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Viquerat, B., J. Degert, M. Tondusson, J. F. Letard, C. Mauriac, and E. Freysz. "Time-domain spectroscopy of spin state transition in polymeric spin crossover compounds." In 2011 36th International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz 2011). IEEE, 2011. http://dx.doi.org/10.1109/irmmw-thz.2011.6104784.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gudyma, Yuri V., and Oleksander M. Semenko. "Nonequilibrium photo-induced dynamics of spin crossover compounds." In SPIE Proceedings, edited by Oleg V. Angelsky. SPIE, 2004. http://dx.doi.org/10.1117/12.559857.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Molnár, Gábor, Il'ya A. Gural'skyi, Lionel Salmon, William Nicolazzi, Carlos Quintero, Amal Akou, Khaldoun Abdul-kader, et al. "Bistable photonic nanostructures based on molecular spin crossover complexes." In SPIE Photonics Europe, edited by Hernán R. Míguez, Sergei G. Romanov, Lucio C. Andreani, and Christian Seassal. SPIE, 2012. http://dx.doi.org/10.1117/12.921849.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Gudyma, Iurii V., and Artur Iu Maksymov. "Light-induced hysteresis in spin crossover compounds under noise." In Eleventh International Conference on Correlation Optics, edited by Oleg V. Angelsky. SPIE, 2013. http://dx.doi.org/10.1117/12.2048391.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Spin-crossover"

1

Paesani, Francesco. Theoretical Studies of Spin Crossover Metal-Organic Frameworks. Office of Scientific and Technical Information (OSTI), June 2013. http://dx.doi.org/10.2172/1436510.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wampler, James, Ping Wang, Michael Shatruk, Minseong Lee, and Vivien Zapf. Spin crossover transition in a Cobalt tautomeric complex. Office of Scientific and Technical Information (OSTI), January 2022. http://dx.doi.org/10.2172/1840869.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography