To see the other types of publications on this topic, follow the link: Spin glass.

Journal articles on the topic 'Spin glass'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Spin glass.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Anderson, Philip W. "Spin Glass VII: Spin Glass as Paradigm." Physics Today 43, no. 3 (March 1990): 9–11. http://dx.doi.org/10.1063/1.2810479.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Anderson, Philip W. "Spin Glass VI: Spin Glass As Cornucopia." Physics Today 42, no. 9 (September 1989): 9–11. http://dx.doi.org/10.1063/1.2811137.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Miyako, Yoshihito. "Spin glass." Bulletin of the Japan Institute of Metals 29, no. 8 (1990): 589–95. http://dx.doi.org/10.2320/materia1962.29.589.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Campbell, I. A., J. Hammann, H. Kawamura, R. H. McKenzie, P. Nordblad, R. Orbach, and H. Takayama. "Spin-glass dynamics." Journal of Magnetism and Magnetic Materials 177-181 (January 1998): 63–66. http://dx.doi.org/10.1016/s0304-8853(97)00994-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gukov, S. "Supersymmetric spin glass." Journal of Experimental and Theoretical Physics Letters 65, no. 8 (April 1997): 694–700. http://dx.doi.org/10.1134/1.567408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Hammann, J., M. Lederman, M. Ocio, R. Orbach, and E. Vincent. "Spin-glass dynamics." Physica A: Statistical Mechanics and its Applications 185, no. 1-4 (June 1992): 278–94. http://dx.doi.org/10.1016/0378-4371(92)90467-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Campbell, I. A. "Spin glass order." Hyperfine Interactions 34, no. 1-4 (March 1987): 505–13. http://dx.doi.org/10.1007/bf02072766.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Hoines, L., R. Stubi, R. Loloee, J. A. Cowen, and J. Bass. "How thin a spin glass is still a spin glass?" Physical Review Letters 66, no. 9 (March 4, 1991): 1224–27. http://dx.doi.org/10.1103/physrevlett.66.1224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Rusek, P. "Spin dynamics of ferromagnetic spin glass." Journal of Magnetism and Magnetic Materials 272-276 (May 2004): 1332–33. http://dx.doi.org/10.1016/j.jmmm.2003.12.100.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ciria, J. C., G. Parisi, and F. Ritort. "Four-dimensional Ising spin glass: scaling within the spin-glass phase." Journal of Physics A: Mathematical and General 26, no. 23 (December 7, 1993): 6731–45. http://dx.doi.org/10.1088/0305-4470/26/23/021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Chi, Xiaodan, Ruijun Li, Le Yu, Huaihao Kou, An Du, Yan Liu, and Yong Hu. "Spin glass properties mapped by coercivity in ferromagnet/spin glass bilayers." Nanotechnology 30, no. 12 (January 30, 2019): 125702. http://dx.doi.org/10.1088/1361-6528/aaf9ef.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Dotsenko, Viktor S. "Physics of the spin-glass state." Uspekhi Fizicheskih Nauk 163, no. 6 (1993): 1. http://dx.doi.org/10.3367/ufnr.0163.199306a.0001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Dixit, Srishti, Labanya Ghosh, Mohd Alam, Satya Vijay Kumar, Neha Patel, Swayangsiddha Ghosh, Nisha Shahi, Sanjay Singh, and Sandip Chatterjee. "Existence of exotic magnetic phases along with exchange bias and memory effect in frustrated beta-Mn Heusler alloy." Journal of Applied Physics 133, no. 1 (January 7, 2023): 013904. http://dx.doi.org/10.1063/5.0127446.

Full text
Abstract:
Generally, Co-based Heusler alloys are the center of interest because of their properties such as high Curie temperature, spin polarization, and high value of exchange bias. Herein, we have used the macroscopic technique to probe the low-temperature exotic properties of M1.5Co0.5FeAl. First, we have analyzed the dc magnetization data, and it unfolds the presence of a glassy phase at 33 K. The cluster spin glass phase is authenticated by measuring ac susceptibility. Furthermore, using empirical models like power law and Vogel–Fulcher fitting, the relaxation time for the spin is of the order of τ ∼ 10−9 s, confirming the presence of a cluster spin glass in Mn1.5Co0.5FeAl below an irreversible temperature. The H–T phase space diagram ensures that it follows the Ising spin model. Furthermore, the glassy phase of the system is confirmed by magnetic relaxation, memory effect, and the presence of an exchange bias instead of a minor loop below spin-freezing temperature ( Tf ∼ 33 K).
APA, Harvard, Vancouver, ISO, and other styles
14

Almeida, J. R. L. de. "Glassy behaviour in pyrochlores: a spin glass approach." Journal of Physics: Condensed Matter 11, no. 21 (January 1, 1999): L223—L227. http://dx.doi.org/10.1088/0953-8984/11/21/103.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Kajňaková, Marcela, Alexander Feher, Elena Fertman, Vladimir Desnenko, Anatoly Beznosov, and Sergiy Dolya. "Nanophase Separation and Magnetic Spin Glass in Nd2/3Ca1/3MnO3." Solid State Phenomena 190 (June 2012): 675–78. http://dx.doi.org/10.4028/www.scientific.net/ssp.190.675.

Full text
Abstract:
A study of the low temperature magnetic state of polycrystalline colossal magnetoresistance perovskite Nd2/3Ca1/3MnO3 has been carried out. The data obtained, such as strongly divergent ZFC and FC static magnetizations and frequency dependent ac susceptibility, are evident of the glassy magnetic state of the system. Well defined maxima Tmax in the in-phase linear ac susceptibility χ curves were observed, indicating a spin-glass transition. Clear frequency dependence of the cusp temperature Tmax was found. The frequency dependence of Tmax was successfully analyzed by the dynamical scaling theory of a three-dimensional spin glass. Slow relaxation process and variety of relaxation times found imply a cluster glass magnetic state of the compound at low temperatures rather than a canonical spin glass state. The cluster glass state, accompanied by the multiple magnetic transitions of Nd2/3Ca1/3MnO3, might exist due to the competing interaction between the FM clusters and the AFM matrix induced by the complex nanophase segregated state of the compound.
APA, Harvard, Vancouver, ISO, and other styles
16

Bruni, F., and A. C. Leopold. "Cytoplasmic glass formation in maize embryos." Seed Science Research 2, no. 4 (December 1992): 251–53. http://dx.doi.org/10.1017/s0960258500001446.

Full text
Abstract:
AbstractIn order to examine the occurrence of a glassy state in the cytoplasm of maize embryos as a function of water content, isolated embryos were examined using spin-probe electron spin resonance. The glass transition temperature was determined at various degrees of hydration (h) in the range 0.05–0.25 g H2O g−1 dry sample weight. The obtained phase diagram indicates that, at standard storage temperature (−5°C), the cytoplasm of embryos drier than 0.15 g H2O g−1 is in a glassy state.
APA, Harvard, Vancouver, ISO, and other styles
17

Hoogerbeets, R., Wei-Li Luo, R. Orbach, and D. Fiorani. "Spin-glass response near the glass temperature." Physical Review B 33, no. 9 (May 1, 1986): 6531–32. http://dx.doi.org/10.1103/physrevb.33.6531.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Yanagida, Motohiro, Hiroki Norimatsu, and Yorihiko Tsunoda. "Spin Correlations in MnCu Spin-Glass Alloy." Journal of the Physical Society of Japan 79, no. 10 (October 15, 2010): 104701. http://dx.doi.org/10.1143/jpsj.79.104701.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Gavoille, G., and J. Hubsch. "SPIN WAVES IN REENTRANT SPIN GLASS Fe0.9Ti0.55Mg1.55O4." Le Journal de Physique Colloques 49, no. C8 (December 1988): C8–1159—C8–1160. http://dx.doi.org/10.1051/jphyscol:19888532.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Koo, Je Huan, Guangsup Cho, and Jong-Jean Kim. "Finite block spin phenomenology of spin glass." Solid State Communications 149, no. 21-22 (June 2009): 827–29. http://dx.doi.org/10.1016/j.ssc.2009.03.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Crisanti, A., H. Horner, and H. J. Sommers. "The sphericalp-spin interaction spin-glass model." Zeitschrift f�r Physik B Condensed Matter 92, no. 2 (June 1993): 257–71. http://dx.doi.org/10.1007/bf01312184.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Parisi, Giorgio. "On Spin Glass Theory." Physica Scripta T19A (January 1, 1987): 27–31. http://dx.doi.org/10.1088/0031-8949/1987/t19a/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

BERG, BERND A., and TARIK CELIK. "MULTICANONICAL SPIN GLASS SIMULATIONS." International Journal of Modern Physics C 03, no. 06 (December 1992): 1251–74. http://dx.doi.org/10.1142/s0129183192000865.

Full text
Abstract:
We report a Monte Carlo simulation of the 2D Edwards-Anderson spin glass model within the recently introduced multicanonical ensemble. Replica on lattices of size L2 up to L=48 are investigated. Once a true groundstate is found, we are able to give a lower bound on the number of statistically independent groundstates sampled. Temperature dependence of the energy, entropy and other quantities of interest are easily calculable. In particular we report the groundstate results. Our data indicate that the large L increase of the ergodicity time is reduced to an approximately V3 power law. Altogether the results suggest that the multicanonical ensemble improves the situation of simulations for spin glasses and other systems which have to cope with similar problems of conflicting constraints.
APA, Harvard, Vancouver, ISO, and other styles
24

Błaszyk, M., and B. Fechner. "One-Dimensional Spin Glass." Acta Physica Polonica A 110, no. 1 (July 2006): 11–24. http://dx.doi.org/10.12693/aphyspola.110.11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Süllow, S., G. J. Nieuwenhuys, A. A. Menovsky, J. A. Mydosh, S. A. M. Mentink, T. E. Mason, and W. J. L. Buyers. "Spin Glass Behavior inURh2Ge2." Physical Review Letters 78, no. 2 (January 13, 1997): 354–57. http://dx.doi.org/10.1103/physrevlett.78.354.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Nam, D. N. H., R. Mathieu, P. Nordblad, N. V. Khiem, and N. X. Phuc. "Spin-glass dynamics ofLa0.95Sr0.05CoO3." Physical Review B 62, no. 13 (October 1, 2000): 8989–95. http://dx.doi.org/10.1103/physrevb.62.8989.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Krimmel, A., J. Hemberger, M. Nicklas, G. Knebel, W. Trinkl, M. Brando, V. Fritsch, A. Loidl, and E. Ressouche. "Spin-glass behavior inPrAu2Si2." Physical Review B 59, no. 10 (March 1, 1999): R6604—R6607. http://dx.doi.org/10.1103/physrevb.59.r6604.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Sato, Hirohiko, and Makoto Soma. "Spin-glass ruthenate: Cubic-." Journal of Magnetism and Magnetic Materials 310, no. 2 (March 2007): 1517–19. http://dx.doi.org/10.1016/j.jmmm.2006.10.658.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Attanasio, C., L. Maritato, B. Engel, and C. M. Falco. "Superconducting spin-glass multilayers." Physica B: Condensed Matter 194-196 (February 1994): 1721–22. http://dx.doi.org/10.1016/0921-4526(94)91360-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Rodrigues, Eduardo Soares, and Paulo Murilo Castro de Oliveira. "Spin-glass energy landscape." Journal of Statistical Physics 74, no. 5-6 (March 1994): 1265–72. http://dx.doi.org/10.1007/bf02188229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Fyodorov, Ya V., I. Ya Korenblit, and E. F. Shender. "Antiferromagnetic Ising spin glass." Journal of Physics C: Solid State Physics 20, no. 12 (April 30, 1987): 1835–39. http://dx.doi.org/10.1088/0022-3719/20/12/011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Luchinskaya, E. A., and E. E. Tareeva. "Spin glass withS=1." Theoretical and Mathematical Physics 90, no. 2 (February 1992): 185–88. http://dx.doi.org/10.1007/bf01028443.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Skomski, Ralph. "Spin-glass permanent magnets." Journal of Magnetism and Magnetic Materials 157-158 (May 1996): 713–14. http://dx.doi.org/10.1016/0304-8853(95)01192-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Stephan, W., and J. P. Carbotte. "Spin-glass superconductor: Thermodynamics." Journal of Low Temperature Physics 83, no. 3-4 (May 1991): 131–53. http://dx.doi.org/10.1007/bf00682114.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Vasseur, Romain, and Turab Lookman. "Spin Models for Ferroelastics: towards a Spin Glass Description of Strain Glass." Solid State Phenomena 172-174 (June 2011): 1078–83. http://dx.doi.org/10.4028/www.scientific.net/ssp.172-174.1078.

Full text
Abstract:
We review the description of ferroelastic transitions in terms of spin models. We show how one can systematically obtain a pseudo-spin Hamiltonian from the Landau energy describing the first order transition between Austenite/Martensite phases. It is shown that a Local Mean-field approximation predicts the same microstructure as the continuous Landau model in terms of strain variables. This method can be applied to a wide range of two and three dimensional transitions. We then demonstrate how quenched disorder in such pseudo-spin models yields the existence of a glass phase, characterized by the Edwards-Anderson order parameter. Our approach uses Mean-field approximation and Monte-Carlo simulations (using Zero Field Cooling/Field Cooling experiments) to study the influence of the long-range interactions. Although our model captures the salient features of a ferroelastic material in the presence of disorder, the influence of the disorder on the high symmetry austenite phase is not quite consistent with expected behavior. We examine different means of introducing disorder that can improve upon the results.
APA, Harvard, Vancouver, ISO, and other styles
36

Kirkpatrick, T. R., and D. Thirumalai. "p-spin-interaction spin-glass models: Connections with the structural glass problem." Physical Review B 36, no. 10 (October 1, 1987): 5388–97. http://dx.doi.org/10.1103/physrevb.36.5388.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Kawano, Hazuki, Hideki Yoshizawa, Atsuko Ito, and Kiyoichiro Motoya. "Two Successive Spin Glass Transitions in Nondiluted Heisenberg-Like Spin Glass Ni0.42Mn0.58TiO3." Journal of the Physical Society of Japan 62, no. 8 (August 15, 1993): 2575–78. http://dx.doi.org/10.1143/jpsj.62.2575.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Janutka, Andrzej. "Dynamics of ferromagnetic spin glass: randomly canted ferromagnet versus skewed spin glass." Journal of Physics: Condensed Matter 15, no. 49 (November 25, 2003): 8561–86. http://dx.doi.org/10.1088/0953-8984/15/49/028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Lee, S. H., C. Broholm, G. Aeppli, A. P. Ramirez, T. G. Perring, C. J. Carlile, M. Adams, T. J. L. Jones, and B. Hessen. "Spin-glass and non–spin-glass features of a geometrically frustrated magnet." Europhysics Letters (EPL) 35, no. 2 (July 10, 1996): 127–32. http://dx.doi.org/10.1209/epl/i1996-00543-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Li, Ruijun, Le Yu, and Yong Hu. "Spin‐Glass Irreversibility Temperature and Magnetic Stabilization in Ferromagnet/Spin‐Glass Bilayers." physica status solidi (RRL) – Rapid Research Letters 13, no. 6 (March 6, 2019): 1900039. http://dx.doi.org/10.1002/pssr.201900039.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

KAWAMURA, H., and K. HUKUSHIMA. "DYNAMICAL ASPECTS OF EQUILIBRIUM AND OFF-EQUILIBRIUM SIMULATIONS OF A THREE-DIMENSIONAL HEISENBERG SPIN GLASS." International Journal of Modern Physics C 10, no. 08 (December 1999): 1471–81. http://dx.doi.org/10.1142/s012918319900125x.

Full text
Abstract:
Spin-glass and chiral-glass orderings of a three-dimensional isotropic Heisenberg spin glass are studied both by equilibrium and off-equilibrium Monte Carlo simulations with emphasis on their dynamical aspects. The model is found to exhibit a finite-temperature chiral-glass transition without the conventional spin-glass order. Although chirality is an Ising-like quantity from symmetry, universality class of the chiral-glass transition appears to be different from that of the standard Ising spin glass. In the off-equilibrium simulation, while the spin autocorrelation exhibits only an interrupted aging, the chirality autocorrelation persists to exhibit a pronounced aging effect reminiscent of the one observered in the mean-field model.
APA, Harvard, Vancouver, ISO, and other styles
42

Nakamura, Tota, and Shin-ichi Endoh. "A Spin-Glass and Chiral-Glass Transition in a ±JHeisenberg Spin-Glass Model in Three Dimensions." Journal of the Physical Society of Japan 71, no. 9 (September 15, 2002): 2113–16. http://dx.doi.org/10.1143/jpsj.71.2113.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

HASHIZUME, YOICHIRO, and MASUO SUZUKI. "CONTROLLED RANDOMNESS AND FRUSTRATION OF THE MANY-BODY INTERACTIONS." International Journal of Modern Physics B 25, no. 26 (October 20, 2011): 3529–38. http://dx.doi.org/10.1142/s0217979211101910.

Full text
Abstract:
On the Ising spin systems constructed with four-body interactions, there appears the "spin-pair ordered phase" or "spin-pair glass phase" in a certain temperature. Especially, the random four-body models include the frustration and the spin-pair glass phase appears in those models. This frustration may play an important role of spin-pair glass transitions, similarly to the case of ordinary spin-glass transitions. In this study, we clarify the way to discriminate quantitatively "frustrated unit cells" from "nonfrustrated ones" on the random four-body models. Then we introduce a parameter to control the frustration in the Ising spin systems with random four-body interactions. This parameter enables us to analyze the frustration continuously in many-body models. Thus we have analyzed the phase transitions and obtained phase diagrams using the frustration parameter. These interesting phase diagrams show that there appear the spin-pair ordered phases even on the completely frustrated models. This result is essentially different from the random two-body models, namely spin-glass models (there appears no ferromagnetic phase in the fully frustrated spin-glass models, which correspond to the Villain models).
APA, Harvard, Vancouver, ISO, and other styles
44

Kirkpatrick, T. R., and D. Thirumalai. "Dynamics of the Structural Glass Transition and thep-Spin—Interaction Spin-Glass Model." Physical Review Letters 58, no. 20 (May 18, 1987): 2091–94. http://dx.doi.org/10.1103/physrevlett.58.2091.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

PALMER, R. G. "Parallels and Contrasts between Glass and Spin Glass." Annals of the New York Academy of Sciences 484, no. 1 (December 1986): 109–20. http://dx.doi.org/10.1111/j.1749-6632.1986.tb49566.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Singh, Kiran, Antoine Maignan, Charles Simon, Vincent Hardy, Elise Pachoud, and Christine Martin. "The spin glass delafossite CuFe0.5V0.5O2: a dipolar glass?" Journal of Physics: Condensed Matter 23, no. 12 (March 10, 2011): 126005. http://dx.doi.org/10.1088/0953-8984/23/12/126005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Aeppli, G., J. J. Hauser, G. Shirane, and Y. J. Uemura. "Spin correlations in a concentrated metallic spin-glass." Physical Review Letters 54, no. 8 (February 25, 1985): 843–46. http://dx.doi.org/10.1103/physrevlett.54.843.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Tazuke, Y., and F. Matsukura. "Spin relaxations in an Ising spin glass Fe0.2TiS2." Journal of Magnetism and Magnetic Materials 90-91 (December 1990): 347–48. http://dx.doi.org/10.1016/s0304-8853(10)80126-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Yeshurun, Y., J. L. Tholence, J. K. Kjems, and B. Wanklyn. "Spin dynamics in the anisotropic spin glass Fe2TiO5." Journal of Physics C: Solid State Physics 18, no. 17 (June 20, 1985): L483—L487. http://dx.doi.org/10.1088/0022-3719/18/17/001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

KAWAMURA, HIKARU. "CHIRAL ORDER IN SPIN GLASSES." International Journal of Modern Physics C 07, no. 03 (June 1996): 345–53. http://dx.doi.org/10.1142/s0129183196000284.

Full text
Abstract:
The results of the recent numerical simulations on vector spin glasses are presented. Numerical evidence of the novel chiral-glass state, accompanied with broken spin-reflection symmetry with preserving spin-rotation symmetry, is presented. Implication to experiments on spin-glass transitions is discussed.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography