To see the other types of publications on this topic, follow the link: Spin-valve structures.

Journal articles on the topic 'Spin-valve structures'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Spin-valve structures.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Tang, L., M. Xiao, D. E. Laughlin, and M. H. Kryder. "Microstructure of spin-valve mr sandwiches." Proceedings, annual meeting, Electron Microscopy Society of America 53 (August 13, 1995): 484–85. http://dx.doi.org/10.1017/s0424820100138798.

Full text
Abstract:
Giant magnetoresistance ( GMR ) effects in magnetic multilayers with spin-valve structures are under intensive investigation. The GMR effects in spin-valve structures originate from the change in the orientation of magnetization in the successive ferromagnetic layers. Of the various types of spin-valve multilayered structures reported, spin-valve sandwiches, in which one of the two ferromagnetic layers separated by a nonferromagnetic metal layer is constrained through exchange coupling to an adjacent antiferromagnetic layer, are most promising for applications in read heads for high density ma
APA, Harvard, Vancouver, ISO, and other styles
2

GURNEY, B. A., V. S. SPERIOSU, H. LEFAKIS, et al. "Spin Valve Structures and Sensors." Journal of the Magnetics Society of Japan 18, S_1_PMRC_94_1 (1994): S1_343–343. http://dx.doi.org/10.3379/jmsjmag.18.s1_343.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Gmitra, M., D. Horváth, M. Wawrzyniak, and J. Barnaś. "Current-induced spin dynamics in spin-valve structures." physica status solidi (b) 243, no. 1 (2006): 219–22. http://dx.doi.org/10.1002/pssb.200562520.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

de Morais, A., and A. K. Petford-Long. "Spin valve structures with artificial antiferromagnets." Journal of Applied Physics 87, no. 9 (2000): 6977–79. http://dx.doi.org/10.1063/1.372905.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Leal, J. L., and M. H. Kryder. "Interlayer coupling in spin valve structures." IEEE Transactions on Magnetics 32, no. 5 (1996): 4642–44. http://dx.doi.org/10.1109/20.539104.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Goodman, A. M., K. O'Grady, N. S. Walmsley, and M. R. Parker. "Magnetisation reversal in spin-valve structures." IEEE Transactions on Magnetics 33, no. 5 (1997): 2902–4. http://dx.doi.org/10.1109/20.617792.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Anthony, T. C., J. A. Brug, and Shufeng Zhang. "Magnetoresistance of symmetric spin valve structures." IEEE Transactions on Magnetics 30, no. 6 (1994): 3819–21. http://dx.doi.org/10.1109/20.333913.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Beech, R. S., J. M. Daughton, and W. B. Kude. "Current distribution in spin-valve structures." IEEE Transactions on Magnetics 30, no. 6 (1994): 4557–59. http://dx.doi.org/10.1109/20.334147.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Laloe, J. B., W. S. Lew, and J. A. C. Bland. "ChemInform Abstract: Epitaxial Spin-Valve Structures." ChemInform 43, no. 45 (2012): no. http://dx.doi.org/10.1002/chin.201245230.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Kim, Petr D., Gennady S. Patrin, Igor A. Turpanov, Dmitriy A. Marushchenko, L. A. Lee, and Tatyana V. Rudenko. "The Investigation of Long-Range Exchange Interaction in Spin Valve Structures." Solid State Phenomena 215 (April 2014): 489–94. http://dx.doi.org/10.4028/www.scientific.net/ssp.215.489.

Full text
Abstract:
Magnetic spin valve structures have a great practical interest as sensors of magnetic fields, hard disk read heads and elements of magnetic random access memories (MRAM). Despite the large number of experimental and theoretical work on spin valve structures, the effects of interlayer interactions occurring in these structures, at present time are not fully understood. Introduction
APA, Harvard, Vancouver, ISO, and other styles
11

Kim, Joo-Von, and C. Chappert. "Magnetization dynamics in spin-valve structures with spin pumping." Journal of Magnetism and Magnetic Materials 286 (February 2005): 56–60. http://dx.doi.org/10.1016/j.jmmm.2004.09.036.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Drovorub, E. V., V. V. Prudnikov, and P. V. Prudnikov. "Monte Carlo simulation of magnetic properties of different types of spin-valve nanostructures." Herald of Omsk University 29, no. 2 (2024): 38–45. http://dx.doi.org/10.24147/1812-3996.2024.2.38-45.

Full text
Abstract:
The Monte Carlo simulation of behavior and magnetic properties of three types of active used spin-valve structures is carried out. It is identified the effect of magnetic anisotropy and intra- and interlayer exchange interaction influence on hysteresis phenomena in a spin-valve structures upon varying the thickness of nanosized ferromagnetic films.
APA, Harvard, Vancouver, ISO, and other styles
13

Lu Wen-Tian, Yao Chun-Wei, YAN Zhi, and YUAN Zhe. "Ultrafast Spin Dynamics Research on Laser-Induced Spin Valve Structures." Acta Physica Sinica 74, no. 6 (2025): 0. https://doi.org/10.7498/aps.74.20241744.

Full text
Abstract:
The discovery of ultrafast demagnetization has introduced a new approach for generating ultrafast spin currents using an ultrashort laser, potentially enabling faster manipulation of material magnetism. This has sparked research into the transport mechanisms of ultrafast spin currents. However, the underlying processes remain poorly understood, particularly the factors influencing interlayer spin transfer. This study employs a superdiffusive spin transport model to investigate the ultrafast spin transport mechanisms in the Ni/Ru/Fe spin valve system, with a particular focus on how interlayer s
APA, Harvard, Vancouver, ISO, and other styles
14

Petford-Long, Amanda K., Xavier Portier, Pascale Bayle-Guillemaud, Thomas C. Anthony, and James A. Brug. "In Situ Transmission Electron Microscopy Studies of the Magnetization Reversal Mechanism in Information Storage Materials." Microscopy and Microanalysis 4, no. 3 (1998): 325–33. http://dx.doi.org/10.1017/s1431927698980333.

Full text
Abstract:
The Foucault and Fresnel modes of Lorentz microscopy, together with a quantitative magnetization mapping technique, summed image differential phase-contrast imaging, were used to study the magnetization reversal mechanism of the sense layer in spin-valve structures exhibiting the giant magnetoresistance effect. In addition to studies of sheet film, lithographically defined spin-valve elements were investigated. A current can be passed through the element during magnetizing so that the effect of the applied current on the giant magnetoresistance and magnetization reversal mechanism can be studi
APA, Harvard, Vancouver, ISO, and other styles
15

GREAVES, S. J., H. MURAOKA, and Y. NAKAMURA. "Deposition and modeling of spin valve structures." Journal of the Magnetics Society of Japan 21, S_2_PMRC_97_2 (1997): S2_383–386. http://dx.doi.org/10.3379/jmsjmag.21.s2_383.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Li, Y. F., R. H. Yu, John Q. Xiao, and D. V. Dimitrov. "Memory effect in standard spin valve structures." Journal of Applied Physics 87, no. 9 (2000): 4951–53. http://dx.doi.org/10.1063/1.373212.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

Liu, C. Y., H. R. H. AlQahtani, M. Grell, D. A. Allwood, M. R. J. Gibbs, and N. A. Morley. "Interfacial studies of polymeric spin-valve structures." Synthetic Metals 173 (June 2013): 51–56. http://dx.doi.org/10.1016/j.synthmet.2012.12.012.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Hordequin, C., J. P. Nozières, and J. Pierre. "Half metallic NiMnSb-based spin-valve structures." Journal of Magnetism and Magnetic Materials 183, no. 1-2 (1998): 225–31. http://dx.doi.org/10.1016/s0304-8853(97)01072-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Pullini, D., and K. Zvezdin. "The remagnetization process in spin-valve structures." Journal of Magnetism and Magnetic Materials 240, no. 1-3 (2002): 317–20. http://dx.doi.org/10.1016/s0304-8853(01)00795-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Cowache, C., B. Dieny, S. Auffret, et al. "Spin-valve structures with NiO pinning layers." IEEE Transactions on Magnetics 34, no. 4 (1998): 843–45. http://dx.doi.org/10.1109/20.706281.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Jyh-Shinn Yang, J. Lee, and Ching-Ray Chang. "Magnetostatic coupling in patterned spin valve structures." IEEE Transactions on Magnetics 34, no. 5 (1998): 2469–72. http://dx.doi.org/10.1109/20.717568.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Freitas, P. P., J. L. Leal, T. S. Plaskett, L. V. Melo, and J. C. Soares. "Spin‐valve structures exchange biased witha‐Tb0.23Co0.77layers." Journal of Applied Physics 75, no. 10 (1994): 6480–82. http://dx.doi.org/10.1063/1.356970.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Barnaś, J., M. Gmitra, M. Misiorny, and V. Dugaev. "Current-induced switching in spin-valve structures." physica status solidi (b) 244, no. 7 (2007): 2304–10. http://dx.doi.org/10.1002/pssb.200674602.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

George, J. M., L. G. Pereira, A. Barthélémy, et al. "Inverse spin-valve-type magnetoresistance in spin engineered multilayered structures." Physical Review Letters 72, no. 3 (1994): 408–11. http://dx.doi.org/10.1103/physrevlett.72.408.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Prudnikov, Vladimir Vasiljevich, Pavel Vladimirovich Prudnikov, Anna Andreevna Samoshilova, and Kirill Aleksandrovich Khristovskii. "SIMULATION OF BEHAVIOR AND CALCULATION OF MAGNETORESISTANCE IN SPIN VALVE NANOSTRUCTURES." Herald of Omsk University 25, no. 1 (2020): 22–28. http://dx.doi.org/10.24147/1812-3996.2020.25(1).22-28.

Full text
Abstract:
The Monte Carlo study of spin-valve magnetic structures with giant magnetoresistance ef-fects has been performed with the application of the Heisenberg anisotropic model to the description of the magnetic properties of ultrathin ferromagnetic films. The dependences of the magnetic characteristics on the temperature and external magnetic field have been obtained for the ferromagnetic configurations of these structures. A Monte Carlo method for determining the magnetoresistance has been developed. The magnetoresistance coef-ficient has been calculated for spin-valve structures at various nanothi
APA, Harvard, Vancouver, ISO, and other styles
26

Lee, W. Y., A. Samad, T. A. Moore, J. A. C. Bland, and B. C. Choi. "Magnetization reversal dynamics in epitaxial spin-valve structures." Physical Review B 61, no. 10 (2000): 6811–15. http://dx.doi.org/10.1103/physrevb.61.6811.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Rodríguez-Suárez, R. L., A. B. Oliveira, S. M. Rezende, and A. Azevedo. "Interplay between magnetic interactions in spin-valve structures." Journal of Applied Physics 99, no. 8 (2006): 08R506. http://dx.doi.org/10.1063/1.2172889.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Reig, C., D. Ramirez, H. H. Li, and P. P. Freitas. "Low-current sensing with specular spin valve structures." IEE Proceedings - Circuits, Devices and Systems 152, no. 4 (2005): 307. http://dx.doi.org/10.1049/ip-cds:20050005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ozbay, A., A. Gokce, T. Flanagan, R. A. Stearrett, E. R. Nowak, and C. Nordman. "Low frequency magnetoresistive noise in spin-valve structures." Applied Physics Letters 94, no. 20 (2009): 202506. http://dx.doi.org/10.1063/1.3139067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Kushnir, V. N., and M. Yu Kupriyanov. "Parametric spin-valve effect in superconductor/ferromagnet structures." Low Temperature Physics 42, no. 10 (2016): 900–904. http://dx.doi.org/10.1063/1.4965895.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Lee, W. Y., A. Samad, T. A. Moore, J. A. C. Bland, and B. C. Choi. "Dynamic hysteresis behavior in epitaxial spin-valve structures." Journal of Applied Physics 87, no. 9 (2000): 6600–6602. http://dx.doi.org/10.1063/1.372783.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Tang, Xiao-Li, Huai-Wu Zhang, Hua Su, Zhi-Yong Zhong, and Yu-Lan Jing. "Spin valve structures with double exchange biased fields." Journal of Physics D: Applied Physics 39, no. 24 (2006): 5121–23. http://dx.doi.org/10.1088/0022-3727/39/24/004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Svalov, A. V., P. A. Savin, G. V. Kurlyandskaya, J. Gutierrez, J. M. Barandiaran, and V. O. Vas'kovskiy. "Spin-valve structures with Co-Tb-based multilayers." IEEE Transactions on Magnetics 38, no. 5 (2002): 2782–84. http://dx.doi.org/10.1109/tmag.2002.803112.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Heer, R., J. Smoliner, J. Bornemeier, and H. Brückl. "Ballistic electron emission microscopy on spin valve structures." Applied Physics Letters 85, no. 19 (2004): 4388. http://dx.doi.org/10.1063/1.1814423.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Neilo, Alexey, Sergey Bakurskiy, Nikolay Klenov, Igor Soloviev, and Mikhail Kupriyanov. "Superconducting Valve Exploiting Interplay between Spin-Orbit and Exchange Interactions." Nanomaterials 12, no. 24 (2022): 4426. http://dx.doi.org/10.3390/nano12244426.

Full text
Abstract:
We theoretically investigated the proximity effect in SNSOF and SF’F structures consisting of a superconductor (S), a normal metal (NSO), and ferromagnetic (F’,F) thin films with spin–orbit interaction (SOI) in the NSO layer. We show that a normal layer with spin–orbit interaction effectively suppresses triplet correlations generated in a ferromagnetic layer. Due to this effect, the critical temperature of the superconducting layer in the SNSOF multilayer turns out to be higher than in a similar multilayer without spin–orbit interaction in the N layer. Moreover, in the presence of a mixed type
APA, Harvard, Vancouver, ISO, and other styles
36

Kamashev А. А., Garif’yanov N. N., Validov A. A., Fominov Ya. V., and Garifullin I. A. "Superconducting spin-valve effect in heterostructures with ferromagnetic Heusler alloy layers." Physics of the Solid State 64, no. 9 (2022): 1196. http://dx.doi.org/10.21883/pss.2022.09.54151.18hh.

Full text
Abstract:
The transport properties of two types of spin valves are analyzed, in which the Heusler alloy Co2Cr1-xFexAly was used as one of the two ferromagnetic layers in the F1/F2/S structures. The Heusler alloy layer was used: 1) as a weak ferromagnet, in the case of the F2 layer; 2) as a halfmetal, in the case of the F1 layer. In the first case, a large classical effect of the superconducting spin valve Delta Tc was obtained, which was facilitated by a significant triplet contribution to the effect of the superconducting spin valve Delta Tctrip. In the second case, a gigantic effect value Delta Tctrip
APA, Harvard, Vancouver, ISO, and other styles
37

Childress, J. R., M. K. Ho, R. E. Fontana, et al. "Spin-valve and tunnel-valve structures with in situ in-stack bias." IEEE Transactions on Magnetics 38, no. 5 (2002): 2286–88. http://dx.doi.org/10.1109/tmag.2002.802802.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Shiihara, Takahiro, Michihiro Yamada, Mizuki Honda, Atsuya Yamada, Shinya Yamada, and Kohei Hamaya. "Spin transport in antimony-doped germanium detected using vertical spin-valve structures." Applied Physics Express 13, no. 2 (2020): 023001. http://dx.doi.org/10.35848/1882-0786/ab6ca8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Laloë, J. B., T. Yang, T. Kimura, and Y. Otani. "Spin-current-induced dynamics in ferromagnetic nanopillars of lateral spin-valve structures." Journal of Applied Physics 105, no. 7 (2009): 07D110. http://dx.doi.org/10.1063/1.3058621.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Wang Ri-Xing, Xiao Yun-Chang, and Zhao Jing-Li. "Ferromagnetic resonance in spin valve structures with perpendicular anisotropy." Acta Physica Sinica 63, no. 21 (2014): 217601. http://dx.doi.org/10.7498/aps.63.217601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Goodman, A. M., K. O'Grady, H. Laidler, et al. "Magnetization reversal processes in exchange-biased spin-valve structures." IEEE Transactions on Magnetics 37, no. 1 (2001): 565–70. http://dx.doi.org/10.1109/20.914379.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Fujita, M., K. Yamano, A. Maeda, T. Tanuma, and M. Kume. "Exchange coupling in spin-valve structures containing amorphous CoFeB." Journal of Applied Physics 81, no. 8 (1997): 4909–11. http://dx.doi.org/10.1063/1.364816.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Schuhl, A., O. Durand, J. R. Childress, J. ‐M George, and L. G. Pereira. "Epitaxial spin‐valve structures for ultra‐low‐field detection." Journal of Applied Physics 75, no. 10 (1994): 7061–63. http://dx.doi.org/10.1063/1.356726.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Dieny, B., V. S. Speriosu, S. Metin, et al. "Magnetotransport properties of magnetically soft spin‐valve structures (invited)." Journal of Applied Physics 69, no. 8 (1991): 4774–79. http://dx.doi.org/10.1063/1.348252.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Petford-Long, A. K., X. Portier, E. Y. Tsymbal, T. C. Anthony, and J. A. Brug. "In-situ Lorentz microscopy studies of spin-valve structures." IEEE Transactions on Magnetics 35, no. 2 (1999): 788–93. http://dx.doi.org/10.1109/20.750646.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Teixeira, J. M., J. Ventura, Yu G. Pogorelov, and J. B. Sousa. "Quantum effects in atomically perfect specular spin valve structures." Journal of Physics: Condensed Matter 20, no. 36 (2008): 365205. http://dx.doi.org/10.1088/0953-8984/20/36/365205.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Chien-Li Lin, J. M. Sivertsen, and J. H. Judy. "Magnetoresistance studies of NiCoO exchange biased spin-valve structures." IEEE Transactions on Magnetics 30, no. 6 (1994): 3834–36. http://dx.doi.org/10.1109/20.333904.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Chen, Qian, Xuezhong Ruan, Honglei Yuan, et al. "Interlayer transmission of magnons in dynamic spin valve structures." Applied Physics Letters 116, no. 13 (2020): 132403. http://dx.doi.org/10.1063/1.5145182.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

LAI, HUAN-WEN, XUEAN ZHAO, and YOU-QUAN LI. "SPIN FILTERING IN THE DOUBLE-BARRIER STRUCTURE." International Journal of Modern Physics B 19, no. 06 (2005): 989–97. http://dx.doi.org/10.1142/s0217979205029420.

Full text
Abstract:
In this paper, we study the electron transport properties in the double non-collinear δ-magnetic barriers within 2-dimensional electron gas. We find that the transmission of spin current depends on the relative orientation of each magnetic barrier. In addition to the well-known unpolarized configurations in an antiparallel magnetic barrier structure, we also find that there exists infinite unpolarized structures due to the time-reversal symmetry. These structures will be important in the designs of spin valve.
APA, Harvard, Vancouver, ISO, and other styles
50

Камашев, А. А., Н. Н. Гарифьянов, А. А. Валидов, Я. В. Фоминов та И. А. Гарифуллин. "Эффект сверхпроводящего спинового клапана в структурах со слоями ферромагнитного сплава Гейслера". Физика твердого тела 64, № 9 (2022): 1201. http://dx.doi.org/10.21883/ftt.2022.09.52806.18hh.

Full text
Abstract:
The transport properties of two types of spin valves are analyzed, in which the Heusler alloy Co2Cr1-xFexAly was used as one of the two ferromagnetic layers in the F1/F2/S structures. The Heusler alloy layer was used: 1) as a weak ferromagnet, in the case of the F2 layer; 2) as a halfmetal, in the case of the F1 layer. In the first case, a large classical effect of the superconducting spin valve ΔTc was obtained, which was facilitated by a significant triplet contribution to the effect of the superconducting spin valve ΔTctrip. In the second case, a gigantic effect value ΔTctrip was found reac
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!