Journal articles on the topic 'Spindle stiffness'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Spindle stiffness.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Li, Jiandong, Qiang Wang, Xurui Sun, et al. "Research on the Effect of Spindle Speed on the Softening and Hardening Characteristics of the Axial Operating Stiffness of Machine Tool Spindle." Lubricants 10, no. 7 (2022): 132. http://dx.doi.org/10.3390/lubricants10070132.
Full textYang, Zhaohui, Hui Chen, and Tianxiang Yu. "Effects of rolling bearing configuration on stiffness of machine tool spindle." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 232, no. 5 (2017): 775–85. http://dx.doi.org/10.1177/0954406217693659.
Full textLoram, Ian D., Martin Lakie, Irene Di Giulio, and Constantinos N. Maganaris. "The Consequences of Short-Range Stiffness and Fluctuating Muscle Activity for Proprioception of Postural Joint Rotations: The Relevance to Human Standing." Journal of Neurophysiology 102, no. 1 (2009): 460–74. http://dx.doi.org/10.1152/jn.00007.2009.
Full textKhavin, Valerij, Evgen Khavin, and Borys Kyrkach. "STATIC ANALYSIS OF SPINDLE SHAFTS ON NONLINEAR ELASTIC SUPPORTS OF INTERRELATED STIFFNESSES." Bulletin of the National technical university "Kharkiv Polytechnic Institute" Series: Techniques in a machine industry, no. 2(10) (December 27, 2024): 15–31. https://doi.org/10.20998/2079-004x.2024.2(10).03.
Full textChen, Shao Hsien, Shang Te Chen, and Chien Cheng Hsu. "The Impact of Different Axial Oil Chamber Design on Hydrostatic Spindle." Applied Mechanics and Materials 789-790 (September 2015): 296–99. http://dx.doi.org/10.4028/www.scientific.net/amm.789-790.296.
Full textChen, Chuanhai, Liang Zhang, Chunlei Hua, Zhifeng Liu, Qingyu Meng, and Junze Shi. "Research on Online Non-Contact Test Device and Test Method for Bearing Stiffness of Electric Spindle." Machines 13, no. 6 (2025): 516. https://doi.org/10.3390/machines13060516.
Full textSakamoto, Haruhisa, Yuhei Maeki, and Shinji Shimizu. "Change in Dynamic Characteristics of Spindle for Machining Centers Caused by Chucking Mechanism of Clamped Toolholders." Key Engineering Materials 523-524 (November 2012): 521–26. http://dx.doi.org/10.4028/www.scientific.net/kem.523-524.521.
Full textWang, Liping, Binbin Zhang, Jun Wu, Qinzhi Zhao, and Junjian Wang. "Stiffness modeling, identification, and measuring of a rotating spindle." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 234, no. 6 (2019): 1239–52. http://dx.doi.org/10.1177/0954406219890368.
Full textChen, Runlin, Xingzhao Wang, Chen Du, Jun Zha, Kai Liu, and Xiaoyang Yuan. "Stiffness Model and Experimental Study of Hydrostatic Spindle System considering Rotor Swing." Shock and Vibration 2020 (May 15, 2020): 1–8. http://dx.doi.org/10.1155/2020/5901432.
Full textGaber, Omar, and Seyed M. Hashemi. "On the Free Vibration Modeling of Spindle Systems: A Calibrated Dynamic Stiffness Matrix." Shock and Vibration 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/787518.
Full textSun, Feng, Yu Jiang, Ran Zhou, et al. "Research on the Consistency Evaluation of the Spindle Unit Stiffness Based on Comprehensive Weights." Machines 12, no. 6 (2024): 426. http://dx.doi.org/10.3390/machines12060426.
Full textLi, Chang He, Wei Ping Mao, and Yu Cheng Ding. "Numerical Investigation into Spindle System Stiffness of High-Speed Grinder." Key Engineering Materials 487 (July 2011): 490–94. http://dx.doi.org/10.4028/www.scientific.net/kem.487.490.
Full textLiu, Liang, Lizi Qi, Qiang Gao, Min Zhu, and Lihua Lu. "Influence of the Mechanism of Fluid-Structure Interaction on Stiffness of Static Pressure Spindles and Slides." Applied Sciences 13, no. 13 (2023): 7823. http://dx.doi.org/10.3390/app13137823.
Full textLin, Shen Yung, C. T. Chung, R. W. Chang, and C. K. Chang. "Effect of the Bearing Preload on the Characteristics of the Spindle Stiffness." Key Engineering Materials 419-420 (October 2009): 9–12. http://dx.doi.org/10.4028/www.scientific.net/kem.419-420.9.
Full textOh, Dong Ho, Nam Hoon Lee, Ja Choon Koo, Hyeon Ki Choi, and Yeon Sun Choi. "Nonsymmetric Groove Pattern Design for Precise Micro-Spindles." Key Engineering Materials 326-328 (December 2006): 1595–98. http://dx.doi.org/10.4028/www.scientific.net/kem.326-328.1595.
Full textTanaka, Tomohiro, Tomonori Kato, Tatsuki Otsubo, Atsuhiro Koyama, and Takanori Yazawa. "Control of Spindle Position and Stiffness of Aerostatic-Bearing-Type Air Turbine Spindle." International Journal of Automation Technology 16, no. 4 (2022): 456–63. http://dx.doi.org/10.20965/ijat.2022.p0456.
Full textLi, Chao, and Ying Xue Yao. "Dynamic Characteristic Analysis of High-Speed Milling Motorized Spindle Based on ANSYS Workbench." Key Engineering Materials 579-580 (September 2013): 530–35. http://dx.doi.org/10.4028/www.scientific.net/kem.579-580.530.
Full textGao, Qiang, Siyu Gao, Lihua Lu, Min Zhu, and Feihu Zhang. "A Two-Round Optimization Design Method for Aerostatic Spindles Considering the Fluid–Structure Interaction Effect." Applied Sciences 11, no. 7 (2021): 3017. http://dx.doi.org/10.3390/app11073017.
Full textChen, Shao Hsien, Shang Te Chen, and Chien Cheng Hsu. "Study on Axial Oil Chamber Design for High Performance Hydrostatic Spindle." Applied Mechanics and Materials 701-702 (December 2014): 869–73. http://dx.doi.org/10.4028/www.scientific.net/amm.701-702.869.
Full textYuan, Qianqian, Yongsheng Zhu, Ke Yan, and Xinzhuo Zhang. "Influence of Fit Clearance and Tightening Torque on Contact Characteristics of Spindle–Grinding Wheel Flange Interface." Machines 10, no. 5 (2022): 298. http://dx.doi.org/10.3390/machines10050298.
Full textNakao, Yohichi, Kenji Suzuki, Kohei Yamada, and Kohei Nagasaka. "Feasibility Study on Design of Spindle Supported by High-Stiffness Water Hydrostatic Thrust Bearing." International Journal of Automation Technology 8, no. 4 (2014): 530–38. http://dx.doi.org/10.20965/ijat.2014.p0530.
Full textXie, Hua Long, Wen Ke Zhang, Hui Min Guo, and Yong Xian Liu. "The Spindle Static Characteristic Analysis of HTC3250µn NC Machine Tool." Applied Mechanics and Materials 157-158 (February 2012): 291–94. http://dx.doi.org/10.4028/www.scientific.net/amm.157-158.291.
Full textWang, Bo, Kun Peng Xu, and Bang Chuan Wen. "The High Speed Influence on Inherent Frequency of Motorized Spindle." Advanced Materials Research 779-780 (September 2013): 916–20. http://dx.doi.org/10.4028/www.scientific.net/amr.779-780.916.
Full textWang, Bo, Wei Sun, Kun Peng Xu, and Bang Сhuan Wen. "Speed Effects on Inherent Rotating Frequency of Motorized Spindle System." Advanced Engineering Forum 2-3 (December 2011): 900–905. http://dx.doi.org/10.4028/www.scientific.net/aef.2-3.900.
Full textPham, Van-Hung, Manh-Toan Nguyen, and Tuan-Anh Bui. "Oil pressure and viscosity influence on stiffness of the hydrostatic spindle bearing of a medium-sized circular grinding machine." International Journal of Modern Physics B 34, no. 22n24 (2020): 2040156. http://dx.doi.org/10.1142/s0217979220401566.
Full textZhai, Li Jun, Xiao Lei Song, and Li Gang Cai. "Identification of Toolholder-Spindle Joint Based on Receptance Coupling Substructure Analysis." Applied Mechanics and Materials 345 (August 2013): 539–42. http://dx.doi.org/10.4028/www.scientific.net/amm.345.539.
Full textXing, Shiyu, Jian Ma, Aoxiang Liu, Siqi Niu, and Binbin Hu. "The Analysis of The Bearing Fit Effect on Spindle Rotor System Vibration." Academic Journal of Science and Technology 4, no. 3 (2023): 171–73. http://dx.doi.org/10.54097/ajst.v4i3.5052.
Full textSy Truong, Dinh, Byung-Sub Kim, and Jong-Kweon Park. "Thermally affected stiffness matrix of angular contact ball bearings in a high-speed spindle system." Advances in Mechanical Engineering 11, no. 11 (2019): 168781401988975. http://dx.doi.org/10.1177/1687814019889753.
Full textKondo, Ryo, Daisuke Kono, and Atsushi Matsubara. "Evaluation of Machine Tool Spindle Using Carbon Fiber Composite." International Journal of Automation Technology 14, no. 2 (2020): 294–303. http://dx.doi.org/10.20965/ijat.2020.p0294.
Full textHuang, Shuai, Juxin Wang, Kaifeng Huang, and Jianwu Yu. "A Study on the Static and Dynamic Characteristics of the Spindle System of a Spiral Bevel Gear Grinding Machine." Machines 12, no. 9 (2024): 619. http://dx.doi.org/10.3390/machines12090619.
Full textChen, Dong Ju, Yan Hua Bian, Jin Wei Fan, and Fei Hu Fan. "Performance of Hydrostatics Spindle under Effect of Mass Unbalance." Applied Mechanics and Materials 490-491 (January 2014): 910–13. http://dx.doi.org/10.4028/www.scientific.net/amm.490-491.910.
Full textChen, C. H., K. W. Wang, and Y. C. Shin. "An Integrated Approach Toward the Dynamic Analysis of High-Speed Spindles: Part I—System Model." Journal of Vibration and Acoustics 116, no. 4 (1994): 506–13. http://dx.doi.org/10.1115/1.2930456.
Full textWu, Wei Guo, Gui Cheng Wang, Chun Gen Shen, Li Jie Ma, and Shu Lin Wang. "The Effect of Clamping Force on Static and Dynamic Characteristics of Spindle-Tooling System." Key Engineering Materials 375-376 (March 2008): 653–57. http://dx.doi.org/10.4028/www.scientific.net/kem.375-376.653.
Full textFu, Peng Qiang, Sheng Fei Wang, Chao Zhang, and Fei Hu Zhang. "Research on the Impact Vibration Characteristic of the Spindle System." Advanced Materials Research 1027 (October 2014): 266–69. http://dx.doi.org/10.4028/www.scientific.net/amr.1027.266.
Full textFrolov, A. V. "Features of Applying the Force Displacement Theory to the Contact Stiffness Calculation for the Spindle Angular Contact Ball Bearing Support." Herald of the Bauman Moscow State Technical University. Series Mechanical Engineering, no. 3 (142) (September 2022): 100–128. http://dx.doi.org/10.18698/0236-3941-2022-3-100-128.
Full textGuan, P., M. Li, B. C. Li, Tian Biao Yu, and Wan Shan Wang. "Finite Element Analysis on Dynamic Characteristics of Hybrid Bearing Spindle System." Key Engineering Materials 487 (July 2011): 505–9. http://dx.doi.org/10.4028/www.scientific.net/kem.487.505.
Full textLi, Song Hua, Ming Hao Feng, Xue Li, Yu Hou Wu, and Xiao Lin Jin. "Research on Application of Advanced Ceramics in Machine Tool Spindles." Advanced Materials Research 753-755 (August 2013): 1448–52. http://dx.doi.org/10.4028/www.scientific.net/amr.753-755.1448.
Full textGao, Xiangsheng, Zeyun Qin, Min Wang, Yuming Hao, and Ziyu Liu. "Theoretical investigation on nonlinear dynamic characteristic of spindle system." Advanced Composites Letters 29 (January 1, 2020): 2633366X2091166. http://dx.doi.org/10.1177/2633366x20911665.
Full textJorgensen, Bert R., and Yung C. Shin. "Dynamics of Machine Tool Spindle/Bearing Systems Under Thermal Growth." Journal of Tribology 119, no. 4 (1997): 875–82. http://dx.doi.org/10.1115/1.2833899.
Full textLiu, Zhifeng, Jingjing Xu, Yongsheng Zhao, Qiang Cheng, and Ligang Cai. "Stiffness optimization for high-speed double-locking toolholder-spindle joint using fractal theory." Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering 232, no. 4 (2017): 418–26. http://dx.doi.org/10.1177/0954408917711745.
Full textNguyen, Manh-Toan, The-Hung Tran, Duc-Do Le, Duc-Toan Tran, Duy-Thinh Bui, and Bui Tuan Anh. "The Influence of Capillary Geometry on the Stiffness of Hydrostatic Bearings in Medium-Sized Cylindrical Grinding Machines: A Simulation Analysis." Engineering, Technology & Applied Science Research 14, no. 4 (2024): 15993–99. http://dx.doi.org/10.48084/etasr.7976.
Full textSawamura, Ryota, Shinya Ikenaga, and Atsushi Matsubara. "Development of Dynamic Loading Device for Rotating Spindle of Machine Tools." Key Engineering Materials 523-524 (November 2012): 544–49. http://dx.doi.org/10.4028/www.scientific.net/kem.523-524.544.
Full textHuang, Te Yen, Shi Jie Weng, and Shao Yu Hsu. "Effect of Variation of Gap Thickness of the Thrust Bearing on Gap Pressure and Stiffness of the Aerostatic Spindle in Vertical Milling." Key Engineering Materials 739 (June 2017): 1–6. http://dx.doi.org/10.4028/www.scientific.net/kem.739.1.
Full textSheng, Zhong Qi, Zhi Wei Xu, Hua Long Xie, and Jing Ye Li. "Performance Analysis of Spindle System of NC Machine Tools." Applied Mechanics and Materials 16-19 (October 2009): 693–97. http://dx.doi.org/10.4028/www.scientific.net/amm.16-19.693.
Full textLiu, Xiu Lian, and Jun Xiang Liu. "Dynamic Stiffness Characteristics and Test of the Spindle of NC Machine Tool." Advanced Materials Research 430-432 (January 2012): 1442–45. http://dx.doi.org/10.4028/www.scientific.net/amr.430-432.1442.
Full textZhao, Yongsheng, Xiaolei Song, Ligang Cai, Zhifeng Liu, and Qiang Cheng. "Surface fractal topography-based contact stiffness determination of spindle–toolholder joint." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 230, no. 4 (2015): 602–10. http://dx.doi.org/10.1177/0954406215578483.
Full textLi, Song Hua, Ming Hao Feng, and Yu Hou Wu. "Research on Optimal Design and Processing of High-Speed Ceramic Ball Bearings without Inner Rings." Applied Mechanics and Materials 446-447 (November 2013): 513–17. http://dx.doi.org/10.4028/www.scientific.net/amm.446-447.513.
Full textCui, Li, and Hongsheng Zhang. "A nominal radial stiffness prediction model for HSK tool holder-spindle flange interface." Advances in Mechanical Engineering 12, no. 6 (2020): 168781402093460. http://dx.doi.org/10.1177/1687814020934600.
Full textZhang, Lei, Taiyong Wang, Songling Tian, and Yong Wang. "Analytical Modeling of a Ball Screw Feed Drive for Vibration Prediction of Feeding Carriage of a Spindle." Mathematical Problems in Engineering 2016 (2016): 1–8. http://dx.doi.org/10.1155/2016/2739208.
Full textLi, Jin Hua, Yong Xian Liu, Yang Yu, and Jia Liang Han. "Finite Element Analysis of Spindle for Turning Center Based on ANSYS." Advanced Materials Research 299-300 (July 2011): 1001–4. http://dx.doi.org/10.4028/www.scientific.net/amr.299-300.1001.
Full text