Journal articles on the topic 'Spindles (Machine-tools) Machine-tools'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Spindles (Machine-tools) Machine-tools.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Yamazaki, Taku, Toshiyuki Muraki, Atsushi Matsubara, Mitsuho Aoki, Kenji Iwawaki, and Kazuyuki Kawashima. "Development of a High-Performance Spindle for Multitasking Machine Tools." International Journal of Automation Technology 3, no. 4 (2009): 378–84. http://dx.doi.org/10.20965/ijat.2009.p0378.
Full textYagyu, Shinsuke, Shinji Shimizu, and Noboru Imai. "Mechanism of Thermal Deviation Characteristic in Spindle System of Machine Tools." International Journal of Automation Technology 2, no. 3 (2008): 191–98. http://dx.doi.org/10.20965/ijat.2008.p0191.
Full textTung, Pham Dinh, Sam Sang You, Nguyen Ngoc Nam, and Sang Do Lee. "Dynamical analysis for the motorised spindles of machine tools." International Journal of Machining and Machinability of Materials 22, no. 3/4 (2020): 248. http://dx.doi.org/10.1504/ijmmm.2020.10028414.
Full textNam, Nguyen Ngoc, Sang Do Lee, Sam Sang You, and Pham Dinh Tung. "Dynamical analysis for the motorised spindles of machine tools." International Journal of Machining and Machinability of Materials 22, no. 3/4 (2020): 248. http://dx.doi.org/10.1504/ijmmm.2020.107055.
Full textSawamura, Ryota, Shinya Ikenaga, and Atsushi Matsubara. "Development of Dynamic Loading Device for Rotating Spindle of Machine Tools." Key Engineering Materials 523-524 (November 2012): 544–49. http://dx.doi.org/10.4028/www.scientific.net/kem.523-524.544.
Full textBrecher, C. Prof, S. Neus, H. M. Eckel, T. Motschke, and M. Fey. "Frequenzgangmessung an Spindeln unter Drehzahl*/FRF Measurement on rotating spindles." wt Werkstattstechnik online 107, no. 05 (2017): 318–22. http://dx.doi.org/10.37544/1436-4980-2017-05-14.
Full textShamine, D. M., S. W. Hong, and Y. C. Shin. "Experimental Identification of Dynamic Parameters of Rolling Element Bearings in Machine Tools." Journal of Dynamic Systems, Measurement, and Control 122, no. 1 (1998): 95–101. http://dx.doi.org/10.1115/1.482432.
Full textChan, Tzu-Chi, Ze-Kai Jian, and Yu-Chuan Wang. "Study on the Digital Intelligent Diagnosis of Miniature Machine Tools." Applied Sciences 11, no. 18 (2021): 8372. http://dx.doi.org/10.3390/app11188372.
Full textChoi, Chi-Hyuk, and Choon-Man Lee. "A variable preload device using liquid pressure for machine tools spindles." International Journal of Precision Engineering and Manufacturing 13, no. 6 (2012): 1009–12. http://dx.doi.org/10.1007/s12541-012-0131-2.
Full textKondo, Ryo, Daisuke Kono, and Atsushi Matsubara. "Evaluation of Machine Tool Spindle Using Carbon Fiber Composite." International Journal of Automation Technology 14, no. 2 (2020): 294–303. http://dx.doi.org/10.20965/ijat.2020.p0294.
Full textWeber, M., M. Helfert, F. Unterderweide, E. Abele, and M. Weigold. "Synchronreluktanz-Motorspindeln in Werkzeugmaschinen*/Synchronous reluctance motor spindles in machine tools – Energy-efficient drives increase accuracy and reduce cooling requirements of machining centers." wt Werkstattstechnik online 109, no. 01-02 (2019): 72–80. http://dx.doi.org/10.37544/1436-4980-2019-01-02-74.
Full textZivkovic, Aleksandar, Milos Knezev, Milan Zeljkovic, Slobodan Navalusic, and Livia Dana Beju. "A study of thermo-elastic characteristics of the machine tool spindle." MATEC Web of Conferences 290 (2019): 01009. http://dx.doi.org/10.1051/matecconf/201929001009.
Full textXiang, Sitong, Xiaolong Zhu, and Jianguo Yang. "Modeling for spindle thermal error in machine tools based on mechanism analysis and thermal basic characteristics tests." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 228, no. 18 (2014): 3381–94. http://dx.doi.org/10.1177/0954406214531219.
Full textLi, Song Sheng, Hua Wei Mao, Ping Chen, Xiao Huang, and Xiao Yang Chen. "Study of the Method on Cutting-Force Modeling Based on the Current of High-Speed Electric Spindles." Advanced Materials Research 156-157 (October 2010): 517–22. http://dx.doi.org/10.4028/www.scientific.net/amr.156-157.517.
Full textBrecher, C., M. Fey, J. Falker, and B. Möller. "Externe Dämpfung bei Hochgeschwindigkeitsspindeln*/External damping in high speed spindles - Comparative investigation of the influence of a damping bush on the stability behavior during milling." wt Werkstattstechnik online 105, no. 05 (2015): 257–62. http://dx.doi.org/10.37544/1436-4980-2015-05-9.
Full textSchlagenhauf, T., J. Hillenbrand, B. Klee, and J. Fleischer. "Integration von Machine Vision in Kugelgewindespindeln*/Integration of machine vision in ball screw drives – Integrated system for condition monitoring of ball screw drives." wt Werkstattstechnik online 109, no. 07-08 (2019): 605–10. http://dx.doi.org/10.37544/1436-4980-2019-07-08-95.
Full textUrreta, Harkaitz, Gorka Aguirre, Pavel Kuzhir, and Luis Norberto Lopez de Lacalle. "Seals Based on Magnetic Fluids for High Precision Spindles of Machine Tools." International Journal of Precision Engineering and Manufacturing 19, no. 4 (2018): 495–503. http://dx.doi.org/10.1007/s12541-018-0060-9.
Full textKrstić, Vladislav, Dragan Milčić, and Miodrag Milčić. "A THERMAL ANALYSIS OF THE THREADED SPINDLE BEARING ASSEMBLY IN NUMERICALLY CONTROLLED MACHINE TOOLS." Facta Universitatis, Series: Mechanical Engineering 16, no. 2 (2018): 261. http://dx.doi.org/10.22190/fume170512022k.
Full textDai, He, Shilong Wang, Xin Xiong, Baocang Zhou, Shouli Sun, and Zongyan Hu. "Thermal error modelling of motorised spindle in large-sized gear grinding machine." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 231, no. 5 (2017): 768–78. http://dx.doi.org/10.1177/0954405417696335.
Full textFedorynenko, Dmytro, Serhii Sapon, Sergiy Boyko, and Anastasiia Urlina. "Increasing of Energy Efficiency of Spindles with Fluid Bearings." Acta Mechanica et Automatica 11, no. 3 (2017): 204–9. http://dx.doi.org/10.1515/ama-2017-0031.
Full textLi, Song Hua, Ming Hao Feng, Xue Li, Yu Hou Wu, and Xiao Lin Jin. "Research on Application of Advanced Ceramics in Machine Tool Spindles." Advanced Materials Research 753-755 (August 2013): 1448–52. http://dx.doi.org/10.4028/www.scientific.net/amr.753-755.1448.
Full textGaber, Omar, and Seyed M. Hashemi. "Prediction of Updated Cutting Parameters for a Spindle Subjected to Bearing Wear: A Free Vibration-Based Approach." Advanced Materials Research 816-817 (September 2013): 119–23. http://dx.doi.org/10.4028/www.scientific.net/amr.816-817.119.
Full textOrlowski, Kazimierz A., Przemyslaw Dudek, Daniel Chuchala, Wojciech Blacharski, and Tomasz Przybylinski. "The Design Development of the Sliding Table Saw Towards Improving Its Dynamic Properties." Applied Sciences 10, no. 20 (2020): 7386. http://dx.doi.org/10.3390/app10207386.
Full textBerger, Matthias, and Dennis Korff. "Avoiding Collision Damage of Motor Spindles through an Innovative Overload Protection System." Advanced Materials Research 1018 (September 2014): 357–64. http://dx.doi.org/10.4028/www.scientific.net/amr.1018.357.
Full textChen, Chih Ming, and Cheng Ho Chen. "Discussion the Re-Use Precision Locknut of the Machine Tools Spindle in the Vertical Assembly Characteristics." Advanced Materials Research 853 (December 2013): 441–46. http://dx.doi.org/10.4028/www.scientific.net/amr.853.441.
Full textSugimura, Nobuhiro, Shigeru Ueno, Nozomi Mishima, and Soichi Hachiga. "Design and Evaluation of a New-Type Multifunctional Machine Tool - Functional Requirements and Design -." Journal of Robotics and Mechatronics 9, no. 6 (1997): 427–33. http://dx.doi.org/10.20965/jrm.1997.p0427.
Full textLv, Lang, Wan Li Xiong, and Ju Long Yuan. "Optimization Design of Electrical and Magnetic Characteristics of an Ultra-Precision Machine Tool Motorized Spindle." Advanced Materials Research 69-70 (May 2009): 258–64. http://dx.doi.org/10.4028/www.scientific.net/amr.69-70.258.
Full textXiang, Sitong, Hongxing Lu, and Jianguo Yang. "Thermal error prediction method for spindles in machine tools based on a hybrid model." Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture 229, no. 1 (2014): 130–40. http://dx.doi.org/10.1177/0954405414525383.
Full textZhang, Guanghui, and Kornel F. Ehmann. "Dynamic design methodology of high speed micro-spindles for micro/meso-scale machine tools." International Journal of Advanced Manufacturing Technology 76, no. 1-4 (2014): 229–46. http://dx.doi.org/10.1007/s00170-014-5887-3.
Full textIshizaki, Kosuke, Burak Sencer, and Eiji Shamoto. "Cross Coupling Controller for Accurate Motion Synchronization of Dual Servo Systems." International Journal of Automation Technology 7, no. 5 (2013): 514–22. http://dx.doi.org/10.20965/ijat.2013.p0514.
Full textRivkin, Alexey. "Research modular tool system influence on the dynamic characteristics of the boring machines." MATEC Web of Conferences 298 (2019): 00028. http://dx.doi.org/10.1051/matecconf/201929800028.
Full textWegener, Konrad, and Atsushi Matsubara. "Special Issue on Advanced Material Driven Design of Machine Tools." International Journal of Automation Technology 14, no. 2 (2020): 261–63. http://dx.doi.org/10.20965/ijat.2020.p0261.
Full textPark, Hyung Wook. "Study of an Identification Method of the Mesoscale Tool Position." Key Engineering Materials 450 (November 2010): 271–74. http://dx.doi.org/10.4028/www.scientific.net/kem.450.271.
Full textMolodtsov, Vladimir Vladimirovich, and Andrey Yurevich Barbin. "Reasonable Choice of Motorized Spindles with HSK Tool Connection." Applied Mechanics and Materials 607 (July 2014): 229–34. http://dx.doi.org/10.4028/www.scientific.net/amm.607.229.
Full textTu, J. F., and J. L. Stein. "Active Thermal Preload Regulation for Machine Tool Spindles With Rolling Element Bearings." Journal of Manufacturing Science and Engineering 118, no. 4 (1996): 499–505. http://dx.doi.org/10.1115/1.2831059.
Full textChen, Shao Hsien, Shang Te Chen, and Chien Cheng Hsu. "The Impact of Different Axial Oil Chamber Design on Hydrostatic Spindle." Applied Mechanics and Materials 789-790 (September 2015): 296–99. http://dx.doi.org/10.4028/www.scientific.net/amm.789-790.296.
Full textGaber, Omar, and Seyed M. Hashemi. "Vibration Modeling of Machine Tool Spindles: A Calibrated Dynamic Stiffness Matrix Method." Advanced Materials Research 651 (January 2013): 710–16. http://dx.doi.org/10.4028/www.scientific.net/amr.651.710.
Full textGopalakrishnan,, V., D. Fedewa,, M. G. Mehrabi,, S. Kota, and, and N. Orlandea. "Parallel Structures and Their Applications in Reconfigurable Machining Systems." Journal of Manufacturing Science and Engineering 124, no. 2 (2002): 483–85. http://dx.doi.org/10.1115/1.1459468.
Full textUrreta, Harkaitz, Gorka Aguirre, Pavel Kuzhir, and Luis Norberto Lopez de Lacalle. "Actively lubricated hybrid journal bearings based on magnetic fluids for high-precision spindles of machine tools." Journal of Intelligent Material Systems and Structures 30, no. 15 (2019): 2257–71. http://dx.doi.org/10.1177/1045389x19862358.
Full textHwang, Young-Kug, and Choon-Man Lee. "Development of a simple determination method of variable preloads for high speed spindles in machine tools." International Journal of Precision Engineering and Manufacturing 16, no. 1 (2015): 127–34. http://dx.doi.org/10.1007/s12541-015-0016-2.
Full textSlavov, Vasil, Martin Kimmelmann, and Uwe Heisel. "Media, Data and Energy Transmission in Machine Tool Spindles: An FE Analysis of Implementation Possibilities." Applied Mechanics and Materials 794 (October 2015): 403–10. http://dx.doi.org/10.4028/www.scientific.net/amm.794.403.
Full textKomanduri, R., J. McGee, R. A. Thompson, et al. "On a Methodology for Establishing the Machine Tool System Requirements for High-Speed/High-Throughput Machining." Journal of Engineering for Industry 107, no. 4 (1985): 316–24. http://dx.doi.org/10.1115/1.3186004.
Full textFu, Cheng-Biao, An-Hong Tian, Her-Terng Yau, and Mao-Chin Hoang. "Thermal monitoring and thermal deformation prediction for spherical machine tool spindles." Thermal Science 23, no. 4 (2019): 2271–79. http://dx.doi.org/10.2298/tsci1904271f.
Full textAramaki, Hirotoshi, Yoshio Shoda, Yuka Morishita, and Takeshi Sawamoto. "The Performance of Ball Bearings With Silicon Nitride Ceramic Balls in High Speed Spindles for Machine Tools." Journal of Tribology 110, no. 4 (1988): 693–98. http://dx.doi.org/10.1115/1.3261715.
Full textSHIMIZU, Shinji, Hua Soo LEE, and Kojiro NISHIDA. "Basic study on the development of an automatic balancer for high-speed spindles used in machine tools." Transactions of the Japan Society of Mechanical Engineers Series C 56, no. 526 (1990): 1592–96. http://dx.doi.org/10.1299/kikaic.56.1592.
Full textYu, Dong Man, Chang Pei Shang, Di Wang, and Zhi Hua Gao. "Bearing Loads Study for High-Speed Motorized Spindle." Key Engineering Materials 480-481 (June 2011): 1511–15. http://dx.doi.org/10.4028/www.scientific.net/kem.480-481.1511.
Full textWang, K. W., Y. C. Shin, and C. H. Chen. "On the Natural Frequencies of High-Speed Spindles with Angular Contact Bearings." Proceedings of the Institution of Mechanical Engineers, Part C: Mechanical Engineering Science 205, no. 3 (1991): 147–54. http://dx.doi.org/10.1243/pime_proc_1991_205_105_02.
Full textUhlmann, Eckart, Julian Polte, Sebastian Salein, et al. "Entwicklung einer thermoelektrisch temperierten Motorspindel/Development of a thermoelectrically tempered motorised spindle – Integration of Peltier modules in a high-frequency motorised spindle to reduce thermally induced displacements based on direct temperature control." wt Werkstattstechnik online 110, no. 05 (2020): 299–305. http://dx.doi.org/10.37544/1436-4980-2020-05-31.
Full textFan, Hongwei, Jin Wang, Sijie Shao, Minqing Jing, Heng Liu, and Xuhui Zhang. "A Corrected Adaptive Balancing Approach of Motorized Spindle Considering Air Gap Unbalance." Applied Sciences 10, no. 6 (2020): 2197. http://dx.doi.org/10.3390/app10062197.
Full textP. Sundar Singh Sivam, S., K. Saravanan, N. Pradeep, S. Rajendra Kumar, and Sathiyamoorthy Karuppiah. "Comparison of Manufacturing Data Analysis For 5 & 3-Axis Vertical Machining Center for the Time and Tool Benefits of Industries." International Journal of Engineering & Technology 7, no. 4.5 (2018): 196. http://dx.doi.org/10.14419/ijet.v7i4.5.20044.
Full text