Journal articles on the topic 'Spine modeling'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Spine modeling.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Rosado, James, Viet Duc Bui, Carola A. Haas, Jürgen Beck, Gillian Queisser, and Andreas Vlachos. "Calcium modeling of spine apparatus-containing human dendritic spines demonstrates an “all-or-nothing” communication switch between the spine head and dendrite." PLOS Computational Biology 18, no. 4 (2022): e1010069. http://dx.doi.org/10.1371/journal.pcbi.1010069.
Full textRosado, James, Viet Duc Bui, Carola A. Haas, Jürgen Beck, Gillian Queisser, and Andreas Vlachos. "Calcium modeling of spine apparatus-containing human dendritic spines demonstrates an “all-or-nothing” communication switch between the spine head and dendrite." PLOS Computational Biology 18, no. 4 (2022): e1010069. http://dx.doi.org/10.1371/journal.pcbi.1010069.
Full textWang, Shiquan, Hao Jiang, and Mark R. Cutkosky. "Design and modeling of linearly-constrained compliant spines for human-scale locomotion on rocky surfaces." International Journal of Robotics Research 36, no. 9 (2017): 985–99. http://dx.doi.org/10.1177/0278364917720019.
Full textJiang, Lei, Zhongqi Xu, Tinglong Zheng, Xiuli Zhang, and Jianhua Yang. "Research on Dynamic Modeling Method and Flying Gait Characteristics of Quadruped Robots with Flexible Spines." Biomimetics 9, no. 3 (2024): 132. http://dx.doi.org/10.3390/biomimetics9030132.
Full textPchitskaya, Ekaterina, Anastasiya Rakovskaya, Margarita Chigray, and Ilya Bezprozvanny. "Cytoskeleton Protein EB3 Contributes to Dendritic Spines Enlargement and Enhances Their Resilience to Toxic Effects of Beta-Amyloid." International Journal of Molecular Sciences 23, no. 4 (2022): 2274. http://dx.doi.org/10.3390/ijms23042274.
Full textMalik, Azeem Tariq, and Safdar N. Khan. "Predictive modeling in spine surgery." Annals of Translational Medicine 7, S5 (2019): S173. http://dx.doi.org/10.21037/atm.2019.07.99.
Full textPai S, Anoosha, Honglin Zhang, Nima Ashjaee, et al. "Estimation and assessment of sagittal spinal curvature and thoracic muscle morphometry in different postures." Proceedings of the Institution of Mechanical Engineers, Part H: Journal of Engineering in Medicine 235, no. 8 (2021): 883–96. http://dx.doi.org/10.1177/09544119211014668.
Full textBell, Miriam, Tom Bartol, Terrence Sejnowski, and Padmini Rangamani. "Dendritic spine geometry and spine apparatus organization govern the spatiotemporal dynamics of calcium." Journal of General Physiology 151, no. 8 (2019): 1017–34. http://dx.doi.org/10.1085/jgp.201812261.
Full textRangamani, Padmini, Michael G. Levy, Shahid Khan, and George Oster. "Paradoxical signaling regulates structural plasticity in dendritic spines." Proceedings of the National Academy of Sciences 113, no. 36 (2016): E5298—E5307. http://dx.doi.org/10.1073/pnas.1610391113.
Full textKumaresan, Srirangam, Narayan Yoganandan, Frank A. Pintar, Dennis J. Maiman, and Shashi Kuppa. "Biomechanical Study of Pediatric Human Cervical Spine: A Finite Element Approach." Journal of Biomechanical Engineering 122, no. 1 (1999): 60–71. http://dx.doi.org/10.1115/1.429628.
Full textQiu, Tian-Xia, and Ee-Chon Teo. "FINITE ELEMENT MODELING OF HUMAN THORACIC SPINE." Journal of Musculoskeletal Research 08, no. 04 (2004): 133–44. http://dx.doi.org/10.1142/s0218957704001302.
Full textAlimohamadi, Haleh, Miriam Bell, Shelley Halpain, and Padmini Rangamani. "Biophysical Modeling of Dendritic Spine Morphology." Biophysical Journal 120, no. 3 (2021): 47a. http://dx.doi.org/10.1016/j.bpj.2020.11.525.
Full textDugailly, Pierre-Michel, Stéphane Sobczak, Fedor Moiseev, et al. "Musculoskeletal Modeling of the Suboccipital Spine." Spine 36, no. 6 (2011): E413—E422. http://dx.doi.org/10.1097/brs.0b013e3181dc844a.
Full textLEVIN, STEPHEN M. "THE TENSEGRITY-TRUSS AS A MODEL FOR SPINE MECHANICS: BIOTENSEGRITY." Journal of Mechanics in Medicine and Biology 02, no. 03n04 (2002): 375–88. http://dx.doi.org/10.1142/s0219519402000472.
Full textKrutko, A. V., A. V. Gladkov, V. V. Komissarov, and N. V. Komissarova. "MODELING OF THE SPINE COMPENSATORY RESPONSE TO DEFORMITY." Hirurgiâ pozvonočnika 15, no. 3 (2018): 85–91. http://dx.doi.org/10.14531/ss2018.3.85-91.
Full textTadano, Shigeru, Masahiro Kanayama, Takayoshi Ukai, and Kiyoshi Kaneda. "Three-Dimensional Morphological Modeling of Scoliotic Spine." Transactions of the Japan Society of Mechanical Engineers Series A 61, no. 587 (1995): 1682–88. http://dx.doi.org/10.1299/kikaia.61.1682.
Full textMarchenko, Olena, Charles W. Wolgemuth, and Leslie M. Loew. "Analysis and Modeling of Dendritic Spine Morphogenesis." Biophysical Journal 106, no. 2 (2014): 424a—425a. http://dx.doi.org/10.1016/j.bpj.2013.11.2392.
Full textPeleganchuk, A. V., A. V. Gladkov, V. V. Komissarov, A. S. Shershever, and E. A. Mushkachev. "MATHEMATICAL MODELING OF THE HIP-SPINE SYNDROME." Современные проблемы науки и образования (Modern Problems of Science and Education), no. 4 2023 (2023): 41. http://dx.doi.org/10.17513/spno.32844.
Full textVaida, Calin, Paul Tucan, Doina Pislă, and Florin Covaciu. "Parametric Modeling for Analyzing Diseases of the Human Spine." Applied Mechanics and Materials 823 (January 2016): 131–36. http://dx.doi.org/10.4028/www.scientific.net/amm.823.131.
Full textDavis, Kermit G., and Michael J. Jorgensen. "Biomechanical modeling for understanding of low back injuries: A systematic review." Occupational Ergonomics 5, no. 1 (2005): 57–76. http://dx.doi.org/10.3233/oer-2005-5106.
Full textMa, Haibo, Chaobo Wang, Ang Li, Aide Xu, and Dong Han. "An Accurate Book Spine Detection Network Based on Improved Oriented R-CNN." Sensors 24, no. 24 (2024): 7996. https://doi.org/10.3390/s24247996.
Full textYap, Jiajun, R. N. V. Krishna Deepak, Zizi Tian та ін. "The stability of R-spine defines RAF inhibitor resistance: A comprehensive analysis of oncogenic BRAF mutants with in-frame insertion of αC-β4 loop". Science Advances 7, № 24 (2021): eabg0390. http://dx.doi.org/10.1126/sciadv.abg0390.
Full textLund, M., and H. Shayestehpour. "ENHANCING BIOMECHANICAL SPINE MODELS WITH NON-LINEAR RHYTHMS." Orthopaedic Proceedings 106-B, SUPP_18 (2024): 52. http://dx.doi.org/10.1302/1358-992x.2024.18.052.
Full textTeo, J. C. M., C. K. Chui, Z. L. Wang, et al. "Heterogeneous meshing and biomechanical modeling of human spine." Medical Engineering & Physics 29, no. 2 (2007): 277–90. http://dx.doi.org/10.1016/j.medengphy.2006.02.012.
Full textYoganandan, Narayan, Srirangam Kumaresan, Liming Voo, and Frank A. Pintar. "Finite Element Applications in Human Cervical Spine Modeling." Spine 21, no. 15 (1996): 1824–34. http://dx.doi.org/10.1097/00007632-199608010-00022.
Full textLiebschner, Michael A. K., David L. Kopperdahl, William S. Rosenberg, and Tony M. Keaveny. "Finite Element Modeling of the Human Thoracolumbar Spine." Spine 28, no. 6 (2003): 559–65. http://dx.doi.org/10.1097/01.brs.0000049923.27694.47.
Full textMarchenko, Olena, and Charles Wolgemuth. "Modeling Actomyosin Contractility in Motile Dendritic Filopodia Resolves Spine Shape in Mature Dendritic Spines." Biophysical Journal 102, no. 3 (2012): 349a. http://dx.doi.org/10.1016/j.bpj.2011.11.1915.
Full textRethorn, Zachary D., Alessandra N. Garcia, Chad E. Cook, and Oren N. Gottfried. "Quantifying the collective influence of social determinants of health using conditional and cluster modeling." PLOS ONE 15, no. 11 (2020): e0241868. http://dx.doi.org/10.1371/journal.pone.0241868.
Full textSciortino, Vincenza, Salvatore Pasta, Tommaso Ingrassia, and Donatella Cerniglia. "A Population-Based 3D Atlas of the Pathological Lumbar Spine Segment." Bioengineering 9, no. 8 (2022): 408. http://dx.doi.org/10.3390/bioengineering9080408.
Full textPasha Zanoosi, AA, R. Kalantarinejad, and M. Haghpanahi. "Spine injury assessment under spaceflight landing conditions using multibody model." Proceedings of the Institution of Mechanical Engineers, Part K: Journal of Multi-body Dynamics 232, no. 4 (2018): 555–67. http://dx.doi.org/10.1177/1464419318757782.
Full textAfaunov, Asker Alievich, Vladimir Dmitryevich Usikov, Ali Ibragimovich Afaunov, and Igor Mikhailovich Dunaev. "OPPORTUNITIES OF TRANSPEDICULAR SPINAL INSTRUMENTATION FROM THE POSITION OF BIOMECHANICAL MODELING." Hirurgiâ pozvonočnika, no. 2 (May 26, 2005): 013–19. http://dx.doi.org/10.14531/ss2005.2.13-19.
Full textYoganandan, Narayan, Srirangam Kumaresan, and Frank A. Pintar. "Biomechanics of the cervical spine Part 2. Cervical spine soft tissue responses and biomechanical modeling." Clinical Biomechanics 16, no. 1 (2001): 1–27. http://dx.doi.org/10.1016/s0268-0033(00)00074-7.
Full textLaughlin, Justin G., Christopher T. Lee, J. Andrew McCammon, Rommie E. Amaro, Michael Holst, and Padmini Rangamani. "Modeling the Impact of Spine Apparatus on Signaling and Regulation in Realistic Dendritic Spine Geometries." Biophysical Journal 116, no. 3 (2019): 237a. http://dx.doi.org/10.1016/j.bpj.2018.11.1303.
Full textKhavinson, Vladimir, Anastasiia Ilina, Nina Kraskovskaya, et al. "Neuroprotective Effects of Tripeptides—Epigenetic Regulators in Mouse Model of Alzheimer’s Disease." Pharmaceuticals 14, no. 6 (2021): 515. http://dx.doi.org/10.3390/ph14060515.
Full textKorzh, M. O., V. O. Radchenko, V. O. Kutsenko, et al. "Mathematical and computer modeling of carbon endoprosthesis for thoracic interbody fusion." EMERGENCY MEDICINE 16, no. 7-8 (2021): 46–56. http://dx.doi.org/10.22141/2224-0586.16.7-8.2020.223703.
Full textBarysh, Oleksandr, Stanislav Kozyryev, and Oleksandr Yaresko. "Mathematical modeling of interbody fusion on the cervical spine." ORTHOPAEDICS, TRAUMATOLOGY and PROSTHETICS, no. 2 (July 1, 2015): 92. http://dx.doi.org/10.15674/0030-59872015292-99.
Full textRadchenko, V. A., K. A. Popsuyshapka, M. Yu Karpinsky, E. D. Karpinska, and S. A. Teslenko. "Experimental modeling of burst fractures of the thoracolumbar spine." TRAUMA 18, no. 2 (2017): 46–52. http://dx.doi.org/10.22141/1608-1706.2.18.2017.102558.
Full textRerikh, V. V., A. V. Gladkov, V. V. Komissarov, V. A. Bataev, N. G. Fomichev, and V. D. Sinyavin. "MODELING OF ISOLATED DEFORMATIONS SPINE IN THE SAGITTAL PLANE." Современные проблемы науки и образования (Modern Problems of Science and Education), no. 1 2022 (2022): 3. http://dx.doi.org/10.17513/spno.31368.
Full textAubin, C. É., Y. Petit, I. A. F. Stokes, F. Poulin, M. Gardner-Morse, and H. Labelle. "Biomechanical Modeling of Posterior Instrumentation of the Scoliotic Spine." Computer Methods in Biomechanics and Biomedical Engineering 6, no. 1 (2003): 27–32. http://dx.doi.org/10.1080/1025584031000072237.
Full textBaer, Steven, Sharon Crook, and Michael McCamy. "Modeling structural plasticity in dendrites with multiple spine types." BMC Neuroscience 9, Suppl 1 (2008): P104. http://dx.doi.org/10.1186/1471-2202-9-s1-p104.
Full textJalalian, Athena, Ian Gibson, and Eng Hock Tay. "Computational Biomechanical Modeling of Scoliotic Spine: Challenges and Opportunities." Spine Deformity 1, no. 6 (2013): 401–11. http://dx.doi.org/10.1016/j.jspd.2013.07.009.
Full textRadchenko, Volodymyr, Mykyta Skidanov, Nataliya Ashukina, Valentyna Maltseva, Artem Skidanov, and Oleksandr Barkov. "Modern approaches to modeling in vivo degenerative spine diseases." ORTHOPAEDICS, TRAUMATOLOGY and PROSTHETICS, no. 1-2 (November 15, 2022): 108–17. http://dx.doi.org/10.15674/0030-598720221-2108-117.
Full textZhang, Hongwei. "Fine Modeling and Mechanical Analysis of Human Lumbar Spine." Journal of Clinical Medicine Research 5, no. 1 (2024): 88. http://dx.doi.org/10.32629/jcmr.v5i1.1793.
Full textSciortino, Vincenza, Salvatore Pasta, Tommaso Ingrassia, and Donatella Cerniglia. "On the Finite Element Modeling of the Lumbar Spine: A Schematic Review." Applied Sciences 13, no. 2 (2023): 958. http://dx.doi.org/10.3390/app13020958.
Full textWang, Kuan, Zhen Deng, Xinpeng Chen, et al. "The Role of Multifidus in the Biomechanics of Lumbar Spine: A Musculoskeletal Modeling Study." Bioengineering 10, no. 1 (2023): 67. http://dx.doi.org/10.3390/bioengineering10010067.
Full textGohari, Ehsan, Mohammad Haghpanahi, Mohammad Parnianpour, Mohammad Saleh Ganjavian, and Mojtaba Kamyab. "NUMERICAL ANALYSIS (FINITE ELEMENT METHOD) OF BRACE EFFECTS ON THE ADOLESCENT IDIOPATHIC SCOLIOSIS DURING 24 HOURS." Biomedical Engineering: Applications, Basis and Communications 26, no. 03 (2014): 1450046. http://dx.doi.org/10.4015/s101623721450046x.
Full textHwang, Jaejin, Gregory G. Knapik, Jonathan S. Dufour, and William S. Marras. "A Comparison of Performance Between Straight-Line Muscle and Curved Muscle Models." Proceedings of the Human Factors and Ergonomics Society Annual Meeting 61, no. 1 (2017): 1339–40. http://dx.doi.org/10.1177/1541931213601817.
Full textKudiashev, A. L., V. V. Khominets, A. V. Teremshonok, et al. "BIOMECHANICAL MODELING IN SURGICAL TREATMENT OF A PATIENT WITH TRUE LUMBAR SPONDYLOLISTHESIS." Hirurgiâ pozvonočnika 15, no. 4 (2018): 87–94. http://dx.doi.org/10.14531/2018.4.87-94.
Full textBRANDOLINI, NICOLA, LUCA CRISTOFOLINI, and MARCO VICECONTI. "EXPERIMENTAL METHODS FOR THE BIOMECHANICAL INVESTIGATION OF THE HUMAN SPINE: A REVIEW." Journal of Mechanics in Medicine and Biology 14, no. 01 (2014): 1430002. http://dx.doi.org/10.1142/s0219519414300026.
Full textLerchl, Tanja, Kati Nispel, Thomas Baum, Jannis Bodden, Veit Senner, and Jan S. Kirschke. "Multibody Models of the Thoracolumbar Spine: A Review on Applications, Limitations, and Challenges." Bioengineering 10, no. 2 (2023): 202. http://dx.doi.org/10.3390/bioengineering10020202.
Full text