Academic literature on the topic 'Spinelle LiNi0.5Mn1.5O4'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spinelle LiNi0.5Mn1.5O4.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Spinelle LiNi0.5Mn1.5O4"

1

Lina, Maria Uribe-Grajales, Alejandro Vásquez-Arroyave Ferley, Enrique Thomas Jorge, and Andrés Calderón-Gutiérrez Jorge. "Evaluation of the effect of the synthesis method on the performance of manganese spinel as cathode material in lithium-ion batteries." Revista Facultad de Ingeniería -redin-, no. 87 (June 19, 2018): 41–49. https://doi.org/10.17533/udea.redin.n87a06.

Full text
Abstract:
Spinel-structured lithium manganese oxide (LiMn2O4) has been successfully used as a cathode material for various lithium batteries. To improve the capacity and increase the discharge potential of the battery, transition metals are commonly added to the spinel as dopants or as a substitute for manganese. This can also confer stability on the structure of the cathode material. In this work, the production and performance of spinel LiMn2O4 (LMO) and LiNi0:5Mn1:5O4 (LNMO) by solid-state and sol-gel synthesis methods were studied. Synthetized (LMO) and (LNMO) materials were characterized by Raman s
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Bingning, Chen Liao, Juan Garcia, et al. "Soaking Tests to Understand and Mitigate Electrolyte Decomposition Products Etching on Li- and Mn- Rich Cathode Materials." ECS Meeting Abstracts MA2024-02, no. 67 (2024): 4545. https://doi.org/10.1149/ma2024-02674545mtgabs.

Full text
Abstract:
A series of soaking experiments were conducted to investigate electrolyte decompositions etching on the 5 V cobalt-free spinel LiNi0.5Mn1.5O4 (LNMO) cathode, revealing that intense electrode/electrolyte reactions between LNMO and Gen2 electrolyte could lead to significant corrosion and delamination of electrode laminates.1 In this study, similar soaking tests are performed for 0.3Li2MnO3 ·0.7LiMn0.5Ni0.5O2 (LMR-NM), a promising cathode material for next-generation high-energy-density and cobalt-free lithium-ion batteries, to assess its stability with respect to the electrolyte and its aging by
APA, Harvard, Vancouver, ISO, and other styles
3

Xiong, Lun, Guangping Chen, Yumei Tang, et al. "Equation of state of LiNi0·5Mn1·5O4 at high pressure." Solid State Communications 321 (November 2020): 114045. http://dx.doi.org/10.1016/j.ssc.2020.114045.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mu, Jinping, Aijia Wei, Xiaohui Li, et al. "Exploring the impact of synergistic dual-additive electrolytes on 5 V-class LiNi0·5Mn1·5O4 cathodes." Journal of Power Sources 611 (August 2024): 234707. http://dx.doi.org/10.1016/j.jpowsour.2024.234707.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Zhu, Ruonan, Shaojian Zhang, Qixun Guo, et al. "More than just a protection layer: Inducing chemical interaction between Li3BO3 and LiNi0·5Mn1·5O4 to achieve stable high-rate cycling cathode materials." Electrochimica Acta 342 (May 2020): 136074. http://dx.doi.org/10.1016/j.electacta.2020.136074.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Wang, Daniel, Christian Orlando Plaza Rivera, Haldrian Iriawan, Nicole Ceribelli, Livia Giordano, and Yang Shao-Horn. "Role of Li Electrode Redox Potential and Solid Electrolyte Interphase (SEI) Species on the Coulombic Efficiency of LiFSI-DME and LiFSI-FEC Electrolytes." ECS Meeting Abstracts MA2024-02, no. 7 (2024): 787. https://doi.org/10.1149/ma2024-027787mtgabs.

Full text
Abstract:
Lithium metal is the ideal candidate to replace conventional carbonaceous anodes due to its high theoretical specific capacity of 3860 mAh/g and low negative thermodynamic potential of -3.040 V vs. SHE [1]. Most organic electrolytes are unstable in the presence of Li metal and are reduced to form a solid-electrolyte interphase (SEI). One strategy to mitigate electrolyte decomposition is by upshifting the Li electrode redox potential. Ko et al. report positive shifts of up to 0.6 V in the Li electrode potential can influence coulombic efficiency [2]. In recent years, LiFSI-DME and LiFSI-FEC ele
APA, Harvard, Vancouver, ISO, and other styles
7

Pereira, Drew Joseph, Hunter Addison McRay, Saurabh Bopte, and Golareh Jalilvand. "The Effect of Cellulose Separator Water-Scavenging on Cycle Life in Lithium-Ion Batteries." ECS Meeting Abstracts MA2023-02, no. 2 (2023): 147. http://dx.doi.org/10.1149/ma2023-022147mtgabs.

Full text
Abstract:
The presence of water inside a lithium ion (Li-ion) battery causes several interconnected chemical mechanisms that lead to material degradation including transition metal dissolution. [1-4]. As a result, cell performance is reduced, and the cell capacity rapidly fades. To mitigate transition metal dissolution caused by trace water, research groups have proposed various approaches to scavenge and neutralize the water within different components of the cell [4-6]. These methods include using a dehydratable molecular sieve within the cathode active material powder [6], direct dosing of the electr
APA, Harvard, Vancouver, ISO, and other styles
8

Gao, Chao, Haiping Liu, Sifu Bi, Huilin Li, and Chengshuai Ma. "Investigation the improvement of high voltage spinel LiNi0·5Mn1·5O4 cathode material by anneal process for lithium ion batteries." Green Energy & Environment, March 2020. http://dx.doi.org/10.1016/j.gee.2020.03.001.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Gong, Jiajia, Shuaipeng Yan, Yaqiang Lang, et al. "Effect of Cr3+ doping on morphology evolution and electrochemical performance of LiNi0·5Mn1·5O4 material for Li-ion battery." Journal of Alloys and Compounds, November 2020, 157885. http://dx.doi.org/10.1016/j.jallcom.2020.157885.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Spinelle LiNi0.5Mn1.5O4"

1

Wang, Liping. "Towards a better understanding of "LiNi0. 5Mn1. 5O4" high voltage cathode material : combined powder and thin film study." Amiens, 2011. http://www.theses.fr/2011AMIE0123.

Full text
Abstract:
Cette thèse visait à mieux comprendre la structure, les propriétés électrochimiques, la surface et les propriétés de transport des phases spinelles haut potentiel LiNi0. 5Mn1. 5O4 sous forme de poudre et de films minces, matériaux de cathode potentiel pour les batteries Li-ion. L'effet des paramètres de synthèse sur la stœchiométrie en oxygène et sur les phases formées a été examiné. Nous avons proposé une transformation de phase de type peritectoid pour expliquer la formation de phases de type NaCl. Les films minces de LiNi0. 5Mn1. 5O4 ont été déposés par Ablation Laser Pulsée. L'impact de la
APA, Harvard, Vancouver, ISO, and other styles
2

Nguyen, Binh Phuong Nhan. "Electrode formulation of Si an LiNi0,5Mn1,5O4 for Li-on Battery applied to electric traction." Nantes, 2014. https://archive.bu.univ-nantes.fr/pollux/show/show?id=fe813e36-3527-486a-9857-40aa272b3812.

Full text
Abstract:
La batterie lithium-ion est l’une des technologies de stockage de l’énergie les plus prometteuses pour permettre le développement des transports propres. Dans ce but il est cependant nécessaire de rechercher des matériaux d’électrode de batterie lithium-ion adaptés et qui satisfont différentes conditions de : (i) fortes capacités spécifique (Ah. Kg-1) et volumétrique (Ah. L-1); (ii) grande différence de potentiel entre les deux électrodes ; (iii) haute sécurité et respect de l’environnement. Ainsi, une transition du graphite au silicium de forte capacité et des composés à base de cobalt ou de
APA, Harvard, Vancouver, ISO, and other styles
3

Kazda, Tomáš. "Modifikace materiálů pro kladné elektrody lithno-iontových akumulátorů." Doctoral thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2015. http://www.nusl.cz/ntk/nusl-234421.

Full text
Abstract:
This doctoral thesis deals with properties of cathode materials for Lithium-Ion accumulators. The theoretical part consists of an overview of the cathode materials and a brief introduction into the very wide area of Lithium-Ion accumulators. The goal of this work was to study the LiCoO2 cathode material and to prepare some modifications of it by doping with other elements. This work was then extended with the study of the new generation of high-voltage cathode materials. The aim of this part was to study their synthesis, their physical and electrochemical properties and the influence of used e
APA, Harvard, Vancouver, ISO, and other styles
4

Pustowka, Pavel. "Studie vlastností pokročilých materiálů pro katody lithno-iontových akumulátorů." Master's thesis, Vysoké učení technické v Brně. Fakulta elektrotechniky a komunikačních technologií, 2016. http://www.nusl.cz/ntk/nusl-254476.

Full text
Abstract:
This thesis in its first part deals especially with characteristic of lithium ion accumulators in terms of their structure, electrochemical properties and also features of the most commonly used cathode materials. Especial attention is given to the high-voltage cathode material LiNi0,5Mn1,5O4 which cell voltage is close to 5V. The second practical part deals with the preparation of cathode materials based on LiNi0,5Mn1,5O4 with different temperatures in the second stage of annealing and analyzing them in terms of structure and electrochemical properties using appropriate measuring methods.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!