To see the other types of publications on this topic, follow the link: Spinocerebellar Ataxia Type 1.

Journal articles on the topic 'Spinocerebellar Ataxia Type 1'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Spinocerebellar Ataxia Type 1.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Zoghbi, Huda Y., and Harry T. Orr. "Spinocerebellar ataxia type 1." Seminars in Cell Biology 6, no. 1 (1995): 29–35. http://dx.doi.org/10.1016/1043-4682(95)90012-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cummings, Christopher J., Harry T. Orr, and Huda Y. Zoghbi. "Progress in pathogenesis studies of spinocerebellar ataxia type 1." Philosophical Transactions of the Royal Society of London. Series B: Biological Sciences 354, no. 1386 (1999): 1079–81. http://dx.doi.org/10.1098/rstb.1999.0462.

Full text
Abstract:
Spinocerebellar ataxia type 1 (SCA1) is a dominantly inherited disorder characterized by progressive loss of coordination, motor impairment and the degeneration of cerebellar Purkinje cells, spinocerebellar tracts and brainstem nuclei. Many dominantly inherited neurodegenerative diseases share the mutational basis of SCA1: the expansion of a translated CAG repeat coding for glutamine. Mice lacking ataxin-1 display learning deficits and altered hippocampal synaptic plasticity but none of the abnormalities seen in human SCA1; mice expressing ataxin-1 with an expanded CAG tract (82 glutamine resi
APA, Harvard, Vancouver, ISO, and other styles
3

Lebranchu, Pierre, Guylène Le Meur, Armelle Magot, et al. "Maculopathy and Spinocerebellar Ataxia Type 1." Journal of Neuro-Ophthalmology 33, no. 3 (2013): 225–31. http://dx.doi.org/10.1097/wno.0b013e31828d4add.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Zhou, Yong-Xing, Wen-Hui Qiao, Wei-Hong Gu, et al. "Spinocerebellar Ataxia Type 1 in China." Archives of Neurology 58, no. 5 (2001): 789. http://dx.doi.org/10.1001/archneur.58.5.789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Illarioshkin, Sergei N., Pyotr A. Slominsky, Igor V. Ovchinnikov, et al. "Spinocerebellar ataxia type 1 in Russia." Journal of Neurology 243, no. 7 (1996): 506–10. http://dx.doi.org/10.1007/bf00886871.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Khwaja, Geeta Anjum, Abhilekh Srivastava, Vijay Vishwanath Ghuge, and Neera Chaudhry. "Writer’s cramp in spinocerebellar ataxia Type 1." Journal of Neurosciences in Rural Practice 7, no. 04 (2016): 584–86. http://dx.doi.org/10.4103/0976-3147.186980.

Full text
Abstract:
ABSTRACTDystonia can be encountered in a small subset of patients with spinocerebellar ataxia (SCA), but task specific dystonia is extremely rare. We report a case of a 48-year-old male with confirmed SCA Type 1 (SCA1) with mild progressive cerebellar ataxia and a prominent and disabling Writer’s cramp. This case highlights the ever-expanding phenotypic heterogeneity of the SCA’s in general and SCA1 in particular.
APA, Harvard, Vancouver, ISO, and other styles
7

Suart, Celeste E., Alma M. Perez, Ismael Al-Ramahi, Tamara Maiuri, Juan Botas, and Ray Truant. "Spinocerebellar Ataxia Type 1 protein Ataxin-1 is signaled to DNA damage by ataxia-telangiectasia mutated kinase." Human Molecular Genetics 30, no. 8 (2021): 706–15. http://dx.doi.org/10.1093/hmg/ddab074.

Full text
Abstract:
Abstract Spinocerebellar Ataxia Type 1 (SCA1) is an autosomal dominant neurodegenerative disorder caused by a polyglutamine expansion in the ataxin-1 protein. Recent genetic correlational studies have implicated DNA damage repair pathways in modifying the age at onset of disease symptoms in SCA1 and Huntington’s Disease, another polyglutamine expansion disease. We demonstrate that both endogenous and transfected ataxin-1 localizes to sites of DNA damage, which is impaired by polyglutamine expansion. This response is dependent on ataxia-telangiectasia mutated (ATM) kinase activity. Further, we
APA, Harvard, Vancouver, ISO, and other styles
8

Kostic, Svetlana, Dusko Vranjes, Velimir Dedic, and Jagoda Potic. "P124 Spinocerebellar ataxia type 1 – case report." Clinical Neurophysiology 119 (May 2008): S102—S103. http://dx.doi.org/10.1016/s1388-2457(08)60395-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Namekawa, Michito, Yoshihisa Takiyama, Yoshihito Ando, et al. "Choreiform movements in spinocerebellar ataxia type 1." Journal of the Neurological Sciences 187, no. 1-2 (2001): 103–6. http://dx.doi.org/10.1016/s0022-510x(01)00527-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bürk, K., S. Bösch, C. Globas, et al. "Executive Dysfunction in Spinocerebellar Ataxia Type 1." European Neurology 46, no. 1 (2001): 43–48. http://dx.doi.org/10.1159/000050755.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Duyckaerts, C., A. Dürr, G. Cancel, and A. Brice. "Nuclear inclusions in spinocerebellar ataxia type 1." Acta Neuropathologica 97, no. 2 (1999): 201–7. http://dx.doi.org/10.1007/s004010050975.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Tejwani, Leon, and Janghoo Lim. "Pathogenic mechanisms underlying spinocerebellar ataxia type 1." Cellular and Molecular Life Sciences 77, no. 20 (2020): 4015–29. http://dx.doi.org/10.1007/s00018-020-03520-z.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Volovikov, E. A., A. V. Davidenko, and M. A. Lagarkova. "Molecular Mechanisms of Spinocerebellar Ataxia Type 1." Russian Journal of Genetics 56, no. 2 (2020): 129–41. http://dx.doi.org/10.1134/s102279542002012x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Fukazawa, T., H. Sasaki, S. Kikuchi, K. Hamada, T. Hamada, and K. Tashiro. "Spinocerebellar ataxia type 1 and familial spontaneous pneumothorax." Neurology 49, no. 5 (1997): 1460–62. http://dx.doi.org/10.1212/wnl.49.5.1460.

Full text
Abstract:
We report two siblings with spinocerebellar ataxia type 1 (SCA1) who experienced frequent episodes of spontaneous pneumothorax. Radiologic findings indicated underlying degenerative changes in the lungs. This suggests a possible pathophysiologic relationship between SCA1 and familial occurrence of spontaneous pneumothorax.
APA, Harvard, Vancouver, ISO, and other styles
15

McEwan, I. J. "Structural and functional alterations in the androgen receptor in spinal bulbar muscular atrophy." Biochemical Society Transactions 29, no. 2 (2001): 222–27. http://dx.doi.org/10.1042/bst0290222.

Full text
Abstract:
The androgen receptor is a member of the nuclear receptor superfamily, and regulates gene expression in response to the steroid hormones testosterone and dihydrotestosterone. Mutations in the receptor have been correlated with a diverse range of clinical conditions, including androgen insensitivity, prostate cancer and spinal bulbar muscular atrophy, a neuromuscular degenerative condition. The latter is caused by expansion of a polyglutamine repeat within the N-terminal domain of the receptor. Thus the androgen receptor is one of a growing number of neurodegenerative disease-associated protein
APA, Harvard, Vancouver, ISO, and other styles
16

Zesiewicz, Theresa A., George Wilmot, Sheng-Han Kuo, et al. "Comprehensive systematic review summary: Treatment of cerebellar motor dysfunction and ataxia." Neurology 90, no. 10 (2018): 464–71. http://dx.doi.org/10.1212/wnl.0000000000005055.

Full text
Abstract:
ObjectiveTo systematically review evidence regarding ataxia treatment.MethodsA comprehensive systematic review was performed according to American Academy of Neurology methodology.ConclusionsFor patients with episodic ataxia type 2, 4-aminopyridine 15 mg/d probably reduces ataxia attack frequency over 3 months (1 Class I study). For patients with ataxia of mixed etiology, riluzole probably improves ataxia signs at 8 weeks (1 Class I study). For patients with Friedreich ataxia or spinocerebellar ataxia (SCA), riluzole probably improves ataxia signs at 12 months (1 Class I study). For patients w
APA, Harvard, Vancouver, ISO, and other styles
17

Scott, Patrick, Adila Al Kindi, Amira Al Fahdi, et al. "Spinocerebellar ataxia with axonal neuropathy type 1 revisited." Journal of Clinical Neuroscience 67 (September 2019): 139–44. http://dx.doi.org/10.1016/j.jocn.2019.05.060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Dang, Dien, and David Cunnington. "Excessive daytime somnolence in spinocerebellar ataxia type 1." Journal of the Neurological Sciences 290, no. 1-2 (2010): 146–47. http://dx.doi.org/10.1016/j.jns.2009.12.007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Singhal, Sumeet, Vamsi Gontu, Prajendra Choudhary, Dorothee Auer, and Nin Bajaj. "Spinocerebellar ataxia type 1 mimicking stiff person syndrome." Movement Disorders 24, no. 14 (2009): 2158–60. http://dx.doi.org/10.1002/mds.22521.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Thurtell, Matthew J. "Rod-Cone Dystrophy in Spinocerebellar Ataxia Type 1." Archives of Ophthalmology 129, no. 7 (2011): 956. http://dx.doi.org/10.1001/archophthalmol.2011.172.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Saito, Y., K. Matsumura, S. Shimizu, et al. "Pigmentary macular dystrophy in spinocerebellar ataxia type 1." Journal of Neurology, Neurosurgery & Psychiatry 77, no. 11 (2006): 1293. http://dx.doi.org/10.1136/jnnp.2006.092676.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Pedroso, Jose Luiz, and Orlando G. P. Barsottini. "Spinal cord atrophy in spinocerebellar ataxia type 1." Arquivos de Neuro-Psiquiatria 71, no. 12 (2013): 977. http://dx.doi.org/10.1590/0004-282x20130187.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Martins, Carlos Roberto, Alberto Rolim Muro Martinez, Thiago Junqueira Ribeiro de Rezende, et al. "Spinal Cord Damage in Spinocerebellar Ataxia Type 1." Cerebellum 16, no. 4 (2017): 792–96. http://dx.doi.org/10.1007/s12311-017-0854-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Ginestroni, A., R. Della Nave, C. Tessa, et al. "Brain structural damage in spinocerebellar ataxia type 1." Journal of Neurology 255, no. 8 (2008): 1153–58. http://dx.doi.org/10.1007/s00415-008-0860-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Kang, Seongman, and Sunghoi Hong. "Molecular pathogenesis of spinocerebellar ataxia type 1 disease." Molecules and Cells 27, no. 6 (2009): 621–27. http://dx.doi.org/10.1007/s10059-009-0095-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Stevanin, G., A. Dürr, G. David, et al. "Clinical and molecular features of spinocerebellar ataxia type 6." Neurology 49, no. 5 (1997): 1243–46. http://dx.doi.org/10.1212/wnl.49.5.1243.

Full text
Abstract:
The mutation involved in spinocerebellar ataxia type 6 (SCA6) is a small CAG expansion in the alpha-1A subunit of the voltage-dependent calcium channel gene. We looked for this mutation in 91 families with autosomal-dominant cerebellar ataxias and found that SCA6 is a minor locus in our series (2%) and is rare in France (1%). Furthermore, we did not detect the SCA6 mutation on 146 sporadic cases with isolated cerebellar ataxia or olivopontocerebellar atrophy. The normal and expanded alleles ranged from 4 to 15 and 22 to 28 CAG repeats, respectively, and age at onset was correlated to CAG repea
APA, Harvard, Vancouver, ISO, and other styles
27

Teive, Hélio A. G. "Spinocerebellar ataxias." Arquivos de Neuro-Psiquiatria 67, no. 4 (2009): 1133–42. http://dx.doi.org/10.1590/s0004-282x2009000600035.

Full text
Abstract:
Spinocerebellar ataxias (SCAs) constitute a heterogeneous group of neurodegenerative diseases characterized by progressive cerebellar ataxia in association with some or all of the following conditions: ophthalmoplegia, pyramidal signs, movement disorders, pigmentary retinopathy, peripheral neuropathy, cognitive dysfunction and dementia. OBJECTIVE: To carry out a clinical and genetic review of the main types of SCA. METHOD: The review was based on a search of the PUBMED and OMIM databases. RESULTS: Thirty types of SCAs are currently known, and 16 genes associated with the disease have been iden
APA, Harvard, Vancouver, ISO, and other styles
28

Verbeek, Dineke S. "Spinocerebellar Ataxia Type 23: A Genetic Update." Cerebellum 8, no. 2 (2008): 104–7. http://dx.doi.org/10.1007/s12311-008-0085-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Koefoed, P., J. E. Nielsen, L. Hasholt, P. K. A. Jensen, K. Fenger, and S. A. Sørensen. "The molecular diagnosis of spinocerebellar ataxia type 1 in patients with ataxia." European Journal of Neurology 4, no. 6 (1997): 586–92. http://dx.doi.org/10.1111/j.1468-1331.1997.tb00410.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Black, Eric. "Intensive Outpatient Treatment of Depression in a Spinocerebellar Ataxia Type 1 Patient." Case Reports in Psychiatry 2019 (February 11, 2019): 1–3. http://dx.doi.org/10.1155/2019/9186797.

Full text
Abstract:
Objective. Spinocerebellar ataxia type 1 (SCA1) is but one subtype of spinocerebellar ataxia (SCA), each of which can possibly be considered a separate neurological condition (N. Whaley, S. Fujioka, Z. K. Wszolek, 2011). SCA is hereditary, progressive, and degenerative. SCA1 symptoms initially include coordination problems and ataxia. SCA1 can also include speech and swallowing difficulties, spasticity, ophthalmoplegia, cognitive difficulties, and even sensory neuropathy, dystonia, atrophy, and fasciculations. Literature has established that depressive symptoms can be exhibited with spinocereb
APA, Harvard, Vancouver, ISO, and other styles
31

Cvetanovic, Marija, Rupinder K. Kular, and Puneet Opal. "LANP mediates neuritic pathology in Spinocerebellar ataxia type 1." Neurobiology of Disease 48, no. 3 (2012): 526–32. http://dx.doi.org/10.1016/j.nbd.2012.07.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Shrimpton, A. E., R. Davidson, N. MacDonald, and D. J. Brock. "Presymptomatic testing for autosomal dominant spinocerebellar ataxia type 1." Journal of Medical Genetics 30, no. 7 (1993): 616–17. http://dx.doi.org/10.1136/jmg.30.7.616.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

SHIOJIRI, T., T. TSUNEMI, T. MATSUNAGA, et al. "Vocal cord abductor paralysis in spinocerebellar ataxia type 1." Journal of Neurology, Neurosurgery & Psychiatry 67, no. 5 (1999): 695–96. http://dx.doi.org/10.1136/jnnp.67.5.695.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Shiwaku, Hiroki, Saburo Yagishita, Yoshinobu Eishi, and Hitoshi Okazawa. "Bergmann glia are reduced in spinocerebellar ataxia type 1." NeuroReport 24, no. 11 (2013): 620–25. http://dx.doi.org/10.1097/wnr.0b013e32836347b7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Mähler, Anja, Jochen Steiniger, Matthias Endres, Friedemann Paul, Michael Boschmann, and Sarah Doss. "Increased Catabolic State in Spinocerebellar Ataxia Type 1 Patients." Cerebellum 13, no. 4 (2014): 440–46. http://dx.doi.org/10.1007/s12311-014-0555-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Mikhail, Mirriam, and Netan Choudhry. "Multimodal Retinal Imaging in Spinocerebellar Ataxia Type 1 Maculopathy." American Journal of Ophthalmic Clinical Trials 4 (July 20, 2021): 2. http://dx.doi.org/10.25259/ajoct_5_2020.

Full text
Abstract:
Objectives: The objective of the study was to investigate and report the multimodal ocular imaging findings associated with spinocerebellar ataxia type 1 (SCA 1) associated maculopathy. Methods: A full ophthalmologic assessment was completed in a 70-year-old male with confirmed SCA1 and noted progressive bilateral vision loss. Investigations included dilated fundus examination, full-field electroretinography, and swept-source optical coherence tomography (OCT). Results: On neurologic and ophthalmologic examination, he was found to have hypermetric saccades, horizontal nystagmus, and reduced co
APA, Harvard, Vancouver, ISO, and other styles
37

Isono, Chiharu, Makito Hirano, Hikaru Sakamoto, Shuichi Ueno, Susumu Kusunoki, and Yusaku Nakamura. "Progression of Dysphagia in Spinocerebellar Ataxia Type 6." Dysphagia 32, no. 3 (2017): 420–26. http://dx.doi.org/10.1007/s00455-016-9771-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Elsaey, Mohamed A., Kazuhiko Namikawa, and Reinhard W. Köster. "Genetic Modeling of the Neurodegenerative Disease Spinocerebellar Ataxia Type 1 in Zebrafish." International Journal of Molecular Sciences 22, no. 14 (2021): 7351. http://dx.doi.org/10.3390/ijms22147351.

Full text
Abstract:
Dominant spinocerebellar ataxias (SCAs) are progredient neurodegenerative diseases commonly affecting the survival of Purkinje cells (PCs) in the human cerebellum. Spinocerebellar ataxia type 1 (SCA1) is caused by the mutated ataxin1 (Atx1) gene product, in which a polyglutamine stretch encoded by CAG repeats is extended in affected SCA1 patients. As a monogenetic disease with the Atx1-polyQ protein exerting a gain of function, SCA1 can be genetically modelled in animals by cell type-specific overexpression. We have established a transgenic PC-specific SCA1 model in zebrafish coexpressing the
APA, Harvard, Vancouver, ISO, and other styles
39

Tsai, Yun-An, Ren-Shyan Liu, Jiing-Feng Lirng, et al. "Treatment of Spinocerebellar Ataxia with Mesenchymal Stem Cells: A Phase I/IIa Clinical Study." Cell Transplantation 26, no. 3 (2017): 503–12. http://dx.doi.org/10.3727/096368916x694373.

Full text
Abstract:
Ataxia is one of the most devastating symptoms of many neurodegenerative disorders. As of today, there is not any effective treatment to retard its progression. Mesenchymal stem cells (MSCs) have shown promise in treating neurodegenerative diseases. We hereby report the results of a phase I/IIa clinical study conducted in Taiwan to primarily evaluate the safety, tolerability, and, secondarily, the possible efficacy of intravenous administration of allogeneic adipose tissue-derived MSCs from healthy donors. Six patients with spinocerebellar ataxia type 3 and one with multiple system atrophy-cer
APA, Harvard, Vancouver, ISO, and other styles
40

Aizawa, Carolina Yuri P., Jose Luiz Pedroso, Pedro Braga-Neto, Marilia Rezende Callegari, and Orlando Graziani Povoas Barsottini. "Patients with autosomal dominant spinocerebellar ataxia have more risk of falls, important balance impairment, and decreased ability to function." Arquivos de Neuro-Psiquiatria 71, no. 8 (2013): 508–11. http://dx.doi.org/10.1590/0004-282x20130094.

Full text
Abstract:
OBJECTIVES: To assess balance and ability to function in patients with spinocerebellar ataxia. METHODS: A total of 44 patients with different spinocerebellar ataxia types 1, 2, 3, and 6 were evaluated using the Tinetti balance and gait assessment and the functional independence measure. The scale for the assessment and rating of ataxia and the international cooperative ataxia rating scale were used to evaluate disease severity. RESULTS: Most patients showed significant risk of falls. The balance scores were significantly different in spinocerebellar ataxia types. A significant positive correla
APA, Harvard, Vancouver, ISO, and other styles
41

Keiser, Megan S., Jeffrey H. Kordower, Pedro Gonzalez-Alegre, and Beverly L. Davidson. "Broad distribution of ataxin 1 silencing in rhesus cerebella for spinocerebellar ataxia type 1 therapy." Brain 138, no. 12 (2015): 3555–66. http://dx.doi.org/10.1093/brain/awv292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Martins, Carlos R., Alberto R. M. Martinez, Anelyssa D'Abreu, Iscia Lopes-Cendes, and Marcondes C. França. "Fatigue is frequent and severe in spinocerebellar ataxia type 1." Parkinsonism & Related Disorders 21, no. 7 (2015): 821–22. http://dx.doi.org/10.1016/j.parkreldis.2015.04.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Keiser, Megan S., James C. Geoghegan, Ryan L. Boudreau, Kim A. Lennox, and Beverly L. Davidson. "RNAi or overexpression: Alternative therapies for Spinocerebellar Ataxia Type 1." Neurobiology of Disease 56 (August 2013): 6–13. http://dx.doi.org/10.1016/j.nbd.2013.04.003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Sasaki, H., T. Fukazawa, T. Yanagihara, et al. "Clinical features and natural history of spinocerebellar ataxia type 1." Acta Neurologica Scandinavica 93, no. 1 (2009): 64–71. http://dx.doi.org/10.1111/j.1600-0404.1996.tb00173.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Wu, Yih-Ru, Guey-Jen Lee-Chen, Anthony E. Lang, Chiung-Mei Chen, Hsuan-Yuan Lin, and Sien-Tsong Chen. "Dystonia as a presenting sign of spinocerebellar ataxia type 1." Movement Disorders 19, no. 5 (2004): 586–87. http://dx.doi.org/10.1002/mds.10708.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Edamakanti, Chandrakanth Reddy, Jeehaeh Do, Alessandro Didonna, Marco Martina, and Puneet Opal. "Mutant ataxin1 disrupts cerebellar development in spinocerebellar ataxia type 1." Journal of Clinical Investigation 128, no. 6 (2018): 2252–65. http://dx.doi.org/10.1172/jci96765.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Doss, Sarah, Alexander U. Brandt, Timm Oberwahrenbrock, Matthias Endres, Friedemann Paul, and Jan Leo Rinnenthal. "Metabolic Evidence for Cerebral Neurodegeneration in Spinocerebellar Ataxia Type 1." Cerebellum 13, no. 2 (2013): 199–206. http://dx.doi.org/10.1007/s12311-013-0527-2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Bürk, K., C. Globas, S. Bösch, et al. "Cognitive deficits in spinocerebellar ataxia type 1, 2, and 3." Journal of Neurology 250, no. 2 (2003): 207–11. http://dx.doi.org/10.1007/s00415-003-0976-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Girardet, A., C. Fernandez, C. Coubes, S. Hamamah, H. Dechaud, and M. Claustres. "P▪5 PGD for spinocerebellar ataxia type I." Reproductive BioMedicine Online 10 (January 2005): 34. http://dx.doi.org/10.1016/s1472-6483(11)60327-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Mori, Masatada, Yoshiki Adachi, Masayoshi Kusumi, and Kenji Nakashima. "Spinocerebellar ataxia type 6: founder effect in Western Japan." Journal of the Neurological Sciences 185, no. 1 (2001): 43–47. http://dx.doi.org/10.1016/s0022-510x(01)00453-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!