Academic literature on the topic 'Spinory'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spinory.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spinory"
Rogerio, R. J. Bueno. "From dipole spinors to a new class of mass dimension one fermions." Modern Physics Letters A 35, no. 39 (October 30, 2020): 2050319. http://dx.doi.org/10.1142/s0217732320503198.
Full textPOLYAKOV, DIMITRI. "NEW BRST CHARGES IN RNS SUPERSTRING THEORY AND DEFORMED PURE SPINORS." International Journal of Modern Physics A 24, no. 32 (December 30, 2009): 6177–95. http://dx.doi.org/10.1142/s0217751x09047600.
Full textHong, In Ki, Choong Sun Kim, and Gyung Hyun Min. "Curvature Spinors in Locally Inertial Frame and the Relations with Sedenion." Universe 6, no. 3 (March 6, 2020): 40. http://dx.doi.org/10.3390/universe6030040.
Full textHOROWITZ, G. "Spinor Calculus: Spinors and Space-Time." Science 228, no. 4706 (June 21, 1985): 1422–23. http://dx.doi.org/10.1126/science.228.4706.1422.
Full textScharnhorst, Klaus. "Entanglement capabilities of the spin representation of (3+1)D-conformal transformations." Quantum Information and Computation 13, no. 11&12 (November 2013): 925–36. http://dx.doi.org/10.26421/qic13.11-12-2.
Full textCANARUTTO, DANIEL. "FERMI TRANSPORT OF SPINORS AND FREE QED STATES IN CURVED SPACETIME." International Journal of Geometric Methods in Modern Physics 06, no. 05 (August 2009): 805–24. http://dx.doi.org/10.1142/s0219887809003801.
Full textHelfer, A. D. "Spinor Lie derivatives and Fermion stress–energies." Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences 472, no. 2186 (February 2016): 20150757. http://dx.doi.org/10.1098/rspa.2015.0757.
Full textNICOLAIDIS, A., and V. KIOSSES. "SPINOR GEOMETRY." International Journal of Modern Physics A 27, no. 22 (August 30, 2012): 1250126. http://dx.doi.org/10.1142/s0217751x12501266.
Full textEri̇şi̇r, Tülay, and Mehmet Ali̇ Güngör. "On Fibonacci spinors." International Journal of Geometric Methods in Modern Physics 17, no. 04 (March 2020): 2050065. http://dx.doi.org/10.1142/s0219887820500656.
Full textHORTAÇSU, M., and B. C. LÜTFÜOḠLU. "A MODEL WITH INTERACTING COMPOSITES." Modern Physics Letters A 21, no. 08 (March 14, 2006): 653–61. http://dx.doi.org/10.1142/s0217732306019116.
Full textDissertations / Theses on the topic "Spinory"
Agacy, Rex Leslie. "Generalized Kronecker, permanent delta and young taleaux applications to tenors and spinors : Laczos-Zund spinor classification and general spinor factorizations." Thesis, University of London, 1998. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299394.
Full textPaton, John. "Tree-Level N-Point Amplitudes in String Theory." Thesis, Uppsala universitet, Teoretisk fysik, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-296369.
Full textBeghetto, Junior Dino. "Espinores exóticos e espinores RIM : aspectos físicos e algébricos /." Guaratinguetá, 2019. http://hdl.handle.net/11449/182192.
Full textResumo: Espinores exóticos surgem quando a topologia da variedade $M$ tomada como sendo o espaço-tempo é suposta ser não-trivial, no sentindo que seu grupo fundamental é não-trivial: $\pi_1(M) \neq 0$. Assim, um novo termo exótico $\partial_\mu \theta$ surge na equação dinâmica destes espinores, e novas propriedades se apresentam. A não-trivialidade de $\pi_1(M)$ pode ser diretamente ligada a própria existência de buracos negros. Assim, estudamos, nesta tese, relações entre estruturas espinoriais exóticas e a taxa de emissão de radiação Hawking por buracos negros assintoticamente \textit{flat} em Relatividade Geral, encontrando equações diferenciais para o termo exótico, o que dá a possibilidade de inferir uma forma explícita para $\theta$. Também, tratamos aqui dos chamados espinores RIM, que são espinores que respeitam uma equação dinâmica não-linear chamada de equação não-linear de Heisenberg. Apresentamos dois lemas relativos a estes espinores: um deles encontrando restrições para ocorrer a decomposição de espinores de Dirac em termos de espinores RIM, e outro que nega a existência de espinores RIM exóticos, ou seja, relaciona a existência de espinores RIM a própria estrutura topológica do espaço-tempo. Ainda, encontramos um método de classificarmos os espinores RIM nas classes de Lounesto. Por fim, apresentamos, na forma de dois teoremas, maneiras de deformar homotopicamente tais espinores no que chamamos de \textit{spinor-plane}.
Abstract: Exotic spinors emerge when the topology associatd to the manifold $M$, which is token as being the spacetime, is suppose to be non-trivial, in the sense that its fundamental group is non-trivial: $\pi_1(M) \neq 0$. Thus, a new exotic term $\partial_\mu \theta$ rises from the dynamical equation related to these spinors, and new properties are in order. The non-triviality of $\pi_1(M)$ may be directly linked to the very existence of black holes. In this vein, we study some relations between exotic spinorial structures and the Hawking radiation emission rate by asymptotically flat black holes solutions of General Relativity, finding an equation from which an explicity form for the exotic term could be inferred. Moreover, we work on the so-called RIM spinors, which are spinor fields satisfying a non-linear dynamical equation known as Heiseing non-linear equation. We present two \textit{lemmata} related to these spinors: one of them gives us restrictions for the decompostion of Dirac fields in terms of RIM spinors to occur, while the other deny the existence of exotic RIM spinors, i.e., it relates the very existence of RIM spinors to the spacetime topological structure. Besides, we develop a classifying method for RIM spinors into the Lounesto classes. Finally, we present, in the form of two theorems, ways to homotopically deform such spinors in what we call the spinor-plane.
Doutor
Burnett, J. "Coframes, spinors and torsion." Thesis, University College London (University of London), 2011. http://discovery.ucl.ac.uk/1335617/.
Full textKleppe, Anne Friederike. "Supersymmetry, spinors and supergeometry." Thesis, University of Cambridge, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.613938.
Full textSwift, Simon. "Spinors, embeddings and gravity." Thesis, University of Southampton, 1988. https://eprints.soton.ac.uk/192435/.
Full textEbling, Ulrich. "Dynamics of spinor fermions." Doctoral thesis, Universitat Politècnica de Catalunya, 2014. http://hdl.handle.net/10803/284656.
Full textGases atómicos ultrafríos han establecido como sistemas cuánticos limpias que ofrecen un alto grado de control sobre parámetros cruciales. Están bien aisladas de su entorno y por eso ofrecen la posibilidad de estudiar la dinámica coherente de muchos cuerpos. En esta tesis, estudiamos la dinámica de fermiones ultrafríos con spin largo. Gases espinoriales fermiónicos difieren de la situación típica en la física de materia condensada por la presencia de la trampa y la posibilidad de tener un spin largo (> 1/2). En comparación con el caso de spin 1/2, fermiones de espín largo deben tener una de dos posibles propiedades nuevas. Obedecen a una simetría ampliada SU(N), o muestran colisiones spin-cambiante y un efecto Zeeman cuadrático. Aqui tratamos el segundo caso. En el escenario de interacciónes débiles, hay tres regímenes diferentes. Para interacciones muy débiles, el sistema está en el régimen sin colisiones e interacciones se puede describir en un nivel de campo medio. Para interacciones fuertes, las colisiones garantizan el equilibrio local y el sistema es descrito por ecuaciones hidrodinámicas. Para el régimen intermedio, no hay una descripción sencilla. Ademas, la sección transversa de dispersión para colisiones spin-cambiantes y de spin-conservación puede ser diferente para fermiones de espín largo. Encontramos una situación, donde el sistema es hidrodinámico con respecto a un proceso, pero no a la otra. En esta tesis desarrollamos una ecuación de Boltzmann semi-clásica, que permite interpolar el régimen intermedio, en presencia de la trampa y para espín largo. Este enfoque trata la dinámica de un cuerpo como un sistema abierto, acoplado a un entorno determinado por todas las atomos demás. Encontramos un buen acuerdo con experimentos realizados en el grupo de Klaus Sengstock en la Universidad de Hamburgo, hechos con potasio-40 ultrafrío. Comenzamos investigando el efecto de la trampa armónica en un sistema sin colisiones. Encontramos un mecanismo dinámico par la segregación de spin, la creación de dos dominios de magnetización opuesta en el espacio fásico, impulsada por el campo medio. Encontramos una explicación transparente de este efecto con la introducción del concepto de interacciones de largo alcance inducidos dinámicamente, que se forma cuando una fuerte trampa parabólica desenfoque eficazmente las interacciones de contacto. Otros resultados de esta tesis han sido realizados en colaboración con el grupo experimental en Hamburgo. En el primer proyecto, estudiamos las excitaciones colectivas de un gas de Fermi atrapada, con cuatro componentes de spin. Ondas de spin con larga longitud de onda se excitan mediante un gradiente de campo magnético. Durante la dinámica siguiente, los componentes de spin oscilan en la trampa, mientras que la densidad total permanece constante. Podemos entender esta dinámica cuantitativamente desligandola en configuraciones dipolares, nemáticos y octupolares de espín. En un experimento siguiente con fermiones de spin 9/2, se encontró que las interacciones spin-cambiando pueden activar oscilaciones colectivas y coherentes del estado de spin de todo el mar de Fermi con duración larga. Descubrimos teóricamente, que estas oscilaciones gigantes están protegidos de desfase espacial por las interacciones de largo alcance inducidos dinámicamente. Identificamos la supresión de tales oscilaciones en el régimen de alta densidad como la consecuencia de la dispersión incoherente lateral. En el último proyecto, estudiamos los procesos de colisión en potasio ultrafrío en mas detalle. Podemos organizarlos en tres categorías: Colisiones spin-cambiante vs. spin-conservación, procesos dependiente de la densidad vs. gradientes de densidad y colisiones hacia adelante vs. laterales. Con esta clasificación y la dependencia en la longitud de dispersión y momentos, podemos explicar y simular no sólo las oscilaciones coherentes impulsados por el campo medio, sino también efectos de relajación
Holm, Jens Christian. "Spinors in discrete space-time." Thesis, Georgia Institute of Technology, 1985. http://hdl.handle.net/1853/27901.
Full textLau, Lai-ngor, and 劉麗娥. "Pure spinors and Courant algebroids." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2009. http://hub.hku.hk/bib/B43572352.
Full textLau, Lai-ngor. "Pure spinors and Courant algebroids." Click to view the E-thesis via HKUTO, 2009. http://sunzi.lib.hku.hk/hkuto/record/B43572352.
Full textBooks on the topic "Spinory"
Stepanov, V. E. Dvukhkomponentnye spinory i prostranstvo-vremi͡a︡ affinnoĭ svi͡a︡znosti. Moskva: Nauka, 1996.
Find full textHladik, Jean. Spinors in Physics. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1488-5.
Full textJardine, J. F. Higher spinor classes. Providence, R.I: American Mathematical Society, 1994.
Find full texttranslator, Pemova Vasilka, ed. Spinoza. Skopje: St. Clement of Ohrid, National and university library, 2011.
Find full textBook chapters on the topic "Spinory"
Choi, Kang-Sin, and Jihn E. Kim. "Spinors." In Lecture Notes in Physics, 79–91. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-54005-0_4.
Full textTaylor, Michael. "Spinors." In Mathematical Surveys and Monographs, 246–67. Providence, Rhode Island: American Mathematical Society, 1986. http://dx.doi.org/10.1090/surv/022/13.
Full textGoodman, Roe, and Nolan R. Wallach. "Spinors." In Graduate Texts in Mathematics, 301–28. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-79852-3_6.
Full textAhrens, Tino. "Spinors." In From Dirac to Neutrino Oscillations, 7–46. Boston, MA: Springer US, 2000. http://dx.doi.org/10.1007/978-1-4615-4465-4_3.
Full textLozano, Yolanda, Steven Duplij, Malte Henkel, Malte Henkel, Euro Spallucci, Steven Duplij, Malte Henkel, et al. "Spinors." In Concise Encyclopedia of Supersymmetry, 378. Dordrecht: Springer Netherlands, 2004. http://dx.doi.org/10.1007/1-4020-4522-0_502.
Full textGeroch, Robert. "Spinors." In Springer Handbook of Spacetime, 281–301. Berlin, Heidelberg: Springer Berlin Heidelberg, 2014. http://dx.doi.org/10.1007/978-3-642-41992-8_15.
Full textHladik, Jean. "Pauli Spinors." In Spinors in Physics, 99–117. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1488-5_4.
Full textHladik, Jean. "Dirac Spinors." In Spinors in Physics, 157–69. New York, NY: Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4612-1488-5_7.
Full textSattinger, D. H., and O. L. Weaver. "Spinor Representations." In Lie Groups and Algebras with Applications to Physics, Geometry, and Mechanics, 181–86. New York, NY: Springer New York, 1986. http://dx.doi.org/10.1007/978-1-4757-1910-9_13.
Full textdel Castillo, Gerardo F. Torres. "Spinor Algebra." In Spinors in Four-Dimensional Spaces, 1–66. Boston, MA: Birkhäuser Boston, 2010. http://dx.doi.org/10.1007/978-0-8176-4984-5_1.
Full textConference papers on the topic "Spinory"
BOEHMER, C. B., and J. BURNETT. "DARK SPINORS." In Proceedings of the MG12 Meeting on General Relativity. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814374552_0335.
Full textTrautman, A., and G. Furlan. "SPINORS IN PHYSICS AND GEOMETRY." In Conference on Spinors in Physics and Geometry. WORLD SCIENTIFIC, 1988. http://dx.doi.org/10.1142/9789814541510.
Full textLIMA, A. R. P., and A. PELSTER. "SPINOR FERMI GASES." In Proceedings of the 9th International Conference. WORLD SCIENTIFIC, 2008. http://dx.doi.org/10.1142/9789812837271_0063.
Full textToppan, F. "Quaternionic and Octonionic Spinors." In FUNDAMENTAL INTERACTIONS AND TWISTOR-LIKE METHODS: XIX Max Born Symposium. AIP, 2005. http://dx.doi.org/10.1063/1.1923342.
Full textMastrolia, Pierpaolo. "Spinors and Unitarity-Cuts." In Proceedings of the International School of Subnuclear Physics. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789814293242_0027.
Full textHickey, Timothy, and Fatima Abu Deeb. "SPINOZA." In SIGCSE '18: The 49th ACM Technical Symposium on Computer Science Education. New York, NY, USA: ACM, 2018. http://dx.doi.org/10.1145/3159450.3162201.
Full textCohen, Marcus S. "8 Spinor grand unification." In Cosmology and particle physics. AIP, 2001. http://dx.doi.org/10.1063/1.1363584.
Full textSHANKARANARAYANAN, S. "DARK SPINOR DRIVEN INFLATION." In Proceedings of the MG12 Meeting on General Relativity. WORLD SCIENTIFIC, 2012. http://dx.doi.org/10.1142/9789814374552_0179.
Full textTrautman, Andrzej. "Reflections and spinors on manifolds." In Particles, fields and gravitation. AIP, 1998. http://dx.doi.org/10.1063/1.57113.
Full textMOROIANU, ANDREI. "SPECIAL SPINORS AND CONTACT GEOMETRY." In Proceedings of the Second Meeting. WORLD SCIENTIFIC, 2001. http://dx.doi.org/10.1142/9789812810038_0015.
Full textReports on the topic "Spinory"
Hill, Christopher T., and /Fermilab. Lecture notes for massless spinor and massive spinor triangle diagrams. Office of Scientific and Technical Information (OSTI), January 2006. http://dx.doi.org/10.2172/897086.
Full textAnghel, Nicolae. Projecting on Polinomial Dirac Spinors. GIQ, 2012. http://dx.doi.org/10.7546/giq-8-2007-121-126.
Full textHsu, Jonathan P., Alexander Maloney, and Alessandro Tomasiello. Black Hole Attractors and Pure Spinors. Office of Scientific and Technical Information (OSTI), February 2006. http://dx.doi.org/10.2172/876603.
Full textTsoupas, Nicholaos, Francis Meot, and Haixin Huang. Transformation of Spinors in Accelerators and Beam Transfer Lines. Office of Scientific and Technical Information (OSTI), December 2020. http://dx.doi.org/10.2172/1749905.
Full textWoo, Hyungje, Toby Perring, Collin Broholm, Chris Frost, and Hidenori Takagi. SPINONS IN A STRONGLY CORRELATED COPPER OXIDE CHAIN. Office of Scientific and Technical Information (OSTI), November 2003. http://dx.doi.org/10.2172/15006729.
Full textOzkan, Gursel. Phenolic Compounds, Organic Acids, Vitamin C and Antioxidant Capacity in Prunus spinosa L. Fruits. "Prof. Marin Drinov" Publishing House of Bulgarian Academy of Sciences, February 2019. http://dx.doi.org/10.7546/crabs.2019.02.17.
Full textZheng, Dao-Chen, L. Zamick, and H. Muether. Energy difference of T=1 and T=0 J{sup {pi}}=0{sup {minus}} states in {sup 16}O: Effects of the tensor interaction, configuration mixing, and density-dependent Dirac spinors. Office of Scientific and Technical Information (OSTI), December 1992. http://dx.doi.org/10.2172/10141970.
Full textZheng, Dao-Chen, L. Zamick, and H. Muether. Energy difference of T=1 and T=0 J[sup [pi]]=0[sup [minus]] states in [sup 16]O: Effects of the tensor interaction, configuration mixing, and density-dependent Dirac spinors. Office of Scientific and Technical Information (OSTI), January 1992. http://dx.doi.org/10.2172/6606534.
Full textRichter, Lee, Michael Feeley, Andrea Atkinson, Judd Patterson, Andy Davis, and Jeff Miller. Long-term monitoring protocol of Caribbean spiny lobster (Panulirus argus): Protocol narrative—Version 1.1. Natural Resource Report NPS/SFCN/NRR—2020/2177. National Park Service, October 2020. http://dx.doi.org/10.36967/nrr-2279134.
Full text