Academic literature on the topic 'Spline Function'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spline Function.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spline Function"
YOSHIMOTO, Fujiichi. "Spline Function." Journal of Japan Society for Fuzzy Theory and Systems 6, no. 5 (1994): 895–98. http://dx.doi.org/10.3156/jfuzzy.6.5_895.
Full textToraichi, Kazuo, and Takahiko Horiuchi. "Spline Function." IEEJ Transactions on Electronics, Information and Systems 114, no. 2 (1994): 209–16. http://dx.doi.org/10.1541/ieejeiss1987.114.2_209.
Full textK.H., Faraidun, Karwan H. F. Jwamer, and Sabah Ali Mohammed. "An Algorithm for Computing Spline Function." Journal of Zankoy Sulaimani - Part A 18, no. 3 (April 21, 2016): 251–58. http://dx.doi.org/10.17656/jzs.10554.
Full textMacCarthy, B. L., and N. D. Burns. "An Evaluation of Spline Functions for use in Cam Design." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 199, no. 3 (July 1985): 239–48. http://dx.doi.org/10.1243/pime_proc_1985_199_118_02.
Full textBudakçı, Gülter, and Halil Oruç. "Further Properties of Quantum Spline Spaces." Mathematics 8, no. 10 (October 14, 2020): 1770. http://dx.doi.org/10.3390/math8101770.
Full textToraichi, Kazuo, and Masaru Kamada. "Spline Function II." IEEJ Transactions on Electronics, Information and Systems 114, no. 7-8 (1994): 773–82. http://dx.doi.org/10.1541/ieejeiss1987.114.7-8_773.
Full textK. S., Rostam, and Karwan H.J. "Lacunary Interpolation by Spline function (0,3) Case." Journal of Zankoy Sulaimani - Part A 6, no. 1 (September 16, 2003): 43–49. http://dx.doi.org/10.17656/jzs.10111.
Full textStrelkovskaya, Irina, Irina Solovskaya, and Juliya Strelkovska. "Application of real and complex splines in infocommunication problems." Problemi telekomunìkacìj, no. 1(28) (December 22, 2021): 3–19. http://dx.doi.org/10.30837/pt.2021.1.01.
Full textToraichi, Kazuo, Ryoichi Mori, and Masaru Kamada. "Design of window function using spline functions." Electronics and Communications in Japan (Part III: Fundamental Electronic Science) 72, no. 11 (1989): 10–19. http://dx.doi.org/10.1002/ecjc.4430721102.
Full textSivak, Roman. "DEFINITION OF KINEMATICS OF DEFORMATION BASED ON SPLINE-APPROXIMATIONS." Vibrations in engineering and technology, no. 2(97) (August 27, 2020): 101–7. http://dx.doi.org/10.37128/2306-8744-2020-2-11.
Full textDissertations / Theses on the topic "Spline Function"
Wang, Lu. "Cure Rate Model with Spline Estimated Components." Diss., Virginia Tech, 2010. http://hdl.handle.net/10919/28359.
Full textPh. D.
Kulkarni, Rekha Panditrao. "Fonctions spline cardinales tronquées." Grenoble 1, 1985. http://tel.archives-ouvertes.fr/tel-00318472.
Full textOn propose des conditions de bout pour les fonctions spines polynomiales d'interpolation de degre p (p >ou= 2) associees aux abscisses equidistantes qui economisent le calcul et entrainent un ordre de convergence optimal. Cette fonction spline peut etre interpretee comme une fonction spline cardinale tronquee avec une correction convenable. La technique utilisee pour les fonctions splines polynomiales est applicable dans le cas des fonctions splines sous tension. On donne aussi quelques resultats pour les fonctions splines cubiques de lissage
Burton, Christina Marie. "Quadratic Spline Approximation of the Newsvendor Problem Optimal Cost Function." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/3087.
Full textKim, Heeyoung. "Statistical methods for function estimation and classification." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/44806.
Full textWu, Yuan. "The partially monotone tensor spline estimation of joint distribution function with bivariate current status data." Diss., University of Iowa, 2010. https://ir.uiowa.edu/etd/762.
Full textWilson, Brigham Bond. "Infinitesimal Perturbation Analysis for the Capacitated Finite-Horizon Multi-Period Multiproduct Newsvendor Problem." BYU ScholarsArchive, 2012. https://scholarsarchive.byu.edu/etd/2988.
Full textGomes, José Clelto Barros. "Estimação não-parametrica para função de covariancia de processos gaussianos espaciais." [s.n.], 2009. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306507.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica
Made available in DSpace on 2018-08-13T14:28:48Z (GMT). No. of bitstreams: 1 Gomes_JoseCleltoBarros_M.pdf: 1798618 bytes, checksum: db671b29b83f0321e8dbc03c5af42cde (MD5) Previous issue date: 2009
Resumo: O desafio na modelagem de processos espaciais está na descrição da estrutura de covariância do fenômeno sob estudo. Um estimador não-paramétrico da função de covariância foi construído de forma a usar combinações lineares de funções B-splines. Estas bases são usadas com muita frequência na literatura graças ao seu suporte compacto e a computação tão rápida quanto a habilidade de criar aproximações suaves e apropriadas. Verificouse que a função de covariância estimada era definida positiva por meio do teorema de Bochner. Para a estimação da função de covariância foi implementado um algoritmo que fornece um procedimento completamente automático baseado no número de funções bases. Então foram realizados estudos numéricos que evidenciaram que assintoticamente o procedimento é consistente, enquanto que para pequenas amostras deve-se considerar as restrições das funções de covariância. As funções de covariâncias usadas na estimação foram as de exponencial potência, gaussiana, cúbica, esférica, quadrática racional, ondular e família de Matérn. Foram estimadas ainda covariâncias encaixadas. Simulações foram realizadas também a fim de verificar o comportamento da distribuição da afinidade. As estimativas apresentaram-se satisfatórias
Abstract: The challenge in modeling of spatials processes is in description of the framework of covariance of the phenomenon about study. The estimation of covariance functions was done using a nonparametric linear combinations of basis functions B-splines. These bases are used frequently in literature thanks to its compact support and fast computing as the ability to create smooth and appropriate approaches There was positive definiteness of the estimator proposed by the Bochner's theorem. For the estimation of the covariance functions was implemented an algorithm that provides a fully automated procedure based on the number of basis functions. Then numerical studies were performed that showed that the procedure is consistent assynthotically. While for small samples should consider the restrictions of the covariance functions, so the process of optimization was non-linear optimization with restrictions. The following covariance functions were used in estimating: powered exponential, Gaussian, cubic, spherical, rational quadratic and Matérn family. Nested covariance funtions still were estimated. Simulations were also performed to verify the behavior of affinity and affinity partial, which measures how good is the true function of the estimated function. Estimates showed satisfactory
Mestrado
Mestre em Estatística
Ludwig, Guilherme Vieira Nunes. "Estimação não paramétrica da função de covariância para dados funcionais agregados." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306198.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-18T04:43:13Z (GMT). No. of bitstreams: 1 Ludwig_GuilhermeVieiraNunes_M.pdf: 4540322 bytes, checksum: c767b4a6c7cd883a70e9ebbc33fe04ec (MD5) Previous issue date: 2011
Resumo: O objetivo desta dissertação é desenvolver estimadores não paramétricos para a função de covariância de dados funcionais agregados, que consistem em combinações lineares de dados funcionais que não podem ser observados separadamente. Estes métodos devem ser capazes de produzir estimativas que separem a covariância típica de cada uma das subpopulações que geram os dados, e que sejam funções não negativas definidas. Sob estas restrições, foi definida uma classe de funções de covariância não estacionarias, à qual resultados da teoria de estimação de covariância de processos estacionários podem ser estendidos. Os métodos desenvolvidos foram ilustrados com a aplicação em dois problemas reais: a estimação do perfil de consumidores de energia elétrica, em função do tempo, e a estimação da transmitância de substâncias puras em espectroscopia de infravermelho, através da inspeção de misturas, em função do espectro da luz
Abstract: The goal of this dissertation is to develop nonparametric estimators for the covariance function of aggregated functional data, which consists into linear combinations of functional data that cannot be sampled separately. Such methods must be able to produce estimates that not only separate the typical covariance of the subpopulations composing the data, but also be nonnegative definite functions. Under these restrictions, a class of nonstationary covariance functions was proposed, to which stationary processes' covariance function estimation results can be readily extended. The developed methods were illustrated with an application to two real problems: the estimation of electric energy consumers' profiles, as a function of the time of the day, and the estimation of the transmittance of pure substances in infrared spectroscopy, while inspecting mixtures of them, as a function of light spectrum
Mestrado
Estatistica Não Parametrica
Mestre em Estatística
Mo, Eirik. "Nonlinear stochastic dynamics and chaos by numerical path integration." Doctoral thesis, Norwegian University of Science and Technology, Faculty of Information Technology, Mathematics and Electrical Engineering, 2008. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-1786.
Full textThe numerical path integration method for solving stochastic differential equations is extended to solve systems up to six spatial dimensions, angular variables, and highly nonlinear systems - including systems that results in discontinuities in the response probability density function of the system. Novel methods to stabilize the numerical method and increase computation speed are presented and discussed. This includes the use of the fast Fourier transform (FFT) and some new spline interpolation methods. Some sufficient criteria for the path integration theory to be applicable is also presented. The development of complex numerical code is made possible through automatic code generation by scripting. The resulting code is applied to chaotic dynamical systems by adding a Gaussian noise term to the deterministic equation. Various methods and approximations to compute the largest Lyapunov exponent of these systems are presented and illustrated, and the results are compared. Finally, it is shown that the location and size of the additive noise term affects the results, and it is shown that additive noise for specific systems could make a non-chaotic system chaotic, and a chaotic system non-chaotic.
Chen, Tianlei. "Cure Rate Models with Nonparametric Form of Covariate Effects." Diss., Virginia Tech, 2015. http://hdl.handle.net/10919/52894.
Full textPh. D.
Books on the topic "Spline Function"
1939-, Dubuc Serge, and Deslauriers Gilles 1941-, eds. Spline functions and the theory of wavelets. Providence, R.I: American Mathematical Society, 1999.
Find full textBojanov, B. D. Spline functions and multivariate interpolations. Dordrecht: Kluwer Academic Publishers, 1993.
Find full textNürnberger, Günther. Approximation by Spline Functions. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-61342-5.
Full textSpline functions: Basic theory. 3rd ed. New York: Cambridge University Press, 2007.
Find full textSpline functions: Computational methods. Philadelphia: Society for Industrial and Applied Mathematics, 2015.
Find full textTwo dimensional spline interpolation algorithms. Wellesley, Mass: A.K. Peters, 1995.
Find full textBojanov, B. D., H. A. Hakopian, and A. A. Sahakian. Spline Functions and Multivariate Interpolations. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-015-8169-1.
Full textBook chapters on the topic "Spline Function"
Anthony, Ralston, and Rabinowitz Philip. "Function SPLINE function SMOOTH." In Time Series Package (TSPACK), 51–55. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/3-540-15202-4_16.
Full textPenner, Alvin. "ODF Using a Beta1-Spline." In Fitting Splines to a Parametric Function, 67–75. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12551-6_10.
Full textPenner, Alvin. "ODF Using a Beta2-Spline." In Fitting Splines to a Parametric Function, 57–65. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12551-6_9.
Full textLight, W. A. "Some Aspects of Radial Basis Function Approximation." In Approximation Theory, Spline Functions and Applications, 163–90. Dordrecht: Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2634-2_8.
Full textPenner, Alvin. "ODF Using a 5-Point B-Spline." In Fitting Splines to a Parametric Function, 37–42. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12551-6_6.
Full textPenner, Alvin. "ODF Using a 6-Point B-Spline." In Fitting Splines to a Parametric Function, 43–48. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12551-6_7.
Full textGaab, M. R., and H. E. Heissler. "Intracranial Elastance: Spline Interpolation vs Exponential Function." In Intracranial Pressure VII, 267–70. Berlin, Heidelberg: Springer Berlin Heidelberg, 1989. http://dx.doi.org/10.1007/978-3-642-73987-3_73.
Full textPetrushev, Pencho P. "Direct and converse theorems for spline and rational approximation and besov spaces." In Function Spaces and Applications, 363–77. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988. http://dx.doi.org/10.1007/bfb0078887.
Full textYuan, Hanning, Wenzhong Shi, and Jiabing Sun. "Mining Standard Land Price with Tension Spline Function." In Advanced Data Mining and Applications, 792–803. Berlin, Heidelberg: Springer Berlin Heidelberg, 2005. http://dx.doi.org/10.1007/11527503_94.
Full textBogdanovich, Alexander E. "Spline Function Aided Analysis of Inhomogeneous Materials and Structures." In Local Mechanics Concepts for Composite Material Systems, 355–82. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84792-9_18.
Full textConference papers on the topic "Spline Function"
Noboru Noguchi, John F. Reid, Qin Zhang, and Jeffrey D. Will. "Turning Function for Robot Tractor Based on Spline Function." In 2001 Sacramento, CA July 29-August 1,2001. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2001. http://dx.doi.org/10.13031/2013.7298.
Full textBedabrata Chand, Arya Kumar. "Natural Bicubic Spline Coalescence Fractal Interpolation Function." In Annual International Conference on Computational Mathematics, Computational Geometry & Statistics. Global Science and Technology Forum (GSTF), 2012. http://dx.doi.org/10.5176/2251-1911_cmcgs53.
Full textDechevsky, Lubomir T., and Peter Zanaty. "Beta-function B-spline smoothing on triangulations." In IS&T/SPIE Electronic Imaging, edited by Atilla M. Baskurt and Robert Sitnik. SPIE, 2013. http://dx.doi.org/10.1117/12.2007681.
Full textHani, Ahmad Fadzil M., Arwan A. Khoiruddin, Nicolas Walter, Ibrahima Faye, and Thong C. Mun. "3D reconstruction using spline inverse function analysis." In 2012 4th International Conference on Intelligent & Advanced Systems (ICIAS). IEEE, 2012. http://dx.doi.org/10.1109/icias.2012.6306211.
Full textVelimirovic, Lazar, Zoran Peric, and Miomir Stankovic. "Approximation of the optimal compressor function combining different spline functions in segments." In TELSIKS 2013 - 2013 11th International Conference on Telecommunication in Modern Satellite, Cable and Broadcasting Services. IEEE, 2013. http://dx.doi.org/10.1109/telsks.2013.6704436.
Full textSong, Xinghua, Bert Jüttler, and Adrien Poteaux. "Hierarchical Spline Approximation of the Signed Distance Function." In 2010 Shape Modeling International (SMI). IEEE, 2010. http://dx.doi.org/10.1109/smi.2010.18.
Full textJiang, R. "Determination of degradation change point using spline function." In 2012 International Conference on Quality, Reliability, Risk, Maintenance, and Safety Engineering (QR2MSE). IEEE, 2012. http://dx.doi.org/10.1109/icqr2mse.2012.6246371.
Full textKitahara, Daichi, and Isao Yamada. "Probability density function estimation by positive quartic C2-spline functions." In ICASSP 2015 - 2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). IEEE, 2015. http://dx.doi.org/10.1109/icassp.2015.7178633.
Full textXu, Tao, Peng Zou, Tianshuang Xu, and Chenmeng Jiye. "Study on Weight Function of Meshless Method Based on B-spline Wavelet Function." In 2010 Third International Joint Conference on Computational Science and Optimization. IEEE, 2010. http://dx.doi.org/10.1109/cso.2010.136.
Full textHussain, Malik Zawwar, Misbah Irshad, Muhammad Sarfraz, and Nousheen Zafar. "Interpolation of Discrete Time Signals Using Cubic Spline Function." In 2015 19th International Conference on Information Visualisation (iV). IEEE, 2015. http://dx.doi.org/10.1109/iv.2015.82.
Full textReports on the topic "Spline Function"
Fearon, M. Finding the cubic smoothing spline function by scale invariants. Natural Resources Canada/ESS/Scientific and Technical Publishing Services, 1990. http://dx.doi.org/10.4095/128121.
Full textDe Boor, Carl. Spline Functions and Surfaces. Fort Belvoir, VA: Defense Technical Information Center, January 1990. http://dx.doi.org/10.21236/ada230651.
Full textStein, P. C., and W. L. White. Smoothing Surface Data by Spline Functions. Fort Belvoir, VA: Defense Technical Information Center, April 1985. http://dx.doi.org/10.21236/ada155829.
Full textVillez, Kris. Computation and illustration of the generalized order restricted criterion (GORIC) for shape constrained spline functions. Office of Scientific and Technical Information (OSTI), September 2020. http://dx.doi.org/10.2172/1659607.
Full textSaunders, Bonita, and Qiming Wang. From b-spline mesh generation to effective visualizations for the NIST digital library of mathematical functions. Gaithersburg, MD: National Institute of Standards and Technology, 2007. http://dx.doi.org/10.6028/nist.ir.7402.
Full textNagayama, Shinobu, Tsuotomu Sasao, and Jon T. Butler. Floating-Point Numeric Function Generators Based on Piecewise-Split EVMDDs. Fort Belvoir, VA: Defense Technical Information Center, May 2010. http://dx.doi.org/10.21236/ada547647.
Full textGreer, Earl D. Joint Staff Organization: Is there a Planning and Programming Function Split. Fort Belvoir, VA: Defense Technical Information Center, March 1989. http://dx.doi.org/10.21236/ada208040.
Full textSrivastava, Shiv. Structure and Function of the Splice Variants of TMPRSS2-ERG, a Prevalent Genomic Alteration in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada517260.
Full textSrivastava, Shiv. Structure and Function of the Splice Variants of TMPRSS2-ERG, a Prevalent Genomic Alteration in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada566991.
Full textSrivastava, Shiv. Structure and Function of the Splice Variants of TMPRSS2-ERG, a Prevalent Genomic Alteration in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2011. http://dx.doi.org/10.21236/ada552720.
Full text