Academic literature on the topic 'Spline theory. Differential equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spline theory. Differential equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spline theory. Differential equations"
Tarang, M. "STABILITY OF THE SPLINE COLLOCATION METHOD FOR SECOND ORDER VOLTERRA INTEGRO‐DIFFERENTIAL EQUATIONS." Mathematical Modelling and Analysis 9, no. 1 (March 31, 2004): 79–90. http://dx.doi.org/10.3846/13926292.2004.9637243.
Full textIbrahim, M. A. K., A. El-Safty, and Shadia M. Abo-Hasha. "Application of spline functions to neutral delay-differential equations." International Journal of Computer Mathematics 62, no. 3-4 (January 1996): 233–39. http://dx.doi.org/10.1080/00207169608804540.
Full textAyad, A. "Spline approximation for second order fredholm integro-differential equations." International Journal of Computer Mathematics 66, no. 1-2 (January 1998): 79–91. http://dx.doi.org/10.1080/00207169808804626.
Full textZhao, J., M. S. Cheung, and S. F. Ng. "Spline Kantorovich method and analysis of general slab bridge deck." Canadian Journal of Civil Engineering 25, no. 5 (October 1, 1998): 935–42. http://dx.doi.org/10.1139/l98-030.
Full textEl-Safty, A., and Shadia M. Abo-Hasha. "Stability of 2h-step spline method for delay differential equations." International Journal of Computer Mathematics 74, no. 3 (January 2000): 315–24. http://dx.doi.org/10.1080/00207160008804945.
Full textAyad, A. "Spline approximation for first Order fredholm delay integro-differential equations." International Journal of Computer Mathematics 70, no. 3 (January 1999): 467–76. http://dx.doi.org/10.1080/00207169908804768.
Full textSrivastava, Hari Mohan, Pshtiwan Othman Mohammed, Juan L. G. Guirao, and Y. S. Hamed. "Some Higher-Degree Lacunary Fractional Splines in the Approximation of Fractional Differential Equations." Symmetry 13, no. 3 (March 5, 2021): 422. http://dx.doi.org/10.3390/sym13030422.
Full textMittal, R. C., and Amit Tripathi. "Numerical solutions of two-dimensional Burgers’ equations using modified Bi-cubic B-spline finite elements." Engineering Computations 32, no. 5 (July 6, 2015): 1275–306. http://dx.doi.org/10.1108/ec-04-2014-0067.
Full textIbrahim, M. A. K., A. El-Safty, and Shadia M. Abo-Hasha. "On the p-stability of quadratic spline for delay differential equations." International Journal of Computer Mathematics 52, no. 3-4 (January 1994): 219–23. http://dx.doi.org/10.1080/00207169408804306.
Full textWELLS, J. C., V. E. OBERACKER, M. R. STRAYER, and A. S. UMAR. "SPECTRAL PROPERTIES OF DERIVATIVE OPERATORS IN THE BASIS-SPLINE COLLOCATION METHOD." International Journal of Modern Physics C 06, no. 01 (February 1995): 143–67. http://dx.doi.org/10.1142/s0129183195000125.
Full textDissertations / Theses on the topic "Spline theory. Differential equations"
Tarang, Mare. "Stability of the spline collocation method for Volterra integro-differential equations." Online version, 2004. http://dspace.utlib.ee/dspace/bitstream/10062/793/5/Tarang.pdf.
Full textKadhum, Nashat Ibrahim. "The spline approach to the numerical solution of parabolic partial differential equations." Thesis, Loughborough University, 1988. https://dspace.lboro.ac.uk/2134/6725.
Full textRoeser, Markus Karl. "The ASD equations in split signature and hypersymplectic geometry." Thesis, University of Oxford, 2012. http://ora.ox.ac.uk/objects/uuid:7d46ffc8-6d12-4fec-9450-13d2c726885c.
Full textCastro, Douglas Azevedo 1982. "Esquemas de aproximação em multinível e aplicações." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/306587.
Full textTese (doutorado) - Universidade Estadual de Campinas, Instituto de Matemática, Estatística e Computação Científica
Made available in DSpace on 2018-08-19T12:39:30Z (GMT). No. of bitstreams: 1 Castro_DouglasAzevedo_D.pdf: 8872633 bytes, checksum: a17b2761789c6a831631ac143fdf5ca7 (MD5) Previous issue date: 2011
Resumo: O objetivo desta tese é desenvolver algoritmos baseados em malhas e bases funcionais inovadoras usando técnicas de multiescala para aproximação de funções e resolução de problemas de equações diferenciais. Para certas classes de problemas, é possível incrementar a eficiência dos algoritmos de multiescala usando bases adaptativas, associadas a malhas construídas de forma a se ajustarem com o fenômeno a ser modelado. Nesta abordagem, em cada nível da hierarquia, os detalhes entre a aproximação desse nível e a aproximação definida no próximo nível menos refinado pode ser usada como indicador de regiões que necessitam de mais ou menos refinamento. Desta forma, em regiões onde a solução é suave, basta utilizar os elementos dos níveis menos refinados da hierarquia, enquanto que o maior refinamento é feito apenas onde a solução tiver variações bruscas. Consideramos dois tipos de formulações para representações multiescala, dependendo das bases adotadas: splines diádicos e wavelets. A primeira abordagem considera espaços aproximantes por funções splines sobre uma hierarquia de malhas cuja resolução depende do nível. A outra abordagem considera ferramentas da analise wavelet para representações em multirresolução de médias celulares. O enfoque está no desenvolvimento de algoritmos baseados em dados amostrais d-dimensionais em malhas diádicas que são armazenados em uma estrutura de árvore binária. A adaptatividade ocorre quando o refinamento é interrompido em algumas regiões do domínio, onde os detalhes entre dois níveis consecutivos são suficientemente pequenos. Um importante aspecto deste tipo de representação é que a mesma estrutura de dados é usada em qualquer dimensão, além de facilitar o acesso aos dados nela armezenados. Utilizamos as técnicas desenvolvidas na construção de um método adaptativo de volumes finitos em malhas diádicas para a solução de problemas diferenciais. Analisamos o desempenho do método adaptativo em termos da compressão de memória e tempo de CPU em comparação com os resultados do esquema de referência em malha uniforme no nível mais refinado. Neste sentido, comprovamos a eficiência do método adaptativo, que foi avaliada levando-se em consideração os efeitos da escolha de diferentes tipos de fluxo numérico e dos parâmetros de truncamento
Abstract: The goal of this thesis is to develop algorithms based on innovative meshes and functional bases using multiscale techniques for function approximation and solution of differential equation problems. For certain classes of problems, one can increase the efficiency of multiscale algorithms using hierarchical adaptive bases, associated to meshes whose resolution varies according to the local features of the phenomenon to be modeled. In this approach, at each level of the hierarchy the details-differences between the approximation for that level and that of the next coarser level-can be used as indicators of regions that need more or less refinement. In this way, in regions where the solution is smooth, it suffices to use elements of the less refined levels of the hierarchy, while the maximum refinement is used only where the solution has sharp variations. We consider two classes of formulations for multiscale representations, depending on the bases used: dyadic splines and wavelets. The first approach uses approximation spaces consisting of spline functions defined over a mesh hierarchy whose resolution depends on the level. The other approach uses tools from wavelet analysis for multiresolu-tion representations of cell averages. The focus is on the development of algorithms based on sampled d-dimensional data on dyadic meshes which are stored in a binary tree structures. The adaptivity happens when the refinement is interrupted in certain regions of the domain, where the details between two consecutive levels are sufficiently small. This representation greatly simplifies the access to the data and it can be used in any dimension. We use these techniques to build an adaptive finite volume method on dyadic grids for the solution of differential problems. We analyze the performance of the method in terms of memory compression and CPU time, comparing it with the reference scheme (which uses a uniform mesh at the maximum refinement level). In these tests, we confirmed the efficiency of the adaptive method for various numeric flow formulas and various choices of the thresholding parameters
Doutorado
Matematica Aplicada
Doutor em Matemática Aplicada
Tung, Michael Ming-Sha. "Spline approximations for systems of ordinary differential equations." Doctoral thesis, Universitat Politècnica de València, 2013. http://hdl.handle.net/10251/31658.
Full textTESIS
Premiado
Kirby, P. J. "The theory of exponential differential equations." Thesis, University of Oxford, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.433471.
Full textZhu, Wei. "Fractional differential equations in risk theory." Thesis, University of Liverpool, 2018. http://livrepository.liverpool.ac.uk/3018514/.
Full textNagloo, Joel Chris Ronnie. "Model theory, algebra and differential equations." Thesis, University of Leeds, 2014. http://etheses.whiterose.ac.uk/6813/.
Full textWhitehead, Andrew John. "Differential equations and differential polynomials in the complex plane." Thesis, University of Nottingham, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273112.
Full textOzbekler, Abdullah. "Sturm Comparison Theory For Impulsive Differential Equations." Phd thesis, METU, 2005. http://etd.lib.metu.edu.tr/upload/3/12606894/index.pdf.
Full text#8217
s equation with damping and forced linear equations with damping are established.
Books on the topic "Spline theory. Differential equations"
Frank, Schneider. Inverse problems in satellite geodesy and their approximate solution by splines and wavelets. Aachen: Shaker, 1997.
Find full textSchiesser, William E. Spline Collocation Methods for Partial Differential Equations. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2017. http://dx.doi.org/10.1002/9781119301066.
Full text1889-1950, Stepanov V. V., ed. Qualitative theory of differential equations. New York: Dover Publications, 1989.
Find full textOrdinary differential equations: Qualitative theory. Providence, R.I: American Mathematical Society, 2010.
Find full textDan, Port, ed. Differential equations: Theory and applications. Boston: Jones and Bartlett Publishers, 1991.
Find full textBellman, Richard Ernest. Stability theory of differential equations. Mineola, N.Y: Dover Publications, 2008.
Find full textTaylor, Michael Eugene. Partial differential equations: Basic theory. New York: Springer, 1996.
Find full textLakshmikantham, V. Theory of integro-differential equations. Lausanne, Switzerland: Gordon and Breach Science Publishers, 1995.
Find full textBook chapters on the topic "Spline theory. Differential equations"
Pedas, Arvet, Enn Tamme, and Mikk Vikerpuur. "Spline Collocation for Fractional Integro-Differential Equations." In Finite Difference Methods,Theory and Applications, 315–22. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-20239-6_34.
Full textBica, Alexandru Mihai, Mircea Curila, and Sorin Curila. "Spline Iterative Method for Pantograph Type Functional Differential Equations." In Finite Difference Methods. Theory and Applications, 159–66. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-11539-5_16.
Full textDidenko, Victor D., and Anh My Vu. "Spline Galerkin Methods for the Double Layer Potential Equations on Contours with Corners." In Recent Trends in Operator Theory and Partial Differential Equations, 129–44. Cham: Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-47079-5_7.
Full textYuan, Haiyan, Jihong Shen, and Cheng Song. "Mean Square Stability and Dissipativity of Split-Step Theta Method for Stochastic Delay Differential Equations with Poisson White Noise Excitations." In Automation Control Theory Perspectives in Intelligent Systems, 87–97. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-33389-2_9.
Full textTikhonov, Andrei N., Adelaida B. Vasil’eva, and Alexei G. Sveshnikov. "General Theory." In Differential Equations, 18–65. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82175-2_2.
Full textTikhonov, Andrei N., Adelaida B. Vasil’eva, and Alexei G. Sveshnikov. "Stability Theory." In Differential Equations, 130–53. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/978-3-642-82175-2_5.
Full textSchechter, Martin. "Differential Equations." In Critical Point Theory, 83–93. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-45603-0_6.
Full textRoss, Clay C. "Differential Systems: Theory." In Differential Equations, 297–368. New York, NY: Springer New York, 2004. http://dx.doi.org/10.1007/978-1-4757-3949-7_9.
Full textKlenke, Achim. "Stochastic Differential Equations." In Probability Theory, 589–611. London: Springer London, 2014. http://dx.doi.org/10.1007/978-1-4471-5361-0_26.
Full textKlenke, Achim. "Stochastic Differential Equations." In Probability Theory, 665–90. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-56402-5_26.
Full textConference papers on the topic "Spline theory. Differential equations"
Huo, Xiaoming. "Identification of Underlying Partial Differential Equations from Noisy Data with Splines." In 3nd International Conference on Statistics: Theory and Applications (ICSTA'21). Avestia Publishing, 2021. http://dx.doi.org/10.11159/icsta21.005.
Full textMashrouteh, Shamim, Ahmad Barari, and Ebrahim Esmailzadeh. "Flow-Induced Nonlinear Vibration of Non-Uniform Nanotubes." In ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2017. http://dx.doi.org/10.1115/detc2017-68208.
Full textŻołądek, Henryk. "Polynomial Riccati equations with algebraic solutions." In Differential Galois Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc58-0-17.
Full textMutou, A., S. Mizuki, Y. Komatsubara, and H. Tsujita. "Behavior of Attractors During Surge in Centrifugal Compression System." In ASME 1998 International Gas Turbine and Aeroengine Congress and Exhibition. American Society of Mechanical Engineers, 1998. http://dx.doi.org/10.1115/98-gt-301.
Full textAskari, Hassan, Zia Saadatnia, and Ebrahim Esmailzadeh. "Nonlinear Vibration of Nanobeam With Quadratic Rational Bezier Arc Curvature." In ASME 2014 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/imece2014-37986.
Full textGrill, Thomas, Manfred Knebusch, and Marcus Tressl. "An existence theorem for systems of implicit differential equations." In Differential Galois Theory. Warsaw: Institute of Mathematics Polish Academy of Sciences, 2002. http://dx.doi.org/10.4064/bc58-0-6.
Full textHall, Andrew, Chad Schmitke, and John McPhee. "Symbolic Formulation of a Path-Following Joint for Multibody Dynamics." In ASME 2014 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2014. http://dx.doi.org/10.1115/detc2014-35082.
Full textChristara, C. C., E. N. Houstis, and J. R. Rice. "A parallel spline collocation-capacitance method for elliptic partial differential equations." In the 2nd international conference. New York, New York, USA: ACM Press, 1988. http://dx.doi.org/10.1145/55364.55401.
Full textHalmschlager, Andrea, László Szenthe, and János Tóth. "Invariants of kinetic differential equations." In The 7'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2003. http://dx.doi.org/10.14232/ejqtde.2003.6.14.
Full textMalinowski, Marek T. "On Bipartite Fuzzy Stochastic Differential Equations." In 8th International Conference on Fuzzy Computation Theory and Applications. SCITEPRESS - Science and Technology Publications, 2016. http://dx.doi.org/10.5220/0006079501090114.
Full textReports on the topic "Spline theory. Differential equations"
Ostashev, Vladimir, Michael Muhlestein, and D. Wilson. Extra-wide-angle parabolic equations in motionless and moving media. Engineer Research and Development Center (U.S.), September 2021. http://dx.doi.org/10.21079/11681/42043.
Full textPieper, G. W. Proceedings of the focused research program on spectral theory and boundary value problems: Volume 3, Linear differential equations and systems. Office of Scientific and Technical Information (OSTI), April 1989. http://dx.doi.org/10.2172/6023178.
Full text