Books on the topic 'Splines'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 books for your research on the topic 'Splines.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse books on a wide variety of disciplines and organise your bibliography correctly.
Lasser, Dieter. B-spline-Bezier representation of Tau-splines. Naval Postgraduate School, 1988.
Find full textUnited States. National Aeronautics and Space Administration. Scientific and Technical Information Office., ed. An algorithm for surface smoothing with rational splines. National Aeronautics and Space Administration, Scientific and Technical Information Office, 1987.
Find full textde Boor, Carl, Klaus Höllig, and Sherman Riemenschneider. Box Splines. Springer New York, 1993. http://dx.doi.org/10.1007/978-1-4757-2244-4.
Full textRegional Conference on Theory and Applications of Multivariate Splines (1987 : Howard University), ed. Multivariate splines. Society for Industrial and Applied Mathematics, 1988.
Find full textA, Vasilenko V., ed. Variational theory of splines. Kluwer Academic/Plenum Publishers, 2001.
Find full textMcMahon, John R. Knot selection for least squares Thin Plate Splines. Naval Postgraduate School, 1987.
Find full textKnott, Gary D. Interpolating Cubic Splines. Birkhäuser Boston, 2000. http://dx.doi.org/10.1007/978-1-4612-1320-8.
Full textMicula, Gheorghe, and Sanda Micula. Handbook of Splines. Springer Netherlands, 1999. http://dx.doi.org/10.1007/978-94-011-5338-6.
Full textArcangéli, Rémi, María Cruz López de Silanes, and Juan José Torrens. Multidimensional Minimizing Splines. Springer US, 2004. http://dx.doi.org/10.1007/b130045.
Full textKoenker, Roger W. Quantile smoothing splines. College of Commerce and Business Administration, University of Illinois at Urbana-Champaign, 1992.
Find full textKoenker, Roger W. Quantile smoothing splines. College of Commerce and Business Administration, University of Illinois at Urbana-Champaign, 1991.
Find full textKoenker, Roger W. Quantile smoothing splines. University of Illinois at Urbana-Champaign, 1993.
Find full textNürnberger, Günther, Jochen W. Schmidt, and Guido Walz, eds. Multivariate Approximation and Splines. Birkhäuser Basel, 1997. http://dx.doi.org/10.1007/978-3-0348-8871-4.
Full textBezhaev, Anatoly Yu, and Vladimir A. Vasilenko. Variational Theory of Splines. Springer US, 2001. http://dx.doi.org/10.1007/978-1-4757-3428-7.
Full text1948-, Nürnberger G., Schmidt Jochen W, and Walz Guido, eds. Multivariate approximation and splines. Birkhäuser, 1997.
Find full textNürnberger, Günther. Multivariate Approximation and Splines. Birkhäuser Basel, 1997.
Find full textPollock, S. Smoothing with cubic splines. London University, Queen Mary and Westfield College, Department of Economics, 1993.
Find full textMann, Stephen. A Blossoming Development of Splines. Springer International Publishing, 2006. http://dx.doi.org/10.1007/978-3-031-79516-9.
Full textBagdasarov, Sergey K. Chebyshev Splines and Kolmogorov Inequalities. Birkhäuser Basel, 1998. http://dx.doi.org/10.1007/978-3-0348-8808-0.
Full textBagdasarov, Sergey K. Chebyshev Splines and Kolmogorov Inequalities. Birkhäuser Basel, 1998.
Find full textR, Chaplin Michael, ed. Design guide for involute splines. Society for Automotive Engineers, 1994.
Find full text(Guanrong), Chen G., and Lai Ming-Jun, eds. Wavelets and splines: Athens 2005. Nashboro Press, 2006.
Find full text1939-, Dubuc Serge, and Deslauriers Gilles 1941-, eds. Spline functions and the theory of wavelets. American Mathematical Society, 1999.
Find full textPenner, Alvin. Fitting Splines to a Parametric Function. Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-12551-6.
Full textHöllig, Klaus, and Jörg Hörner. Approximation and Modeling with B-Splines. Society for Industrial and Applied Mathematics, 2013. http://dx.doi.org/10.1137/1.9781611972955.
Full textChen, Han-lin. Complex Harmonic Splines, Periodic Quasi-Wavelets. Springer Netherlands, 2000. http://dx.doi.org/10.1007/978-94-011-4251-9.
Full textArcangeli, R. Multidimensional minimizing splines: Theory and applications. Kluwer Academic, 2004.
Find full textArcangeli, R. Multidimensional minimizing splines: Theory and applications. Kluwer Academic, 2004.
Find full textHllig, Klaus. Finite element methods with B-splines. Society for Industrial and Applied Mathematics, 2003.
Find full textKorneĭchuk, Nikolaĭ Pavlovich. Extremal properties of polynomials and splines. Nova Science Publishers, 1996.
Find full textBiebler, Karl-Ernst. Splines and compartment models: An introduction. World Scientific, 2013.
Find full textWang, Yuedong. Smoothing Splines. Chapman and Hall/CRC, 2011. http://dx.doi.org/10.1201/b10954.
Full textBoor, Carl de, Klaus Höllig, and Sherman Riemenschneider. Box Splines. Springer New York, 2010.
Find full textBoor, Carl de, Klaus Höllig, and Sherman Riemenschneider. Box Splines. Springer London, Limited, 2013.
Find full textBezhaev, Anatoly Yu, and Vladimir A. Vasilenko. Variational Theory of Splines. Springer, 2001.
Find full text