Academic literature on the topic 'Spring and suspension'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Spring and suspension.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Spring and suspension"
Chang, F., and Z.-H. Lu. "Dynamic model of an air spring and integration into a vehicle dynamics model." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 222, no. 10 (October 1, 2008): 1813–25. http://dx.doi.org/10.1243/09544070jauto867.
Full textKonieczny, Łukasz, and Rafał Burdzik. "Comparison of Characteristics of the Components Used in Mechanical and Non-Conventional Automotive Suspensions." Solid State Phenomena 210 (October 2013): 26–31. http://dx.doi.org/10.4028/www.scientific.net/ssp.210.26.
Full textCheng, Zhongli, Zonghua Li, and Fanqing Kong. "Statistical Linearization of Nonlinear Stiffness in Hydropneumatic Suspension." MATEC Web of Conferences 153 (2018): 04006. http://dx.doi.org/10.1051/matecconf/201815304006.
Full textShi, Xiao Hui, Hong Li Gao, and Ming Heng Xu. "Optimization Design of Automobile Suspension Springs Based on BP." Applied Mechanics and Materials 42 (November 2010): 82–85. http://dx.doi.org/10.4028/www.scientific.net/amm.42.82.
Full textCole, D. J., and D. Cebon. "Modification of a Heavy Vehicle Suspension to Reduce Road Damage." Proceedings of the Institution of Mechanical Engineers, Part D: Journal of Automobile Engineering 209, no. 3 (July 1995): 183–94. http://dx.doi.org/10.1243/pime_proc_1995_209_203_02.
Full textРадин, Сергей, Sergey Radin, Евгений Сливинский, Evgeniy Slivinskiy, Татьяна Митина, and Tatyana Mitina. "ROD OSCILLATION INVESTIGATION OF ADAPTIVE TORSION SPRING FOR SPRING SUSPENSION OF SIX-WHEEL LOCOMOTIVE BOGIES." Bulletin of Bryansk state technical university 2016, no. 2 (June 30, 2016): 90–98. http://dx.doi.org/10.12737/20250.
Full textHAYASHI, MICHIO. "Isolating air spring suspension." NIPPON GOMU KYOKAISHI 64, no. 2 (1991): 83–90. http://dx.doi.org/10.2324/gomu.64.83.
Full textSlivinsky, Evgeny, Sergey Radin, Sergey Shubkin, and Sergey Buneev. "Modernization of spring suspension of trailed vehicles." E3S Web of Conferences 273 (2021): 07015. http://dx.doi.org/10.1051/e3sconf/202127307015.
Full textBogdevičius, Marijonas, and Raimundas Junevičius. "DYNAMIC PROCESSES OF THE RETROFITED REAR SUSPENSION OF THE VEHICLE." TRANSPORT 19, no. 6 (December 31, 2004): 262–68. http://dx.doi.org/10.3846/16484142.2004.9637985.
Full textBagaria, William J., Ron Doerfler, and Leif Roschier. "Nomograms for the design of light weight hollow helical springs." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 231, no. 23 (August 25, 2016): 4388–94. http://dx.doi.org/10.1177/0954406216665416.
Full textDissertations / Theses on the topic "Spring and suspension"
Falcone, Giovanni. "Air-spring suspension influence in fluid dynamic sloshing." Master's thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amslaurea.unibo.it/20190/.
Full textDerrick, M. C. "A parallel polymer spring truck cab suspension system." Thesis, University of Manchester, 1988. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.233119.
Full textChrist, Florian. "Adaption and evaluation of transversal leaf spring suspension design for a lightweight vehicle using Adams/Car." Thesis, KTH, Fordonsdynamik, 2015. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-180035.
Full textHoltz, Marco Wilfried. "Modelling and design of a novel air-spring for a suspension seat." Thesis, Stellenbosch : University of Stellenbosch, 2008. http://hdl.handle.net/10019.1/2781.
Full textSuspension seats are commonly used for earth moving machinery to isolate vehicle operators from vibrations transmitted to the vehicle body. To provide the required stiffness and damping for these seats, air-springs are typically used in conjunction with dampers. However, to eliminate the need for additional dampers, air-springs can be used in conjunction with auxiliary air volumes to provide both spring stiffness and damping. The damping is introduced through the flow restriction connecting the two air volumes. In this study, simplified models of an air-spring were derived followed by a model including the addition of an auxiliary volume. Subsequent to simulations, tests were performed on an experimental apparatus to validate the models. The air-spring models were shown to predict the behaviour of the experimental apparatus. The air-spring and auxiliary volume model followed the trend predicted by literature but showed approximately 27 % lower transmissibility amplitude and 21 % lower system natural frequency than obtained by tests when using large flow restriction diameters. This inaccuracy was assumed to be introduced by the simplified mass transfer equations defining the flow restriction between air-spring and auxiliary volume. The models however showed correlation when the auxiliary volume size was decreased by two thirds of the volume actually used for the experiment. This design of a prototype air-spring and auxiliary volume is presented for a suspension seat used in articulated or rigid frame dump trucks. The goal of this study was to design a suspension seat for this application and to obtain a SEAT value below 1,1. The design was optimised by varying auxiliary volume size, flow diameter and load. A SEAT value of less than 0,9 was achieved.
Klavebäck, Erik. "Improved Weight Estimation for Vehicles with Air Suspension." Thesis, Uppsala universitet, Avdelningen för systemteknik, 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-383247.
Full textKOTNI, DEEPAK. "A CAD/CAE DRIVEN AUTOMATED DESIGN OPTIMIZATION STUDY OF AUTOMOTIVE REAR SUSPENSION." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1130587319.
Full textHidén, Teodor. "Low energy-cpnsuming load sensing truck cab suspension." Thesis, KTH, Skolan för industriell teknik och management (ITM), 2019. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-266943.
Full textI utvecklingen av el- och batteridrivna lastbilar är en stor del av utmaning att minimera energianvändningen hos lastbilens alla olika delsystem, där ibland hyttfjädringen. Dagens lastkännande (aktiva) fjädringssystem på lastbilshytter drivs med tryckluft och arbetar kontinuerligt med att hålla lastbilshytten på rätt höjd. Tryckluften kommer ifrån en stor och tung kompressor som ständigt arbetar för att komprimera luft till lastbilens alla olika delsystem. Alternativet till den aktiva lastkännande hyttfjädringen är att använda en icke lastkännande (passiv) fjädring. Detta begränsar dock lastbilens komfort och utseende, men förbrukar heller ingen energi. Målet med detta examensarbete var att finna en fjädringslösning som både är lastkännande och energieffektiv. För att hitta en lämplig lastkännande lösning gjordes en grundlig undersökning av hyttfjädringslösningar på andra tunga fordon, samt olika fjädringssystem överlag. Det visade sig att användandet av hydraulik ger en tillfredsställande justerbarhet, utan att förbruka någon energi när systemet är i vila (inte aktivt justerar). Systemet skulle även kunna göras mycket kompakt. Det är lätt att anpassa dagens befintliga fjädringskomponenter för att kunna fungera ihop med justerbara hydraulcylindrar, och fjädringens hydraulsystem skulle kunna drivas ihop med övriga hydraulsystem på lastbilen.
Chaudhary, Sanjeev. "Ride and roll performance analysis of a vehicle with spring-loaded interconnected hydro-pneumatic suspension." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0004/MQ39478.pdf.
Full textSteward, Victoria. "Modeling of a folded spring supporting MEMS gyroscope." Link to electronic thesis, 2003. http://www.wpi.edu/Pubs/ETD/Available/etd-1007103-133256/.
Full textKat, Cor-Jacques. "Suspension forces on a tri-axle air suspended semi-trailer." Diss., Pretoria : [s.n.], 2009. http://upetd.up.ac.za/thesis/available/etd-06242009-153546/.
Full textBooks on the topic "Spring and suspension"
Evstaf'ev, Andrey, Mihail Izvarin, and Aleksandr Maznev. Dynamics of electric rolling stock. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1013692.
Full textEvstaf'ev, Andrey, and Aleksandr Maznev. Design and dynamics of electric rolling stock. ru: INFRA-M Academic Publishing LLC., 2021. http://dx.doi.org/10.12737/1014666.
Full textAird, Forbes. Circle track suspension. Osceola, WI, USA: Motorbooks International, 1994.
Find full textDixon, John C. Tyres, suspension, and handling. Cambridge [England]: Cambridge University Press, 1991.
Find full textTruck & Bus Meeting & Exposition (1989 Charlotte, N.C.). Advanced truck suspensions. Warrendale, PA: Society of Automotive Engineers, 1989.
Find full textDixon, John C. Tires, suspension, and handling. 2nd ed. Warrendale, PA: Society of Automotive Engineers, 1996.
Find full textBernsau, Tim. 4 wheel's suspension, tire & wheel. Los Angeles: Petersen Pub. Co., 1999.
Find full textMatschinsky, Wolfgang. Road vehicle suspensions. London, UK: Professional Engineering Pub., 2000.
Find full textKnowles, Don. Automotive suspension & steering systems. 5th ed. Australia: Delmar, Cengage learning, 2011.
Find full textBook chapters on the topic "Spring and suspension"
Bauer, Wolfgang. "Spring and Damping Characteristics of Hydropneumatic Suspension Systems." In Hydropneumatic Suspension Systems, 19–66. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-15147-7_2.
Full textSavoskin, Anatoly, and Stanislav Vlasevskii. "Aspects of Railway Vehicles Vibrations with Nonlinear Spring Suspension Characteristics." In VIII International Scientific Siberian Transport Forum, 109–16. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-37916-2_12.
Full textZhao, Jing-Shan, Hong-Wei Song, Yun Zhang, and Xiang Liu. "Design of Oblique Leaf-Spring Suspension Mechanism for Heavy Vehicles." In Lecture Notes in Mechanical Engineering, 327–49. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4477-4_24.
Full textSarath, M. V., Swaroop S. Gharde, Odelu Ojjela, and Balasubramanian Kandasubramanian. "Fiber-Reinforced Composites for Restituting Automobile Leaf Spring Suspension System." In Materials Horizons: From Nature to Nanomaterials, 67–105. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-33-4550-8_4.
Full textTang, Xinpeng, and Kun Liu. "Simulation of Leaf Spring Balanced Suspension Based on Virtual Test-Rig." In Lecture Notes in Electrical Engineering, 135–43. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012. http://dx.doi.org/10.1007/978-3-642-33835-9_13.
Full textSavoskin, A. N., and A. P. Vasilev. "Mechano-Mathematical Models of Railway Rolling Stock Spring Suspension Elastic–Friction Elements." In Lecture Notes in Mechanical Engineering, 703–10. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-54814-8_81.
Full textMartínez-García, Edgar, and Rafael Torres-Córdoba. "4WD Skid-Steer Trajectory Control of a Rover with Spring-Based Suspension Analysis." In Intelligent Robotics and Applications, 453–64. Berlin, Heidelberg: Springer Berlin Heidelberg, 2010. http://dx.doi.org/10.1007/978-3-642-16584-9_44.
Full textMashino, Masahiro, Etsunori Fujita, Shigeyuki Kojima, Yumi Ogura, and Shigehiko Kaneko. "Development of a Suspension Seat Using a Magneto-Spring and Free Play Damper." In Vibration Engineering for a Sustainable Future, 153–59. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-47618-2_19.
Full textKumbhalkar, M. A., D. V. Bhope, and A. V. Vanalkar. "Finite Element Analysis of Rail Vehicle Suspension Spring for Its Fatigue Life Improvement." In Advanced Manufacturing and Materials Science, 39–53. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76276-0_5.
Full textGorbunov, Mykola, Serhii Kara, Olegas Lunys, and Gediminas Vaičiūnas. "Improving the Dynamics of Bogies of Railway Freight Cars by the Spring Suspension Enhancement." In TRANSBALTICA XI: Transportation Science and Technology, 220–24. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-38666-5_23.
Full textConference papers on the topic "Spring and suspension"
Poletkin, Kirill. "A Micromachined Contactless Suspension With Zero Spring Constant." In ASME 2012 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/imece2012-86465.
Full textBraghin, Francesco, Edoardo Sabbioni, and Francesco Annoni. "Design of a Leaf Spring Suspension for an FSAE Vehicle." In ASME 2007 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. ASMEDC, 2007. http://dx.doi.org/10.1115/detc2007-35474.
Full textOledzki, Wieslaw J. "Progressive Rate Steel Vehicle Suspension." In ASME 2006 International Mechanical Engineering Congress and Exposition. ASMEDC, 2006. http://dx.doi.org/10.1115/imece2006-13093.
Full textMurai, Teruyuki, Seizo Takamuku, and Nobuharu Takenoshita. "High Sag Resistance Spring Wire for Automotive Suspension." In SAE International Congress and Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1985. http://dx.doi.org/10.4271/850059.
Full textFujita, Etsunori, Noritoshi Nakagawa, Yumi Ogura, and Shigeyuki Kojima. "Vibration Characteristics of Vertical Suspension Using Magneto-Spring." In Noise & Vibration Conference & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1999. http://dx.doi.org/10.4271/1999-01-1781.
Full textHueck, Manfred, Werner Hutter, and Walter Schuetz. "A New High Speed Suspension Spring Test Machine." In International Congress & Exposition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1990. http://dx.doi.org/10.4271/900663.
Full textSivakumar, V. "Durability Enhancement of Spring Seat in Bogie Suspension." In 8th SAEINDIA International Mobility Conference & Exposition and Commercial Vehicle Engineering Congress 2013 (SIMCOMVEC). 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2013. http://dx.doi.org/10.4271/2013-01-2848.
Full textFerraresi, Carlo, Walter Franco, Giuseppe Quaglia, Andrea Morello, and Domenico Pierucci. "Pneumatic Vehicular Suspension With a Controllable Stiffness Spring." In ASME 8th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2006. http://dx.doi.org/10.1115/esda2006-95400.
Full textElmoselhy, Salah A. "Design and Shape Optimization of Hybrid Micro-Composite E-Springs for Vehicle Suspension Systems." In ASME 2006 International Manufacturing Science and Engineering Conference. ASMEDC, 2006. http://dx.doi.org/10.1115/msec2006-21110.
Full textGonçalves, V. R. M., L. C. F. Canale, V. Leskovšek, and B. Podgornik. "Influence of Cryogenic Treatment on the Fracture Toughness of Conventional and Super Clean Spring Steels." In 9th SAE Brasil International Suspension and Trailer Colloquium & Engneering Exhibition. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 2016. http://dx.doi.org/10.4271/2016-36-0064.
Full textReports on the topic "Spring and suspension"
Mechanic struck and killed by over-pressurized suspension air spring on tractor trailer - Kentucky. U.S. Department of Health and Human Services, Public Health Service, Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, March 2018. http://dx.doi.org/10.26616/nioshsface16ky039.
Full text