Academic literature on the topic 'Stabilité Lipschitz'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stabilité Lipschitz.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Stabilité Lipschitz"

1

Grunert, Katrin, and Matthew Tandy. "Lipschitz stability for the Hunter–Saxton equation." Journal of Hyperbolic Differential Equations 19, no. 02 (2022): 275–310. http://dx.doi.org/10.1142/s0219891622500072.

Full text
Abstract:
We study Lipschitz stability in time for [Formula: see text]-dissipative solutions to the Hunter–Saxton equation, where [Formula: see text] is a constant. We define metrics in both Lagrangian and Eulerian coordinates, and establish Lipschitz stability for those metrics.
APA, Harvard, Vancouver, ISO, and other styles
2

Soliman, A. A. "On eventual stability of impulsive systems of differential equations." International Journal of Mathematics and Mathematical Sciences 27, no. 8 (2001): 485–94. http://dx.doi.org/10.1155/s0161171201005622.

Full text
Abstract:
The notions of Lipschitz stability of impulsive systems of differential equations are extended and the notions of eventual stability are introduced. New notions called eventual and eventual Lipschitz stability. We give some criteria and results.
APA, Harvard, Vancouver, ISO, and other styles
3

Fu, Yu Li. "On Lipschitz stability for F.D.E." Pacific Journal of Mathematics 151, no. 2 (1991): 229–35. http://dx.doi.org/10.2140/pjm.1991.151.229.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pilyugin, Sergei Yu, and Sergey Tikhomirov. "Lipschitz shadowing implies structural stability." Nonlinearity 23, no. 10 (2010): 2509–15. http://dx.doi.org/10.1088/0951-7715/23/10/009.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Jiang, Zuohai, and Shicheng Xu. "Stability of Pure Nilpotent Structures on Collapsed Manifolds." International Mathematics Research Notices 2020, no. 24 (2019): 10317–45. http://dx.doi.org/10.1093/imrn/rnz023.

Full text
Abstract:
Abstract The goal of this paper is to study the stability of pure nilpotent structures on an $n$-manifold for different collapsed metrics. We prove that if two metrics with bounded sectional curvature are $L_0$-bi-Lipschitz equivalent and sufficient collapsed (depending on $L_0$ and $n$), then up to a diffeomorphism, the underlying nilpotent Killing structures coincide with each other, or one is embedded into another as a subsheaf. It improves Cheeger–Fukaya–Gromov’s local compatibility of pure nilpotent Killing structures for one collapsed metric to two Lipschitz equivalent metrics. As an app
APA, Harvard, Vancouver, ISO, and other styles
6

Chu, Chin-Ku, Myung-Sun Kim, and Keon-Hee Lee. "Lipschitz stability and Lyapunov stability in dynamical systems." Nonlinear Analysis: Theory, Methods & Applications 19, no. 10 (1992): 901–9. http://dx.doi.org/10.1016/0362-546x(92)90102-k.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Martynyuk, A. A. "On integral stability and Lipschitz stability of motion." Ukrainian Mathematical Journal 49, no. 1 (1997): 84–92. http://dx.doi.org/10.1007/bf02486618.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Gracia, Juan-Miguel, and Francisco E. Velasco. "Lipschitz stability of controlled invariant subspaces." Linear Algebra and its Applications 434, no. 4 (2011): 1137–62. http://dx.doi.org/10.1016/j.laa.2010.10.024.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chu, Chin-Ku, and Keon-Hee Lee. "Embedding of Lipschitz stability in flows." Nonlinear Analysis: Theory, Methods & Applications 26, no. 11 (1996): 1749–52. http://dx.doi.org/10.1016/0362-546x(95)00014-m.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Soliman, A. A. "Lipschitz stability with perturbing liapunov functionals." Applied Mathematics Letters 17, no. 8 (2004): 939–44. http://dx.doi.org/10.1016/j.aml.2003.10.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Stabilité Lipschitz"

1

Neacșu, Ana-Antonia. "Robust Deep learning methods inspired by signal processing algorithms." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPAST212.

Full text
Abstract:
Comprendre l'importance des stratégies de défense contre les attaques adverses est devenu primordial pour garantir la fiabilité et la résilience des réseaux de neurones. Alors que les mesures de sécurité traditionnelles se focalisent sur la protection des données et des logiciels contre les menaces externes, le défi unique posé par les attaques adverses réside dans leur capacité à exploiter les vulnérabilités inhérentes aux algorithmes d'apprentissage automatique.Dans la première partie de la thèse, nous proposons de nouvelles stratégies d'apprentissage contraint qui garantissent la robustesse
APA, Harvard, Vancouver, ISO, and other styles
2

Burnet, Steeve. "Méthodes de résolution d’inclusions variationnelles sous hypothèses de stabilité." Thesis, Antilles-Guyane, 2012. http://www.theses.fr/2012AGUY0594/document.

Full text
Abstract:
Dans cette thèse, nous nous intéressons à des inclusions de la forme 0∈ f( x) + F(x), où f est une application univoque et F est une application multivoque à graphe fermé. Ces dernières années, diverses méthodes de résolutions d'inclusions de ce type ont été développées par les chercheurs et, après un bref rappel sur quelques notions d'analyse (univoque et multivoque) nous en présentons quelques unes utilisant l'hypothèse de régularité métrique sur l'application multivoque. Dans la suite de notre travail, plutôt que d'utiliser cette hypothèse de régularité métrique, nous lui préférons des hypo
APA, Harvard, Vancouver, ISO, and other styles
3

Gupta, Kavya. "Stability Quantification of Neural Networks." Electronic Thesis or Diss., université Paris-Saclay, 2023. http://www.theses.fr/2023UPAST004.

Full text
Abstract:
Les réseaux de neurones artificiels sont au cœur des avancées récentes en Intelligence Artificielle. L'un des principaux défis auxquels on est aujourd'hui confronté, notamment au sein d'entreprises comme Thales concevant des systèmes industriels avancés, est d'assurer la sécurité des nouvelles générations de produits utilisant cette technologie. En 2013, une observation clé a révélé que les réseaux de neurones sont sensibles à des perturbations adverses. Ceci soulève de sérieuses inquiétudes quant à leur applicabilité dans des environnements où la sécurité est critique. Au cours des dernières
APA, Harvard, Vancouver, ISO, and other styles
4

Gasmi, Noussaiba. "Observation et commande d'une classe de systèmes non linéaires temps discret." Electronic Thesis or Diss., Université de Lorraine, 2018. http://www.theses.fr/2018LORR0177.

Full text
Abstract:
L’analyse et la synthèse des systèmes dynamiques ont connu un développement important au cours des dernières décennies comme l’atteste le nombre considérable des travaux publiés dans ce domaine, et continuent d’être un axe de recherche régulièrement exploré. Si la plupart des travaux concernent les systèmes linéaires et non linéaires temps continu, peu de résultats ont étaient établis dans le cas temps discret. Les travaux de cette thèse portent sur l’observation et la commande d’une classe de systèmes non linéaires à temps discret. Dans un premier temps, le problème de synthèse d’observateur
APA, Harvard, Vancouver, ISO, and other styles
5

Gasmi, Noussaiba. "Observation et commande d'une classe de systèmes non linéaires temps discret." Thesis, Université de Lorraine, 2018. http://www.theses.fr/2018LORR0177/document.

Full text
Abstract:
L’analyse et la synthèse des systèmes dynamiques ont connu un développement important au cours des dernières décennies comme l’atteste le nombre considérable des travaux publiés dans ce domaine, et continuent d’être un axe de recherche régulièrement exploré. Si la plupart des travaux concernent les systèmes linéaires et non linéaires temps continu, peu de résultats ont étaient établis dans le cas temps discret. Les travaux de cette thèse portent sur l’observation et la commande d’une classe de systèmes non linéaires à temps discret. Dans un premier temps, le problème de synthèse d’observateur
APA, Harvard, Vancouver, ISO, and other styles
6

Malanowski, Kazimierz, and Fredi Tröltzsch. "Lipschitz Stability of Solutions to Parametric Optimal Control Problems for Parabolic Equations." Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801001.

Full text
Abstract:
A class of parametric optimal control problems for semilinear parabolic equations is considered. Using recent regularity results for solutions of such equations, sufficient conditions are derived under which the solutions to optimal control problems are locally Lipschitz continuous functions of the parameter in the L1-norm. It is shown that these conditions are also necessary, provided that the dependence of data on the parameter is sufficiently strong.
APA, Harvard, Vancouver, ISO, and other styles
7

Tröltzsch, F. "Lipschitz stability of solutions to linear-quadratic parabolic control problems with respect to perturbations." Universitätsbibliothek Chemnitz, 1998. http://nbn-resolving.de/urn:nbn:de:bsz:ch1-199801229.

Full text
Abstract:
We consider a class of control problems governed by a linear parabolic initial-boundary value problem with linear-quadratic objective and pointwise constraints on the control. The control system contains different types of perturbations. They appear in the linear part of the objective functional, in the right hand side of the equation, in its boundary condition, and in the initial value. Making use of parabolic regularity in the whole scale of $L^p$ the known Lipschitz stability in the $L^2$-norm is improved to the supremum-norm.
APA, Harvard, Vancouver, ISO, and other styles
8

John, Dominik [Verfasser]. "Uniqueness and Stability near Stationary Solutions for the Thin-Film Equation in Multiple Space Dimensions with Small Initial Lipschitz Perturbations / Dominik John." Bonn : Universitäts- und Landesbibliothek Bonn, 2013. http://d-nb.info/104527626X/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Charabati, Mohamad. "Le problème de Dirichlet pour les équations de Monge-Ampère complexes." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30001/document.

Full text
Abstract:
Cette thèse est consacrée à l'étude de la régularité des solutions des équations de Monge-Ampère complexes ainsi que des équations hessiennes complexes dans un domaine borné de Cn. Dans le premier chapitre, on donne des rappels sur la théorie du pluripotentiel. Dans le deuxième chapitre, on étudie le module de continuité des solutions du problème de Dirichlet pour les équations de Monge-Ampère lorsque le second membre est une mesure à densité continue par rapport à la mesure de Lebesgue dans un domaine strictement hyperconvexe lipschitzien. Dans le troisième chapitre, on prouve la continuité h
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Stabilité Lipschitz"

1

Dontchev, Asen L. "Lipschitz Stability in Optimization." In Lectures on Variational Analysis. Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-79911-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Kelei. "Uniqueness, Stability and Uniform Lipschitz Estimates." In Free Boundary Problems and Asymptotic Behavior of Singularly Perturbed Partial Differential Equations. Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-33696-6_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dontchev, A. L. "Characterizations of Lipschitz Stability in Optimization." In Recent Developments in Well-Posed Variational Problems. Springer Netherlands, 1995. http://dx.doi.org/10.1007/978-94-015-8472-2_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Pilyugin, Sergei Yu, and Kazuhiro Sakai. "Lipschitz and Hölder Shadowing and Structural Stability." In Lecture Notes in Mathematics. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-65184-2_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Guo, Shuli, and Lina Han. "Lipschitz Stability Analysis on a Type of Nonlinear Perturbed System." In Stability and Control of Nonlinear Time-varying Systems. Springer Singapore, 2018. http://dx.doi.org/10.1007/978-981-10-8908-4_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Felgenhauer, Ursula. "Lipschitz Stability of Broken Extremals in Bang-Bang Control Problems." In Large-Scale Scientific Computing. Springer Berlin Heidelberg, 2008. http://dx.doi.org/10.1007/978-3-540-78827-0_35.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Fu, Chaojin, and Ailong Wu. "Global Exponential Stability of Delayed Neural Networks with Non-lipschitz Neuron Activations and Impulses." In Advances in Computation and Intelligence. Springer Berlin Heidelberg, 2009. http://dx.doi.org/10.1007/978-3-642-04843-2_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Di Ferdinando, Mario, Pierdomenico Pepe, and Emilia Fridman. "Practical Stability Preservation Under Sampling, Actuation Disturbance and Measurement Noise, for Globally Lipschitz Time-Delay Systems." In Advances in Delays and Dynamics. Springer International Publishing, 2022. http://dx.doi.org/10.1007/978-3-030-89014-8_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Hashimoto, Hiroya. "Approximation and Stability of Solutions of SDEs Driven by a Symmetric α Stable Process with Non-Lipschitz Coefficients." In Lecture Notes in Mathematics. Springer International Publishing, 2013. http://dx.doi.org/10.1007/978-3-319-00321-4_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

"Stability in the Lipschitz norms." In Functional Equations and Inequalities in Several Variables. WORLD SCIENTIFIC, 2002. http://dx.doi.org/10.1142/9789812778116_0025.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Stabilité Lipschitz"

1

Doostmohammadian, Mohammad Reza, and Hassan Sayyaadi. "Finite-Time Consensus in Undirected/Directed Network Topologies." In ASME 2010 10th Biennial Conference on Engineering Systems Design and Analysis. ASMEDC, 2010. http://dx.doi.org/10.1115/esda2010-24012.

Full text
Abstract:
The main contribution of this paper is to introduce a novel non-Lipschitz protocol that guarantees consensus in finite-time domain. Its convergence in networks with both unidirectional and bidirectional links is investigated via Lyapunov Theorem approach. It is also proved that final agreement value is equal to average of agents’ states for the bidirectional communication case. In addition effects of communication time-delay on stability are assessed and two other continuous Lipschitz protocols are also analyzed.
APA, Harvard, Vancouver, ISO, and other styles
2

Kokolakis, Nick-Marios T., Kyriakos G. Vamvoudakis, and Wassim M. Haddad. "Fixed-Time Learning for Optimal Feedback Control." In ASME 2023 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. American Society of Mechanical Engineers, 2023. http://dx.doi.org/10.1115/detc2023-117007.

Full text
Abstract:
Abstract In this paper, we introduce the problem of fixed-time optimal stabilization to construct feedback controllers that guarantee closed-loop system fixed-time stability while optimizing a given performance measure. Specifically, fixed-time stability of the closed-loop system is established via a Lyapunov function satisfying a differential inequality while simultaneously serving as a solution to the steady-state Hamilton-Jacobi-Bellman equation ensuring optimality. Given that the Hamilton-Jacobi-Bellman equation is generally difficult to solve, we develop a critic-only reinforcement learni
APA, Harvard, Vancouver, ISO, and other styles
3

Puerta, Ferran, and Xavier Puerta. "On the Lipschitz stability of (A,B)-invariant subspaces." In 2009 17th Mediterranean Conference on Control and Automation (MED). IEEE, 2009. http://dx.doi.org/10.1109/med.2009.5164649.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

BELLASSOUED, M., and M. YAMAMOTO. "LIPSCHITZ STABILITY IN AN INVERSE HYPERBOLIC PROBLEM BY BOUNDARY OBSERVATIONS." In Proceedings of the 5th International ISAAC Congress. WORLD SCIENTIFIC, 2009. http://dx.doi.org/10.1142/9789812835635_0130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Ozcan, Neyir. "New results for global stability of neutral-type delayed neural networks." In The 11th International Conference on Integrated Modeling and Analysis in Applied Control and Automation. CAL-TEK srl, 2018. http://dx.doi.org/10.46354/i3m.2018.imaaca.004.

Full text
Abstract:
"This paper deals with the stability analysis of the class of neutral-type neural networks with constant time delay. By using a suitable Lyapunov functional, some delay independent sufficient conditions are derived, which ensure the global asymptotic stability of the equilibrium point for this this class of neutral-type neural networks with time delays with respect to the Lipschitz activation functions. The presented stability results rely on checking some certain properties of matrices. Therefore, it is easy to verify the validation of the constraint conditions on the network parameters of ne
APA, Harvard, Vancouver, ISO, and other styles
6

Mukherjee, Arunima, and Aparajita Sengupta. "Input tracking of Lipschitz nonlinear systems using input-state-stability approach." In 2016 2nd International Conference on Control, Instrumentation, Energy & Communication (CIEC). IEEE, 2016. http://dx.doi.org/10.1109/ciec.2016.7513814.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hristova, S., A. Dobreva, and K. Ivanova. "Lipschitz stability of differential equations with supremum and non-instantaneous impulses." In SEVENTH INTERNATIONAL CONFERENCE ON NEW TRENDS IN THE APPLICATIONS OF DIFFERENTIAL EQUATIONS IN SCIENCES (NTADES 2020). AIP Publishing, 2021. http://dx.doi.org/10.1063/5.0040099.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Barucq, H., H. Calandra, M. V. De Hoop, F. Faucher, and J. Shi. "Full waveform inversion for elastic medium using quantitative Lipschitz stability estimates." In 7th EAGE Saint Petersburg International Conference and Exhibition. EAGE Publications BV, 2016. http://dx.doi.org/10.3997/2214-4609.201600240.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Yuan, Zhecheng, Guozheng Ma, Yao Mu, et al. "Don’t Touch What Matters: Task-Aware Lipschitz Data Augmentation for Visual Reinforcement Learning." In Thirty-First International Joint Conference on Artificial Intelligence {IJCAI-22}. International Joint Conferences on Artificial Intelligence Organization, 2022. http://dx.doi.org/10.24963/ijcai.2022/514.

Full text
Abstract:
One of the key challenges in visual Reinforcement Learning (RL) is to learn policies that can generalize to unseen environments. Recently, data augmentation techniques aiming at enhancing data diversity have demonstrated proven performance in improving the generalization ability of learned policies. However, due to the sensitivity of RL training, naively applying data augmentation, which transforms each pixel in a task-agnostic manner, may suffer from instability and damage the sample efficiency, thus further exacerbating the generalization performance. At the heart of this phenomenon is the d
APA, Harvard, Vancouver, ISO, and other styles
10

Wang, Yan, and David M. Bevly. "Robust Observer Design for Lipschitz Nonlinear Systems With Parametric Uncertainty." In ASME 2013 Dynamic Systems and Control Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/dscc2013-4104.

Full text
Abstract:
This paper discusses optimal and robust observer design for the Lipschitz nonlinear systems. The stability analysis for the Lure problem is first reviewed. Then, a two-DOF nonlinear observer is proposed so that the observer error dynamic model can be transformed to an equivalent Lure system. In this framework, the difference of the nonlinear parts in the vector fields of the original system and observer is modeled as a nonlinear memoryless block that is covered by a multivariable sector condition or an equivalent semi-algebraic set defined by a quadratic polynomial inequality. Then, a sufficie
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!