Academic literature on the topic 'Stability and asymptotics of difference equations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stability and asymptotics of difference equations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Stability and asymptotics of difference equations"

1

Stević, Stevo. "Global stability and asymptotics of some classes of rational difference equations." Journal of Mathematical Analysis and Applications 316, no. 1 (2006): 60–68. http://dx.doi.org/10.1016/j.jmaa.2005.04.077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kovácsvölgyi, I. "The asymptotic stability of difference equations." Applied Mathematics Letters 13, no. 1 (2000): 1–6. http://dx.doi.org/10.1016/s0893-9659(99)00136-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Medina, Rigoberto. "Stability and asymptotic behavior of difference equations." Journal of Computational and Applied Mathematics 80, no. 1 (1997): 17–30. http://dx.doi.org/10.1016/s0377-0427(96)00151-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Peng, Yuehui. "Global asymptotic stability for nonlinear difference equations." Applied Mathematics and Computation 182, no. 1 (2006): 67–72. http://dx.doi.org/10.1016/j.amc.2006.03.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Wu, Guo–Cheng, and Dumitru Baleanu. "Stability analysis of impulsive fractional difference equations." Fractional Calculus and Applied Analysis 21, no. 2 (2018): 354–75. http://dx.doi.org/10.1515/fca-2018-0021.

Full text
Abstract:
AbstractWe revisit motivation of the fractional difference equations and some recent applications to image encryption. Then stability of impulsive fractional difference equations is investigated in this paper. The fractional sum equation is considered and impulsive effects are introduced into discrete fractional calculus. A class of impulsive fractional difference equations are proposed. A discrete comparison principle is given and asymptotic stability of nonlinear fractional difference equation are discussed. Finally, an impulsive Mittag–Leffler stability is defined. The numerical result is provided to support the analysis.
APA, Harvard, Vancouver, ISO, and other styles
6

Ardjouni, Abdelouaheb, and Ahcene Djoudi. "Asymptotic stability in totally nonlinear neutral difference equations." Proyecciones (Antofagasta) 34, no. 3 (2015): 255–76. http://dx.doi.org/10.4067/s0716-09172015000300005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Xianyi, and Deming Zhu. "Global asymptotic stability for two recursive difference equations." Applied Mathematics and Computation 150, no. 2 (2004): 481–92. http://dx.doi.org/10.1016/s0096-3003(03)00286-8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Tian, Chuanjun, and Jihong Zhang. "Exponential asymptotic stability of delay partial difference equations." Computers & Mathematics with Applications 47, no. 2-3 (2004): 345–52. http://dx.doi.org/10.1016/s0898-1221(04)90029-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Chen, Fulai, and Zhigang Liu. "Asymptotic Stability Results for Nonlinear Fractional Difference Equations." Journal of Applied Mathematics 2012 (2012): 1–14. http://dx.doi.org/10.1155/2012/879657.

Full text
Abstract:
We present some results for the asymptotic stability of solutions for nonlinear fractional difference equations involvingRiemann-Liouville-likedifference operator. The results are obtained by using Krasnoselskii's fixed point theorem and discrete Arzela-Ascoli's theorem. Three examples are also provided to illustrate our main results.
APA, Harvard, Vancouver, ISO, and other styles
10

Chan, D. M., E. R. Chang, M. Dehghan, C. M. Kent, R. Mazrooei-Sebdani, and H. Sedaghat. "Asymptotic stability for difference equations with decreasing arguments." Journal of Difference Equations and Applications 12, no. 2 (2006): 109–23. http://dx.doi.org/10.1080/10236190500438357.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Stability and asymptotics of difference equations"

1

Jánský, Jiří. "Delay Difference Equations and Their Applications." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2010. http://www.nusl.cz/ntk/nusl-233892.

Full text
Abstract:
Disertační práce se zabývá vyšetřováním kvalitativních vlastností diferenčních rovnic se zpožděním, které vznikly diskretizací příslušných diferenciálních rovnic se zpožděním pomocí tzv. $\Theta$-metody. Cílem je analyzovat asymptotické vlastnosti numerického řešení těchto rovnic a formulovat jeho horní odhady. Studována je rovněž stabilita vybraných numerických diskretizací. Práce obsahuje také srovnání s dosud známými výsledky a několik příkladů ilustrujících hlavní dosažené výsledky.
APA, Harvard, Vancouver, ISO, and other styles
2

Kisela, Tomáš. "Basics of Qualitative Theory of Linear Fractional Difference Equations." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-234025.

Full text
Abstract:
Tato doktorská práce se zabývá zlomkovým kalkulem na diskrétních množinách, přesněji v rámci takzvaného (q,h)-kalkulu a jeho speciálního případu h-kalkulu. Nejprve jsou položeny základy teorie lineárních zlomkových diferenčních rovnic v (q,h)-kalkulu. Jsou diskutovány některé jejich základní vlastnosti, jako např. existence, jednoznačnost a struktura řešení, a je zavedena diskrétní analogie Mittag-Lefflerovy funkce jako vlastní funkce operátoru zlomkové diference. Dále je v rámci h-kalkulu provedena kvalitativní analýza skalární a vektorové testovací zlomkové diferenční rovnice. Výsledky analýzy stability a asymptotických vlastností umožňují vymezit souvislosti s jinými matematickými disciplínami, např. spojitým zlomkovým kalkulem, Volterrovými diferenčními rovnicemi a numerickou analýzou. Nakonec je nastíněno možné rozšíření zlomkového kalkulu na obecnější časové škály.
APA, Harvard, Vancouver, ISO, and other styles
3

Dvořáková, Stanislava. "The Qualitative and Numerical Analysis of Nonlinear Delay Differential Equations." Doctoral thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-233952.

Full text
Abstract:
Disertační práce formuluje asymptotické odhady řešení tzv. sublineárních a superlineárních diferenciálních rovnic se zpožděním. V těchto odhadech vystupuje řešení pomocných funkcionálních rovnic a nerovností. Dále práce pojednává o kvalitativních vlastnostech diferenčních rovnic se zpožděním, které vznikly diskretizací studovaných diferenciálních rovnic. Pozornost je věnována souvislostem asympotického chování řešení rovnic ve spojitém a diskrétním tvaru, a to v obecném i v konkrétních případech. Studována je rovněž stabilita numerické diskretizace vycházející z $\theta$-metody. Práce obsahuje několik příkladů ilustrujících dosažené výsledky.
APA, Harvard, Vancouver, ISO, and other styles
4

Clinger, Richard A. "Stability Analysis of Systems of Difference Equations." VCU Scholars Compass, 2007. http://hdl.handle.net/10156/1318.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Smith, Dale T. "Expotential decay of resolvents of banded matrices and asymptotics of solutions of linear difference equations." Diss., Georgia Institute of Technology, 1990. http://hdl.handle.net/1853/29218.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Bonomo, Wescley. "Sistemas dinâmicos discretos: estabilidade, comportamento assintótico e sincronização." Universidade de São Paulo, 2008. http://www.teses.usp.br/teses/disponiveis/55/55135/tde-01072008-164134/.

Full text
Abstract:
Este trabalho é em parte baseado no livro The Stability and Control of Discrete Processes de Joseph P. LaSalle. Nós estudamos equações como x(n+1) = T(x(n)), onde T : \' R POT. m\' \' SETA\' \'R POT. m\' é uma aplicação contínua, com o sistema dinâmico associado \'PI\' (n,x) := \' T POT. n\' (x). Nós fornecemos condições suficientes para a estabilidade de equilíbrios usando o método direto de Liapunov. Também consideramos sistemas discretos da forma x(n+1)=T(n, x(n),\'lâmbda\' ) dependendo de uma parâmetro \' lâmbda\' e apresentamos resultados obtendo estimativas de atratores. Finalmente, nós apresentamos algumas simulações de sistemas acoplados como uma aplicação em sistemas de comunicação<br>This work is in part based on the book The Stability and Control of Discrete Processes of Joseph P. LaSalle. We studing equations as x(n+1) = T(x(n)), where T : \' R POT.m\' \' ARROW\' \' \' R POT.m\' is continuous transformation, with the associated dynamic system \'PI\' (n,x) := \' T POT.n\' (x). We provide suddicient conditions for stability of equilibria, using Liapunov direct method. We also consider nonautonomous discrete systems of the form x(n + 1) = T(n, x(n), \' lâmbda\') depending on the parameter \'lâmbda\' and present results obtaining uniform estimatives of attractors. We finally we present some simulations on synchronization of coupled systems as an application on communication systems
APA, Harvard, Vancouver, ISO, and other styles
7

Luís, Rafael Domingos Garanito. "Nonautonomous difference equations with applications." Doctoral thesis, Universidade da Madeira, 2011. http://hdl.handle.net/10400.13/206.

Full text
Abstract:
This work is divided in two parts. In the first part we develop the theory of discrete nonautonomous dynamical systems. In particular, we investigate skew-product dynamical system, periodicity, stability, center manifold, and bifurcation. In the second part we present some concrete models that are used in ecology/biology and economics. In addition to developing the mathematical theory of these models, we use simulations to construct graphs that illustrate and describe the dynamics of the models. One of the main contributions of this dissertation is the study of the stability of some concrete nonlinear maps using the center manifold theory. Moreover, the second contribution is the study of bifurcation, and in particular the construction of bifurcation diagrams in the parameter space of the autonomous Ricker competition model. Since the dynamics of the Ricker competition model is similar to the logistic competition model, we believe that there exists a certain class of two-dimensional maps with which we can generalize our results. Finally, using the Brouwer’s fixed point theorem and the construction of a compact invariant and convex subset of the space, we present a proof of the existence of a positive periodic solution of the nonautonomous Ricker competition model.<br>Henrique Oliveira and Saber Elaydi
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Xing. "Rigorous exponential asymptotics for a nonlinear third order difference equation." Connect to this title online, 2004. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1101927781.

Full text
Abstract:
Thesis (Ph. D.)--Ohio State University, 2004.<br>Title from first page of PDF file. Document formatted into pages; contains viii, 140 p.; also includes graphics. Includes bibliographical references (p. 139-140).
APA, Harvard, Vancouver, ISO, and other styles
9

Er, Aynur. "Stability of Linear Difference Systems in Discrete and Fractional Calculus." TopSCHOLAR®, 2017. http://digitalcommons.wku.edu/theses/1946.

Full text
Abstract:
The main purpose of this thesis is to define the stability of a system of linear difference equations of the form, ∇y(t) = Ay(t), and to analyze the stability theory for such a system using the eigenvalues of the corresponding matrix A in nabla discrete calculus and nabla fractional discrete calculus. Discrete exponential functions and the Putzer algorithms are studied to examine the stability theorem. This thesis consists of five chapters and is organized as follows. In the first chapter, the Gamma function and its properties are studied. Additionally, basic definitions, properties and some main theorem of discrete calculus are discussed by using particular example. In the second chapter, we focus on solving the linear difference equations by using the undetermined coefficient method and the variation of constants formula. Moreover, we establish the matrix exponential function which is the solution of the initial value problems (IVP) by the Putzer algorithm.
APA, Harvard, Vancouver, ISO, and other styles
10

Göransson, Albin. "Stability and accuracy for difference methods using asynchronous processors." Thesis, Linköpings universitet, Matematiska institutionen, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-146045.

Full text
Abstract:
We solve initial boundary value problems with information unavailable at random time-steps. The randomly unavailable information represents asynchrony between processing elements. To approximate the initial boundary value problem, finite difference operators with summation-by-parts proper-ties and weak boundary procedures are used. Utilizing the energy method, we derive energy estimates for synchronous and asynchronous problems. The simulations show that the solutions may remain accurate and stable, even in the asynchronous case.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Stability and asymptotics of difference equations"

1

Yee, H. C. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. National Aeronautics and Space Administration, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Yee, H. C. Dynamical approach study of spurious steady-state numerical solutions of nonlinear differential equations. National Aeronautics and Space Administration, 1990.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1956-, Dos̆lá Zuzana, and Graef John R. 1942-, eds. The nonlinear limit-point/limit-circle problem. Birkhäuser, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Difference equations in normed spaces: Stability and oscillations. Elsevier, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Shaikhet, Leonid. Lyapunov Functionals and Stability of Stochastic Difference Equations. Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-685-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shaĭkhet, L. E. Lyapunov functionals and stability of stochastic difference equations. Springer, 2011.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

P, Matus P., and Vabishchevich P. N, eds. Difference schemes with operator factors. Kluwer Academic, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jeltsch, Rolf. Barriers to the accuracy of explicit three-time-level difference schemes for hyperbolic equations. Universiteit van Stellenbosch, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Shaikhet, Leonid. Lyapunov Functionals and Stability of Stochastic Functional Differential Equations. Springer International Publishing, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Capietto, Anna. Stability and Bifurcation Theory for Non-Autonomous Differential Equations: Cetraro, Italy 2011, Editors: Russell Johnson, Maria Patrizia Pera. Springer Berlin Heidelberg, 2013.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Stability and asymptotics of difference equations"

1

Tomášek, Petr. "Asymptotic Stability Regions for Certain Two Parametric Full-Term Linear Difference Equation." In Differential and Difference Equations with Applications. Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-32857-7_30.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

de Oliveira, Silvia Rodrigues, Soumyendu Raha, and Debnath Pal. "Global Asymptotic Stability of a Non-linear Population Model of Diabetes Mellitus." In Differential and Difference Equations with Applications. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75647-9_29.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Ivanov, Anatoli F. "Global Asymptotic Stability in a Non-autonomous Difference Equation." In Difference Equations and Discrete Dynamical Systems with Applications. Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-35502-9_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Izuta, Guido. "Asymptotic Stability of Partial Difference Equations Systems with Singular Matrix." In Lecture Notes in Electrical Engineering. Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-75605-9_31.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lantsman, M. H. "Linear Difference Equations. General Theory." In Asymptotics of Linear Differential Equations. Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9797-5_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Sedaghat, Hassan. "Chaos and Stability in Some Models." In Nonlinear Difference Equations. Springer Netherlands, 2003. http://dx.doi.org/10.1007/978-94-017-0417-5_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Elaydi, Saber N. "Stability Theory." In An Introduction to Difference Equations. Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4757-9168-6_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Elaydi, Saber N. "Stability Theory." In An Introduction to Difference Equations. Springer New York, 1999. http://dx.doi.org/10.1007/978-1-4757-3110-1_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lantsman, M. H. "Asymptotic Behaviour of Solutions of Linear Difference Equations." In Asymptotics of Linear Differential Equations. Springer Netherlands, 2001. http://dx.doi.org/10.1007/978-94-015-9797-5_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Shaikhet, Leonid. "Difference Equations as Difference Analogues of Differential Equations." In Lyapunov Functionals and Stability of Stochastic Difference Equations. Springer London, 2011. http://dx.doi.org/10.1007/978-0-85729-685-6_10.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Stability and asymptotics of difference equations"

1

Nguyen-Van, Triet, and Noriyuki Hori. "A Discrete-Time Model for Lotka-Volterra Equations With Preserved Stability of Equilibria." In ASME 2013 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/imece2013-63049.

Full text
Abstract:
A Lotka-Volterra differential equation is discretized using a method proposed recently by the same authors for nonlinear autonomous systems and the stability of equilibrium points of the resulting discrete-time model is investigated. It is shown that when Jacobian matrix of the nonlinear equation is invertible, the equilibrium points of the model are identical to those of the original continuous-time system, and their asymptotic stability and instability are retained for any sampling period. While the method can be applied to any Lotka-Volterra types, simulation results are presented for a competitive-type example, where the continuous-time system and their discrete-time models obtained by the forward-difference, Mickens’, Kahan’s, and the proposed methods are compared. They illustrate that, in general, the proposed model performs better than other discrete-time models.
APA, Harvard, Vancouver, ISO, and other styles
2

Elaydi, Saber. "Recent Developments in the Asymptotics of Difference Equations." In Proceedings of the Third International Conference on Difference Equations. CRC Press, 2017. http://dx.doi.org/10.4324/9780203745854-11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Fedotov, A., and F. Klopp. "Difference equations, uniform quasiclassical asymptotics and Airy functions." In 2018 Days on Diffraction (DD). IEEE, 2018. http://dx.doi.org/10.1109/dd.2018.8553493.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Bas, Erdal, and Ramazan Ozarslan. "Asymptotics of eigenfunctions for Sturm-Liouville problem in difference equations." In INTERNATIONAL CONFERENCE OF NUMERICAL ANALYSIS AND APPLIED MATHEMATICS 2015 (ICNAAM 2015). Author(s), 2016. http://dx.doi.org/10.1063/1.4952075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Cheng, Sui. "Stability of Partial Difference Equations." In Proceedings of the Third International Conference on Difference Equations. CRC Press, 2017. http://dx.doi.org/10.4324/9780203745854-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Řehák, Petr. "A note on asymptotics and nonoscillation of linear $q$-difference equations." In The 9'th Colloquium on the Qualitative Theory of Differential Equations. Bolyai Institute, SZTE, 2012. http://dx.doi.org/10.14232/ejqtde.2012.3.12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Li, Hongfei, and Lijun Zhang. "Stability of Difference-Integral Delay Equations." In 2020 39th Chinese Control Conference (CCC). IEEE, 2020. http://dx.doi.org/10.23919/ccc50068.2020.9188694.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

KAMONT, Z. "STABILITY OF DIFFERENCE - FUNCTIONAL EQUATIONS AND APPLICATIONS." In Proceedings of the Fourth International Conference. WORLD SCIENTIFIC, 1999. http://dx.doi.org/10.1142/9789814291071_0004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Kolmanovskii, V. B., J. F. Lafay, and J. P. Richard. "Riccati equations in stability theory of difference equations with memory." In 1999 European Control Conference (ECC). IEEE, 1999. http://dx.doi.org/10.23919/ecc.1999.7099894.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Zhang, Shunian. "Estimate Of Stability Region For Delay Difference Equations." In Proceedings of the Third International Conference on Difference Equations. CRC Press, 2017. http://dx.doi.org/10.4324/9780203745854-26.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Stability and asymptotics of difference equations"

1

Holmes, Mark Alan. Stability of finite difference approximations of two fluid, two phase flow equations. Office of Scientific and Technical Information (OSTI), 1995. http://dx.doi.org/10.2172/505672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Cloutman, L. D. A note on the stability and accuracy of finite difference approximations to differential equations. Office of Scientific and Technical Information (OSTI), 1996. http://dx.doi.org/10.2172/420369.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography