Academic literature on the topic 'Stacking fault energy'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stacking fault energy.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Stacking fault energy"
Fan, Dawei, Qingzhou Zhang, Touwen Fan, Mengdong He, and Linghong Liu. "A New Anti-Alias Model of Ab Initio Calculations of the Generalized Stacking Fault Energy in Face-Centered Cubic Crystals." Crystals 13, no. 3 (March 8, 2023): 461. http://dx.doi.org/10.3390/cryst13030461.
Full textWu, Yu-Chuan, Sea-Fue Wang, and Hong-Yang Lu. "Stacking Faults and Stacking Fault Energy of Hexagonal Barium Titanate." Journal of the American Ceramic Society 89, no. 12 (December 2006): 3778–87. http://dx.doi.org/10.1111/j.1551-2916.2006.01305.x.
Full textMartin, Stefan, Christiane Ullrich, Daniel Šimek, Ulrich Martin, and David Rafaja. "Stacking fault model of ∊-martensite and itsDIFFaXimplementation." Journal of Applied Crystallography 44, no. 4 (June 28, 2011): 779–87. http://dx.doi.org/10.1107/s0021889811019558.
Full textSeo, Won-Seon, and Kunihito Koumoto. "Kinetics and mechanism of stacking fault annihilation and grain growth in porous ceramics of β–SiC." Journal of Materials Research 8, no. 7 (July 1993): 1644–50. http://dx.doi.org/10.1557/jmr.1993.1644.
Full textWang, Y. Q., W. S. Liang, and G. G. Ross. "Stacking Fault Energy of Si Nanocrystals Embedded in SiO2." ISRN Nanotechnology 2011 (May 25, 2011): 1–3. http://dx.doi.org/10.5402/2011/639714.
Full textShen, Rui, Zengyu Ni, Siyuan Peng, Haile Yan, and Yanzhong Tian. "Effects of V Addition on the Deformation Mechanism and Mechanical Properties of Non-Equiatomic CoCrNi Medium-Entropy Alloys." Materials 16, no. 14 (July 22, 2023): 5167. http://dx.doi.org/10.3390/ma16145167.
Full textRafaja, D., C. Krbetschek, C. Ullrich, and S. Martin. "Stacking fault energy in austenitic steels determined by usingin situX-ray diffraction during bending." Journal of Applied Crystallography 47, no. 3 (May 10, 2014): 936–47. http://dx.doi.org/10.1107/s1600576714007109.
Full textSeki, Kazuaki, Kai Morimoto, Toru Ujihara, Tomoharu Tokunaga, Katsuhiro Sasaki, Kotaro Kuroda, and Yoshikazu Takeda. "Stacking Faults around the Hetero-Interface Induced by 6H-SiC Polytype Transformation on 3C-SiC with Solution Growth." Materials Science Forum 645-648 (April 2010): 363–66. http://dx.doi.org/10.4028/www.scientific.net/msf.645-648.363.
Full textNembach, E., T. Pretorius, and D. Rönnpagel. "Stacking-fault energy mismatch strengthening revisited." Philosophical Magazine A 78, no. 4 (October 1998): 949–63. http://dx.doi.org/10.1080/01418619808239967.
Full textJunes, H. J., H. Alles, M. S. Manninen, A. Y. Parshin, and I. A. Todoshchenko. "Stacking Fault Energy in 4He Crystals." Journal of Low Temperature Physics 153, no. 5-6 (October 9, 2008): 244–49. http://dx.doi.org/10.1007/s10909-008-9828-0.
Full textDissertations / Theses on the topic "Stacking fault energy"
Olsson, Malin. "Thermodynamic modeling of the stacking fault energy in austenitic stainless steels." Thesis, KTH, Termodynamisk modellering, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-148660.
Full textMolnár, Dávid Sándor. "Generalised stacking fault energy and plastic deformation of austenitic stainless steels." Licentiate thesis, KTH, Tillämpad materialfysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233565.
Full textAustenitiska rostfria stål är främst kända för sin exceptionella korrosionsbeständighet. De har en ytcentrerad kubisk (FCC) struktur som stabiliseras genom att nickel tillsätts till Fe-Cr legeringen. Fe-Cr-Ni-systemet kan utökas ytterligare genom tillsats av andra element såsom Mn, Mo, N, C, etc. för att förbättra egenskaperna. Eftersom austenitiska rostfria stål ofta används som konstruktionsmaterial är det viktigt att kunna förutsäga deras mekaniska egenskaper baserat på deras sammansättning, mikrostruktur, magnetiska tillstånd, etc. I denna avhandling undersöker vi det plastiska deformationsbeteendet hos austenitiska rostfria stål både teoretiskt och experimentellt. I FCC material spelar staplingsfelsenergin (SFE) en viktig roll vid förutsägelsen av deformationsmekanism. Baserat på storleken av SFE kan olika deformationsmekanismer observeras, såsom martensitbildning, tvillingbildning, dissocierad eller odissocierad dislokationsglidning. Alla dessa funktioner påverkar beteendet på olika sätt, därför är det önskvärt att kunna förutsäga deras förekomst. Legering och temperatur har stark inverkan på SFE och därmed legeringarnas mekaniska egenskaper. Flera modeller, baserade på SFE och mer nyligen på den så kallade generaliserade staplingsfelenergin (GSFE eller γ-surface), är tillgängliga för att förutsäga legeringens benägenhet till tvillingbildning och den kritiska spänning som representerar den minsta upplösta skjuvspänningen som krävs för att initiera tvillingbildning. Man kan använda ab initio beräkningar baserade på täthetsfunktionalteori (DFT) för att beräkna GSFE för austenitiska stål och härleda parametrar som twinnability och kritisk tvillingsspänning. Vi diskuterar effekten av staplingsfelenergi på deformationsbeteendet för två olika austenitiska rostfria stål. Vi beräknar GSFE för de valda legeringarna och baserat på olika modeller, förutsäger vi deras tendens till tvillingbildning och den kritiska tvillingsspänningen. De teoretiska förutsägelserna jämförs med resultat från dragprov och bakåtspridd elektron diffraktion (EBSD). Flera konventionella och in situ dragprov utfördes för att verifiera de teoretiska resultaten. Vi utförde EBSD-mätningar på dragprov som avbrutits vid olika töjningar och efter brott samt med in situ dragprov för att följa utvecklingen av mikrostrukturen noggrant. Vi tar hänsyn till de inre energibarriärernas roll i våra förutsägelser och presenterar ett nytt sätt att experimentellt få GSFE av austenitiska rostfria stål. Tidigare kunde endast SFE mätas tillförlitligt genom väl utformade experiment. I den aktuella avhandlingen går vi vidare och föreslår en teknik som kan ge noggranna värden för den instabila staplingsfelenergin för alla austenitiska legeringar som uppvisar tvillingbildning.
Bromley, Darren Michael. "Hydrogen embrittlement testing of austenitic stainless steels SUS 316 and 316L." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/925.
Full textJarmakani, Hussam N. "Quasi-isentropic and shock compression of FCC and BCC metals effects of grain size and stacking-fault energy /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p3307166.
Full textTitle from first page of PDF file (viewed June 18, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 214-225).
Kuykendall, Katherine Lynn. "An Evaluation of Constitutive Laws and their Ability to Predict Flow Stress over Large Variations in Temperature, Strain, and Strain Rate Characteristic of Friction Stir Welding." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2768.
Full textCalmunger, Mattias. "Effect of temperature on mechanical response of austenitic materials." Thesis, Linköpings universitet, Konstruktionsmaterial, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-73748.
Full textKauffmann, Alexander. "Gefügeverfeinerung durch mechanische Zwillingsbildung in Kupfer und Kupfermischkristalllegierungen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-144747.
Full textGeißler, David. "Plastizität, deformationsinduzierte Phänomene und Élinvareigenschaften in antiferromagnetischen austenitischen FeMnNiCr-Basislegierungen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-89042.
Full textHigh manganese iron-base alloys are austenitic and antiferromagnetic (afm) at room temperature. By further alloying it is possible to tune the afm transition temperature (Néel temperature) near room temperature. FeMn-base alloys show extraordinary strain hardening as well as ductility because of Transformation Induced Plasticity (TRIP) and/or Twinning Induced Plasticty (TWIP), i.e. in dependence on composition the generally low stacking fault energy in these alloys allows for the mechanically induced formation of metastable phases (TRIP) or deformation twinning (TWIP). Furthermore, magnetic order causes distinct magnetovolume and magnetoelastic effects in these afm FeMn-base alloys. The investigated FeMnNiCr-base alloys are therefore prototypic for afm Élinvar alloys. However, as Élinvar is meant for invariant elasticity, an application as temperature compensated alloy with constant elastic modulus requires the smoothing of the pronounced magnetic anomalies, that is not industrially available yet. The advantage of afm Élinvar alloys in precision mechanics applications, would be their impassiveness with respect to magnetic fields that is not achievable by their ferromagnetic counterparts. For precision components like mechanic oscillators not only the tuning of the magnetoelastic properties but also the processing, cold formability and mechanical properties as well as their interplay have strong influence. Therefore this work addresses the applicability of the studied FeMnNiCr alloys. Elementary investigations on plasticity characterise the occurrence of TWIP in these alloys and propose a modell for deformation twinning at low plastic strains that allows for an estimation of the stacking fault energy. The investigations on the antiferromagnetism of deformed samples show the appearance of thermoremanent magnetisation (TRM). Its magnitude scales with the degree of deformation. The TRM is therefore attributed to uncompensated moments in the afm spin structure due to deformation induced defects. These are magnetised by a magnetic field cooling and couple to the afm matrix by exchange interaction below the Néel temperature. The complex thermomagnetic behaviour of the uncompensated moments is experimentally described and phenomenologically explained. The further development and assessment of engineering-grade pecipitable FeMnNiCrBe and FeMnNiCr(Ti, Al) alloys is presented in relation to the aforementioned elementary investigations. It is shown that the newly developped precipitable FeMnNiCr(Ti, Al) alloys are good candidates for afm Élinvar alloys in application
Hamada, A. S. (Atef Saad). "Manufacturing, mechanical properties and corrosion behaviour of high-Mn TWIP steels." Doctoral thesis, University of Oulu, 2007. http://urn.fi/urn:isbn:9789514285844.
Full textMaeda, Milene Yumi. "ESTUDO DA DEFORMAÇÃO CRIOGÊNICA DE ALUMÍNIO, COBRE E PRATA." UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2017. http://tede2.uepg.br/jspui/handle/prefix/1485.
Full textCoordenação de Aperfeiçoamento de Pessoal de Nível Superior
Commercially pure aluminum, copper and silver samples were rolled at room and cryogenic temperatures until approximately 99% of thickness total reduction, causing deformation (ε) between 3.93 and 4.61 Although not in balance state, the metals tend to have more defects density when cryo rolled, especially higher dislocation density, evidenced by calculations based on X-ray data for copper and silver. Higher defects density implies superior hardness, tensile strength limit and yield strength, but smaller elongation. There was evidence of stacking fault energy (SFE) influence in the process, evaluating hardness and properties obtained through tensile tests of the materials. The cryogenic temperature (CT) and room temperature (RT) rolled samples were evaluated by hardness tests, tensile tests, scanning electron microscopy (SEM) and X-ray diffraction (XRD), which indicate influence of stacking fault energy (SFE) on process. The hardness of all the materials tend to drop when they are kept at RT after cryo rolling and bigger larger hardness decrease was observed for silver, which one has the lowest SFE and slightest hardness decreased was noticed for aluminum, which has high SFE. There is evidence that cryo rolling is more attractive for low SFE materials after ageing at RT, as long as silver presented simultaneous increase in higher tensile strength of about 53% and 29% gain of elongation when compared to the same one rolled at RT. Elongation gain of silver can be associated to static recrystallization, as evidenced contrasting silver’s tensile charts after ageing and recrystallized silver. In turn, copper presented 15% of strength limit increase and just 5% elongation, whereas aluminum had both strength limit and elongation reduced.
Amostras de alumínio, cobre e prata comercialmente puros foram laminadas à temperatura ambiente (TA) e criogênica (TC) até aproximadamente 99% de redução total de espessura, causando deformações (ε) entre 3,93 e 4,61. Embora não seja em estado de equilíbrio, os metais tendem a possuir maior densidade de defeitos quando laminados criogenicamente, sobretudo maior densidade de discordâncias, evidenciado pelos cálculos baseados nos dados obtidos através difração de raios-X para cobre e prata. Uma quantidade maior de defeitos implica em maiores dureza e limites de escoamento e resistência, mas menor alongamento. Houve indícios da influência da energia de falha de empilhamento (EFE) no processo, avaliando-se a dureza e as propriedades obtidas através dos ensaios de tração dos materiais. A dureza de todos tende a cair quando mantidos em TA após a laminação criogênica e observou-se uma maior queda de dureza para a prata, que tem baixa EFE e uma menor queda de dureza para o alumínio, que tem elevada EFE. Há indicativos de que a laminação criogênica é mais vantajosa para metais de baixa EFE após envelhecimento em TA, visto que a prata apresentou um aumento simultâneo de limite de resistência de aproximadamente 53% e um ganho de 29% de alongamento quando comparado à mesma laminada em TA. O aumento de alongamento da prata pode ser associado à recristalização estática da mesma, como pode ser evidenciado comparando-se os gráficos de tração da prata após envelhecimento com a prata recristalizada. O cobre, por sua vez, apresentou um aumento de 15% do limite de resistência e apenas 5% de alongamento, enquanto o alumínio apresentou redução tanto do limite de resistência quanto de alongamento.
Book chapters on the topic "Stacking fault energy"
Fujita, S., Tokuteru Uesugi, Yorinobu Takigawa, and Kenji Higashi. "Stacking Fault Energy of Cu-Ga Alloys from First Principles." In Materials Science Forum, 1915–18. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-462-6.1915.
Full textLi, Zhen-Bi, Xue-Yan Feng, Jin-Yang Xie, and Yi-Chen Xie. "Rolling Bearing Fault Diagnosis Method Based on Attention Mechanism Stacking." In Conference Proceedings of 2022 2nd International Joint Conference on Energy, Electrical and Power Engineering, 609–19. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4334-0_76.
Full textCui, C. Y., C. G. Tian, Y. Z. Zhou, T. Jin, and X. F. Sun. "Dynamic Strain Aging in Ni Base Alloys with Different Stacking Fault Energy." In Superalloys 2012, 715–22. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118516430.ch79.
Full textMahato, Jayanta Kumar, Partha Sarathi De, Amrita Kundu, and Pravash Chandra Chakraborti. "Role of Stacking Fault Energy on Symmetric and Asymmetric Cyclic Deformation Behavior of FCC Metals." In Lecture Notes in Mechanical Engineering, 691–702. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8767-8_59.
Full textLee, Dong Nyung. "Effect of Stacking Fault Energy on Evolution of Recrystallization and Grain Growth Textures of Metals." In Materials Science Forum, 93–100. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-443-x.93.
Full textSaka, H., T. Kondo, and T. Imura. "The Intrinsic Temperature Dependence of the Stacking-Fault Energy in Ag- and Cu-Base Alloys." In Dislocations in Solids, 255–58. London: CRC Press, 2023. http://dx.doi.org/10.1201/9780429070914-60.
Full textHargather, Chelsey Z. "Efficient First-Principles Methodologies for Calculating Stacking Fault Energy in FCC and BCC High-Entropy Alloys." In High-Entropy Materials: Theory, Experiments, and Applications, 315–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77641-1_7.
Full textLee, Dong Nyung. "Effect of Stacking Fault Energy on Evolution of Recrystallization Textures in Drawn Wires and Rolled Sheets." In Materials Science Forum, 1243–48. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-975-x.1243.
Full textSuwas, Satyam, László S. Tóth, Jean-Jacques Fundenberger, Thierry Grosdidier, and Werner Skrotzki. "Texture Evolution in FCC Metals during Equal Channel Angular Extrusion (ECAE) as a Function of Stacking Fault Energy." In Solid State Phenomena, 345–50. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/3-908451-09-4.345.
Full textAbolghasem, Sepideh, Ravi Shankar, Raha Akhavan-Tabatabaei, and Roberto Zarama. "Universal Scaling Behaviour of Subgrain Size Evolution in Face-Centered Cubic Metals With Moderate to High Stacking Fault Energy." In TMS 2015 144th Annual Meeting & Exhibition, 1465–72. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48127-2_174.
Full textConference papers on the topic "Stacking fault energy"
Cui, C., C. Tian, Y. Zhou, T. Jin, and X. Sun. "Dynamic Strain Aging in Ni Base Alloys with Different Stacking Fault Energy." In Superalloys. John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.7449/2012/superalloys_2012_715_722.
Full textQi, Hang, Changgang Li, Yutian Liu, Haifeng Fan, and Hua Ye. "Stacking-based estimation of maximal transient voltage drop with unified fault location representation." In 2020 IEEE Sustainable Power and Energy Conference (iSPEC). IEEE, 2020. http://dx.doi.org/10.1109/ispec50848.2020.9351169.
Full textHorinouchi, Toshihiro, Satoshi Miyashiro, Mitsuhiro Itakura, and Taira Okita. "Molecular Dynamics Simulations to Evaluate the Effect of the Difference in Material Properties on Irradiation-Induced Defect Formation Under Applied Strain." In 2012 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icone20-power2012-54840.
Full textAstafurov, Sergey V., Galina G. Maier, Evgenii V. Melnikov, Valentina A. Moskvina, Marina Yu Panchenko, and Elena G. Astafurova. "Effect of stacking fault energy on Hall–Petch relationship parameters of austenitic stainless steels." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5131887.
Full textFu, Yunchang, Huili Zhang, Chun Zhang, and Chunhua Zeng. "First-principles calculations of second-order elastic constants and generalized-stacking-fault energy for GaAs." In International Conference on Mechanics,Materials and Structural Engineering (ICMMSE 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icmmse-16.2016.10.
Full textShepelev, Igor, and E. A. Korznikova. "Dependence of the supersonic propagation of 2-crowdions on the stacking fault energy in FCC metals." In MATHEMATICS EDUCATION AND LEARNING. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0099075.
Full textBala, M. N. V. S. Swetha, N. Uday Ranjan Goud, Dheeraj Kumar Gara, and R. Kannan. "Determination of stacking fault energy for a Nitinol based shape memory alloys by molecular dynamics simulation." In THE 8TH ANNUAL INTERNATIONAL SEMINAR ON TRENDS IN SCIENCE AND SCIENCE EDUCATION (AISTSSE) 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0109530.
Full textPayton, Lewis N. "Dislocation Theory of Orthogonal Metal Cutting of Cu-Zn Alloys." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87634.
Full textAchmad, Tria Laksana, Wenxiang Fu, Hao Chen, Chi Zhang, and Zhi-Gang Yang. "Co-based alloys design based on first-principles calculations: Influence of transition metal and rare-earth alloying element on stacking fault energy." In PROCEEDINGS OF THE 1ST INTERNATIONAL PROCESS METALLURGY CONFERENCE (IPMC 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4974440.
Full textYants, Anton Y., and Anton Y. Yakovlev. "Multilevel crystal plasticity model: Application to the analysis of the influence of stacking fault energy on scalar and vector properties of polycrystals under complex loading." In 28TH RUSSIAN CONFERENCE ON MATHEMATICAL MODELLING IN NATURAL SCIENCES. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0003546.
Full text