Academic literature on the topic 'Stacking fault energy'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stacking fault energy.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Stacking fault energy"

1

Fan, Dawei, Qingzhou Zhang, Touwen Fan, Mengdong He, and Linghong Liu. "A New Anti-Alias Model of Ab Initio Calculations of the Generalized Stacking Fault Energy in Face-Centered Cubic Crystals." Crystals 13, no. 3 (March 8, 2023): 461. http://dx.doi.org/10.3390/cryst13030461.

Full text
Abstract:
The anti-alias model is an effective method to calculate the generalized stacking fault energy of the hexagonal close-packed crystals, but it has not been applied to the face-centered cubic crystals due to two different stacking faults occurring in the supercell during the sliding process. Based on the symmetry of these two stacking faults and the existing single analytic formula of the generalized stacking fault energy, we successfully extend the anti-alias model to compute the generalized stacking fault energy of face-centered cubic crystals, and the common fcc metals Al, Ni, Ag and Cu are taken as specific examples to illustrate the computational details. Finally, the validity of the proposed model is verified by data comparison and analysis. It is suggested that the anti-alias model is a good choice for the researchers to obtain more accurate generalized stacking fault energy of face-centered cubic metals.
APA, Harvard, Vancouver, ISO, and other styles
2

Wu, Yu-Chuan, Sea-Fue Wang, and Hong-Yang Lu. "Stacking Faults and Stacking Fault Energy of Hexagonal Barium Titanate." Journal of the American Ceramic Society 89, no. 12 (December 2006): 3778–87. http://dx.doi.org/10.1111/j.1551-2916.2006.01305.x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Martin, Stefan, Christiane Ullrich, Daniel Šimek, Ulrich Martin, and David Rafaja. "Stacking fault model of ∊-martensite and itsDIFFaXimplementation." Journal of Applied Crystallography 44, no. 4 (June 28, 2011): 779–87. http://dx.doi.org/10.1107/s0021889811019558.

Full text
Abstract:
Plastic deformation of highly alloyed austenitic transformation-induced plasticity (TRIP) steels with low stacking fault energy leads typically to the formation of ∊-martensite within the original austenite. The ∊-martensite is often described as a phase having a hexagonal close-packed crystal structure. In this contribution, an alternative structure model is presented that describes ∊-martensite embedded in the austenitic matrixviaclustering of stacking faults in austenite. The applicability of the model was tested on experimental X-ray diffraction data measured on a CrMnNi TRIP steel after 15% compression. The model of clustered stacking faults was implemented in theDIFFaXroutine; the faulted austenite and ∊-martensite were represented by different stacking fault arrangements. The probabilities of the respective stacking fault arrangements were obtained from fitting the simulated X-ray diffraction patterns to the experimental data. The reliability of the model was proven by scanning and transmission electron microscopy. For visualization of the clusters of stacking faults, the scanning electron microscopy employed electron channelling contrast imaging and electron backscatter diffraction.
APA, Harvard, Vancouver, ISO, and other styles
4

Seo, Won-Seon, and Kunihito Koumoto. "Kinetics and mechanism of stacking fault annihilation and grain growth in porous ceramics of β–SiC." Journal of Materials Research 8, no. 7 (July 1993): 1644–50. http://dx.doi.org/10.1557/jmr.1993.1644.

Full text
Abstract:
Beta–SiC specimens possessing 15% stacking fault density were annealed at various temperatures for various time periods under an Ar or a N2 atmosphere, and the mechanisms of stacking fault annihilation and grain growth were investigated. The values of the geometric factor in the Avrami–Erofeev equation indicated that the rate of stacking fault annihilation is controlled by the atomic diffusion process. On the other hand, the rate of grain growth was found to be limited by surface diffusivity. Coincidence in the values of activation energy for stacking fault annihilation and grain growth within experimental errors firmly suggested that the annihilation of stacking faults is an apparent phenomenon resulting from the microstructural development in which the grain growth is controlled by surface diffusivity. Incorporation of nitrogen during heating suppressed the surface diffusivity and, hence, the rate of stacking fault annihilation.
APA, Harvard, Vancouver, ISO, and other styles
5

Wang, Y. Q., W. S. Liang, and G. G. Ross. "Stacking Fault Energy of Si Nanocrystals Embedded in SiO2." ISRN Nanotechnology 2011 (May 25, 2011): 1–3. http://dx.doi.org/10.5402/2011/639714.

Full text
Abstract:
Si nanocrystals (Si nc) were produced by the implantation of Si+ into a SiO2 film on (100) Si, followed by high-temperature annealing. High-resolution transmission electron microscopy (HRTEM) observation has shown that a perfect dislocation (Burgers vector b=(1/2)〈110〉) can dissociate into two Shockley partials (Burgers vector b=(1/6)〈112〉) bounding a strip of stacking faults (SFs). The width of the SFs has been determined from the HRTEM image, and the stacking fault energy for Si nc has been calculated. The stacking fault energy for Si nc is compared with that for bulk Si, and the formation probability of defects in Si nc is also discussed. The results will shed a light on the dissociation of dislocations in nanoparticles.
APA, Harvard, Vancouver, ISO, and other styles
6

Shen, Rui, Zengyu Ni, Siyuan Peng, Haile Yan, and Yanzhong Tian. "Effects of V Addition on the Deformation Mechanism and Mechanical Properties of Non-Equiatomic CoCrNi Medium-Entropy Alloys." Materials 16, no. 14 (July 22, 2023): 5167. http://dx.doi.org/10.3390/ma16145167.

Full text
Abstract:
Equiatomic CoCrNi medium-entropy alloys exhibit superior strength and ductility. In this work, a non-equiatomic CoCrNi alloy with low stacking fault energy was designed, and different fractions of V were added to control the stacking fault energy and lattice distortion. Mechanical properties were evaluated by tensile tests, and deformation microstructures were characterized by transmission electron microscope (TEM). The main deformation mechanisms of CoCrNiV alloy with low V content are dislocation slip, stacking faults, and deformation-induced HCP phase transformation, while the dominant deformation patterns of CoCrNiV alloy with high V contents are dislocation slip and stacking faults. The yield strength increases dramatically when the V content is high, and the strain-hardening behavior changes non-monotonically with increasing the V content. V addition increases the stacking fault energy (SFE) and lattice distortion. The lower strain-hardening rate of 6V alloy than that of 2V alloy is dominated by the SFE. The higher strain-hardening rate of 10V alloy than that of 6V alloy is dominated by the lattice distortion. The effects of V addition on the SFE, lattice distortion, and strain-hardening behavior are discussed.
APA, Harvard, Vancouver, ISO, and other styles
7

Rafaja, D., C. Krbetschek, C. Ullrich, and S. Martin. "Stacking fault energy in austenitic steels determined by usingin situX-ray diffraction during bending." Journal of Applied Crystallography 47, no. 3 (May 10, 2014): 936–47. http://dx.doi.org/10.1107/s1600576714007109.

Full text
Abstract:
A method is presented which determines the stacking fault energy in face-centred cubic materials from the critical stress that is inducedviasample bending in the early stages of plastic deformation. The critical stress is gauged byin situX-ray diffraction. This method utilizes the results of Byun's consideration of the stress dependence of the partial dislocation separation [Byun (2003).Acta Mater.51, 3063–3071]. Byun showed that the separation distance of the partial dislocations increases rapidly when the critical stress is reached and that the critical stress needed for the rapid separation of the partial dislocations is directly proportional to the stacking fault energy. In the approach presented here, the partial dislocation separation and the corresponding triggering stress are monitored by usingin situX-ray diffraction during sample bending. Furthermore, thein situX-ray diffraction measurement checks the possible interactions between stacking faults present on equivalent lattice planes and the interactions of the stacking faults with other microstructure defects. The capability of the proposed method was tested on highly alloyed austenitic steels containing chromium (∼16 wt%), manganese (∼7 wt%) and nickel as the main alloying elements. For the steels containing 5.9 and 3.7 wt% Ni, stacking fault energies of 17.5 ± 1.4 and 8.1 ± 0.9 mJ m−2were obtained, respectively.
APA, Harvard, Vancouver, ISO, and other styles
8

Seki, Kazuaki, Kai Morimoto, Toru Ujihara, Tomoharu Tokunaga, Katsuhiro Sasaki, Kotaro Kuroda, and Yoshikazu Takeda. "Stacking Faults around the Hetero-Interface Induced by 6H-SiC Polytype Transformation on 3C-SiC with Solution Growth." Materials Science Forum 645-648 (April 2010): 363–66. http://dx.doi.org/10.4028/www.scientific.net/msf.645-648.363.

Full text
Abstract:
6H-SiC hetero-epitaxially grown on a (111) 3C-SiC was observed with TEM. High-density stacking faults were formed around the hetero-interface, and the density of stacking faults decreased with increasing distance from interface. On the other hand, when 3C-SiC was homo-epitaxially grown on a 3C-SiC, any stacking faults did not exist at the interface between the grown crystal and the seed crystal. Thus, the stacking faults formation started from the 6H/3C hetero-interface. Considering the lattice-mismatch strain between 3C-SiC and 6H-SiC, the strain energy is equivalent to the stacking fault energy of 6H-SiC. This similarity suggests that the stacking faults formation could be caused by the relaxation of the lattice-mismatch strain.
APA, Harvard, Vancouver, ISO, and other styles
9

Nembach, E., T. Pretorius, and D. Rönnpagel. "Stacking-fault energy mismatch strengthening revisited." Philosophical Magazine A 78, no. 4 (October 1998): 949–63. http://dx.doi.org/10.1080/01418619808239967.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Junes, H. J., H. Alles, M. S. Manninen, A. Y. Parshin, and I. A. Todoshchenko. "Stacking Fault Energy in 4He Crystals." Journal of Low Temperature Physics 153, no. 5-6 (October 9, 2008): 244–49. http://dx.doi.org/10.1007/s10909-008-9828-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Stacking fault energy"

1

Olsson, Malin. "Thermodynamic modeling of the stacking fault energy in austenitic stainless steels." Thesis, KTH, Termodynamisk modellering, 2014. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-148660.

Full text
Abstract:
The stacking fault energy (SFE) of seven austenitic stainless steels with the compositions x(Cr)=20 at%, 8≤x(Ni)≤20 at% and 0≤x(Mn)≤8 at% have been calculated at room temperature using the thermodynamics-based Olson and Cohen modeling approach [1]. Modeling has been performed using the TCFE7 database together with the Thermo-Calc 3.0 software. Experimental SFE values from transmission electron microscopy (TEM) measurements and theoretical SFE values from ab initio calculations were used for comparison. The results of the SFE from TCFE7 were not in agreement with the values reported in the literature. After an evaluation of the thermodynamic parameters in the database, a new assessment of the SFE in the ternary and quaternary Fe-Cr-Ni and Fe-Cr-Ni-Mn system was proposed which resulted in SFE values in fairly good agreement with the literature.
APA, Harvard, Vancouver, ISO, and other styles
2

Molnár, Dávid Sándor. "Generalised stacking fault energy and plastic deformation of austenitic stainless steels." Licentiate thesis, KTH, Tillämpad materialfysik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-233565.

Full text
Abstract:
Austenitic stainless steels are primarily known for their exceptional corrosion resistance. They have the face centred cubic (FCC) structure which is stabilised by adding nickel to the Fe-Cr alloy. The Fe-Cr-Ni system can be further extended by adding other elements such as Mn, Mo, N, C, etc. in order to improve the properties. Since austenitic stainless steels are often used as structural materials, it is important to be able to predict their mechanical behaviour based on their composition, microstructure, magnetic state, etc. In this work, we investigate the plastic deformation behaviour of austenitic stainless steels by theoretical and experimental approaches. In FCC materials the stacking fault energy (SFE) plays an important role in the prediction of the deformation modes. Based on the magnitude of the SFE different deformation modes can be observed such as martensite formation, deformation twinning, dissociated or undissociated dislocation glide. All these features influence the behaviour differently, therefore it is desired to be able to predict their occurrence. Alloying and temperature have strong effect on the SFE and thus on the mechanical properties of the alloys. Several models based on the SFE and more recently on the so called generalised stacking fault energy (GSFE or γ-surface) are available to predict the alloy's affinity to twinning and the critical twinning stress representing the minimum resolved shear stress required to initiate the twinning deformation mechanism. One can employ well established experimental techniques to measure the SFE. On the other hand, one needs to resort to ab initio calculations based on density functional theory (DFT) to compute the GSFE of austenitic steels and derive parameters like the twinnability and the critical twinning stress.  We discuss the effect of the stacking fault energy on the deformation behaviour for two different austenitic stainless steels. We calculate the GSFE of the selected alloys and based on different models, we predict their tendency for twinning and the critical twinning stress. The theoretical predictions are contrasted with tensile tests and electron backscatter diffraction (EBSD) measurements. Several conventional and in situ tensile test are performed to verify the theoretical results. We carry out EBSD measurements on interrupted and fractured specimens and during tensile tests to closely follow the development of the microstructure. We take into account the role of the intrinsic energy barriers in our predictions and introduce a new and so far unique way to experimentally obtain the GSFE of austenitic stainless steels. Previously, only the SFE could be measured precisely by well-designed experiments. In the present thesis we go further and propose a technique that can provide accurate unstable stacking fault energy values for any austenitic alloy exhibiting twinning.
Austenitiska rostfria stål är främst kända för sin exceptionella korrosionsbeständighet. De har en ytcentrerad kubisk (FCC) struktur som stabiliseras genom att nickel tillsätts till Fe-Cr legeringen. Fe-Cr-Ni-systemet kan utökas ytterligare genom tillsats av andra element såsom Mn, Mo, N, C, etc. för att förbättra egenskaperna. Eftersom austenitiska rostfria stål ofta används som konstruktionsmaterial är det viktigt att kunna förutsäga deras mekaniska egenskaper baserat på deras sammansättning, mikrostruktur, magnetiska tillstånd, etc. I denna avhandling undersöker vi det plastiska deformationsbeteendet hos austenitiska rostfria stål både teoretiskt och experimentellt. I FCC material spelar staplingsfelsenergin (SFE) en viktig roll vid förutsägelsen av deformationsmekanism. Baserat på storleken av SFE kan olika deformationsmekanismer observeras, såsom martensitbildning, tvillingbildning, dissocierad eller odissocierad dislokationsglidning. Alla dessa funktioner påverkar beteendet på olika sätt, därför är det önskvärt att kunna förutsäga deras förekomst. Legering och temperatur har stark inverkan på SFE och därmed legeringarnas mekaniska egenskaper. Flera modeller, baserade på SFE och mer nyligen på den så kallade generaliserade staplingsfelenergin (GSFE eller γ-surface), är tillgängliga för att förutsäga legeringens benägenhet till tvillingbildning och den kritiska spänning som representerar den minsta upplösta skjuvspänningen som krävs för att initiera tvillingbildning. Man kan använda ab initio beräkningar baserade på täthetsfunktionalteori (DFT) för att beräkna GSFE för austenitiska stål och härleda parametrar som twinnability och kritisk tvillingsspänning. Vi diskuterar effekten av staplingsfelenergi på deformationsbeteendet för två olika austenitiska rostfria stål. Vi beräknar GSFE för de valda legeringarna och baserat på olika modeller, förutsäger vi deras tendens till tvillingbildning och den kritiska tvillingsspänningen. De teoretiska förutsägelserna jämförs med resultat från dragprov och bakåtspridd elektron diffraktion (EBSD). Flera konventionella och in situ dragprov utfördes för att verifiera de teoretiska resultaten. Vi utförde EBSD-mätningar på dragprov som avbrutits vid olika töjningar och efter brott samt med in situ dragprov för att följa utvecklingen av mikrostrukturen noggrant. Vi tar hänsyn till de inre energibarriärernas roll i våra förutsägelser och presenterar ett nytt sätt att experimentellt få GSFE av austenitiska rostfria stål. Tidigare kunde endast SFE mätas tillförlitligt genom väl utformade experiment. I den aktuella avhandlingen går vi vidare och föreslår en teknik som kan ge noggranna värden för den instabila staplingsfelenergin för alla austenitiska legeringar som uppvisar tvillingbildning.
APA, Harvard, Vancouver, ISO, and other styles
3

Bromley, Darren Michael. "Hydrogen embrittlement testing of austenitic stainless steels SUS 316 and 316L." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/925.

Full text
Abstract:
The imminent emergence of the hydrogen fuel industry has resulted in an urgent mandate for very specific material testing. Although storage of pressurized hydrogen gas is both practical and attainable, demands for increasing storage pressures (currently around 70 MPa) continue to present unexpected material compatibility issues. It is imperative that materials commonly used in gaseous hydrogen service are properly tested for hydrogen embrittlement resistance. To assess material behavior in a pressurized hydrogen environment, procedures were designed to test materials for susceptibility to hydrogen embrittlement. Of particular interest to the field of high-pressure hydrogen in the automotive industry, austenitic stainless steels SUS 316 and 316L were used to validate the test programs. Tests were first performed in 25 MPa helium and hydrogen at room temperature and at -40°C. Tests in a 25 MPa hydrogen atmosphere caused embrittlement in SUS 316, but not in 316L. This indicated that alloys with higher stacking fault energies (316L) are more resistant to hydrogen embrittlement. Decreasing the test temperature caused slight embrittlement in 316L and significantly enhanced it in 316. Alternatively, a second set of specimens was immersed in 70 MPa hydrogen at 100°C until reaching a uniform concentration of absorbed hydrogen. Specimens were then loaded in tension to failure to determine if a bulk saturation of hydrogen provided a similar embrittling effect. Neither material succumbed to the effects of gaseous pre-charging, indicating that the embrittling mechanism requires a constant supply of hydrogen at the material surface rather than having bulk concentration of dissolved hydrogen. Permeation tests were also performed to ensure that hydrogen penetrated the samples and to develop material specific permeation constants. To pave the way for future work, prototype equipment was constructed allowing tensile or fatigue tests to be performed at much higher hydrogen pressures. To determine the effect of pressure on hydrogen embrittlement, additional tests can be performed in hydrogen pressures up to 85 MPa hydrogen. The equipment will also allow for cyclic loading of notched tensile or compact tension specimens for fatigue studies.
APA, Harvard, Vancouver, ISO, and other styles
4

Jarmakani, Hussam N. "Quasi-isentropic and shock compression of FCC and BCC metals effects of grain size and stacking-fault energy /." Diss., Connect to a 24 p. preview or request complete full text in PDF format. Access restricted to UC campuses, 2008. http://wwwlib.umi.com/cr/ucsd/fullcit?p3307166.

Full text
Abstract:
Thesis (Ph. D.)--University of California, San Diego, 2008.
Title from first page of PDF file (viewed June 18, 2008). Available via ProQuest Digital Dissertations. Vita. Includes bibliographical references (p. 214-225).
APA, Harvard, Vancouver, ISO, and other styles
5

Kuykendall, Katherine Lynn. "An Evaluation of Constitutive Laws and their Ability to Predict Flow Stress over Large Variations in Temperature, Strain, and Strain Rate Characteristic of Friction Stir Welding." BYU ScholarsArchive, 2011. https://scholarsarchive.byu.edu/etd/2768.

Full text
Abstract:
Constitutive laws commonly used to model friction stir welding have been evaluated, both qualitatively and quantitatively, and a new application of a constitutive law which can be extended to materials commonly used in FSW is presented. Existing constitutive laws have been classified as path-dependent or path-independent. Path-independent laws have been further classified according to the physical phenomena they capture: strain hardening, strain rate hardening, and/or thermal softening. Path-dependent laws can track gradients in temperature and strain rate characteristic to friction stir welding; however, path-independent laws cannot. None of the path-independent constitutive laws evaluated has been validated over the full range of strain, strain rate, and temperature in friction stir welding. Holding all parameters other than constitutive law constant in a friction stir weld model resulted in temperature differences of up to 21%. Varying locations for maximum temperature difference indicate that the constitutive laws resulted in different temperature profiles. The Sheppard and Wright law is capable of capturing saturation but incapable of capturing strain hardening with errors as large as 57% near yield. The Johnson-Cook law is capable of capturing strain hardening; however, its inability to capture saturation causes over-predictions of stress at large strains with errors as large as 37% near saturation. The Kocks and Mecking model is capable of capturing strain hardening and saturation with errors less than 5% over the entire range of plastic strain. The Sheppard and Wright and Johnson-Cook laws are incapable of capturing transients characteristic of material behavior under interrupted temperature or strain rate. The use of a state variable in the Kocks and Mecking law allows it to predict such transients. Constants for the Kocks and Mecking model for AA 5083, AA 3004, and Inconel 600 were determined from Atlas of Formability data. Constants for AA 5083 and AA 3004 were determined with the traditional Kocks and Mecking model; however, constants for Inconel 600 could not be determined without modification to the model. The temperature and strain rate combinations for Inconel 600 fell into two hardening domains: low temperatures and high strain rates exhibited twinning while high temperatures and low strain rates exhibited slip. An additional master curve was added to the Kocks and Mecking model to account for two hardening mechanisms. The errors for the Kocks and Mecking model predictions are generally within 10% for all materials analyzed.
APA, Harvard, Vancouver, ISO, and other styles
6

Calmunger, Mattias. "Effect of temperature on mechanical response of austenitic materials." Thesis, Linköpings universitet, Konstruktionsmaterial, 2011. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-73748.

Full text
Abstract:
Global increase in energy consumption and global warming require more energy production but less CO2emission. Increase in efficiency of energy production is an effective way for this purpose. This can be reached by increasing boiler temperature and pressure in a biomass power plant. By increasing material temperature 50°C, the efficiency in biomass power plants can be increased significantly and the CO2emission can be greatly reduced. However, the materials used for future biomass power plants with higher temperature require improved properties. Austenitic stainless steels are used in most biomass power plants. In austenitic stainless steels a phenomenon called dynamic strain aging (DSA), can occur in the operating temperature range for biomass power plants. DSA is an effect of interaction between moving dislocations and solute atoms and occurs during deformation at certain temperatures. An investigation of DSA influences on ductility in austenitic stainless steels and nickel base alloys have been done. Tensile tests at room temperature up to 700°C and scanning electron microscope investigations have been used. Tensile tests revealed that ductility increases with increased temperature for some materials when for others the ductility decreases. This is, probably due to formation of twins. Increased stacking fault energy (SFE) gives increased amount of twins and high nickel content gives a higher SFE. Deformation mechanisms observed in the microstructure are glide bands (or deformations band), twins, dislocation cells and shear bands. Damage due to DSA can probably be related to intersection between glide bands or twins, see figure 6 a). Broken particles and voids are damage mechanisms observed in the microstructure.
APA, Harvard, Vancouver, ISO, and other styles
7

Kauffmann, Alexander. "Gefügeverfeinerung durch mechanische Zwillingsbildung in Kupfer und Kupfermischkristalllegierungen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-144747.

Full text
Abstract:
Die vorliegende Arbeit zeigt einen Weg, Kupfer und einphasige Kupferlegierungen mit stark verzwillingten Gefügen durch ein technisch relevantes Umformverfahren herzustellen. Der Drahtzug bildet dabei aufgrund seines Spannungszustands und der entsprechenden Texturentwicklung in kubischflächenzentrierten Metallen ein ideales Umformverfahren, um einen Großteil des Gefüges durch mechanische Zwillingsbildung zu verfeinern. Für die Aktivierung der Zwillingsbildung in reinem Kupfer unter den untersuchten Werkstoffvarianten sind Temperaturen nahe der Temperatur des flüssigen Stickstoffs notwendig. Um den Drahtzug in flüssigem Stickstoff umzusetzen, wurden verschiedene Feststoffschmiermittel auf ihre Eignung hin getestet. Die Textur der mit Stickstoffkühlung hergestellten Halbzeuge ist durch eine dreifache Fasertextur bestehend aus <111>-, <001>- und <115>-Fasertexturkomponente charakterisiert. Anhand der strengen Orientierungsverhältnisse konnte der Volumenanteil von verzwillingtem Material bestehend aus Matrixkörnern und Verformungszwillingen auf 71 vol% durch röntgenografische Globaltexturmessungen abgeschätzt werden, wobei das Volumenverhältnis von Zwillingen zu Matrix bei knapp 0,7:1 liegt. Die Zwillinge zeigen eine breite Zwillingslamellenweitenverteilung von wenigen Nanometern bis einige 100 nm im höchstverformten Stadium. Durch die Absenkung der Umformtemperatur und die daraus resultierende Aktivierung der Zwillingsbildung kann die Zugfestigkeit von reinem Kupfer um 140 MPa im Vergleich zu einem ohne Kühlung hergestellten Draht auf 582 MPa erhöht werden. Dabei reduziert sich die elektrische Leitfähigkeit um 6,5% gegenüber einem grobkorngeglühten Kupfer. Eine Absenkung der Stapelfehlerenergie auf 30 mJ/m² in CuAl2 führt zur Aktivierung der mechanischen Zwillingsbildung beim Drahtzug ohne Kühlung. Durch diese Aktivierung der Zwillingsbildung kann bei fortschreitender Verringerung der Stapelfehlerenergie wie in CuAl7 die Zugfestigkeit des umgeformten Drahtes auf weit über 1 GPa erhöht werden. Das entsprechende Gefüge ist dabei ultrafeinkörnig.
APA, Harvard, Vancouver, ISO, and other styles
8

Geißler, David. "Plastizität, deformationsinduzierte Phänomene und Élinvareigenschaften in antiferromagnetischen austenitischen FeMnNiCr-Basislegierungen." Doctoral thesis, Saechsische Landesbibliothek- Staats- und Universitaetsbibliothek Dresden, 2012. http://nbn-resolving.de/urn:nbn:de:bsz:14-qucosa-89042.

Full text
Abstract:
Hoch manganhaltige Eisenbasislegierungen sind bei Raumtemperatur austenitisch und antiferromagnetisch (afm). Dabei besteht die Besonderheit, dass sich durch Legierung die afm Übergangstemperatur (Néeltemperatur) so einstellen lässt, dass sie nahe Raumtemperatur liegt. FeMn-Basislegierungen zeigen in Abhängigkeit von der Zusammensetzung Transformation Induced Plasticity (TRIP) und/oder Twinning Induced Plasticity (TWIP), d.h. die niedrige Stapelfehlerenergie dieser Legierungen führt zu verformungsinduzierter, metastabiler Phasenbildung (TRIP) bzw. zur Bildung von Verformungszwillingen (TWIP) und dadurch zu außerordentlich hoher Duktilität bei gleichzeitig hoher Verfestigung. Darüber hinaus haben FeMn-Basislegierungen einen ausgeprägten Magnetovolumeneffekt und magnetoelastischen Effekt durch magnetische Ordnung. Daher sind die untersuchten FeMnNiCr-Basislegierungen auch prototypisch für afm Élinvarlegierungen. Da Élinvar jedoch für invariable Elastizität steht, bedingt eine Anwendung als temperaturkompensierte Konstantmodullegierungen die Glättung der ausgeprägten magnetischen Anomalien, die industriell noch in keiner Anwendung realisiert wurde. Der Vorteil dies für eine Anwendung zu erreichen, läge in der Unempfindlichkeit feinmechanischer Bauelemente, gegenüber magnetischen Feldern, die bei den industriell verfügbaren ferromagnetischen Élinvarlegierungen nicht gewährleistet ist. Mit Bezug zu feinmechanischen Schwingsystemen spielen dabei neben der Einstellung der magnetoelastischen Eigenschaften die Prozessierbarkeit, Kaltumformbarkeit und Festigkeit sowie deren wechselseitige Beeinflussung eine große Rolle. Die vorliegende Arbeit befasst sich daher mit der Anwendbarkeit der untersuchten FeMnNiCr-Legierungen. Dabei wurden grundlegende Untersuchungen zur Plastizität durchgeführt, die die mechanische Zwillingsbildung in diesen Legierungen charakterisiert und ein Modell der mechanischen Zwillingsbildung bei kleinen plastischen Dehnungen vorschlägt, das eine Abschätzung der Stapelfehlerenergie erlaubt. Die Untersuchung des Antiferromagnetismus umgeformter Proben zeigt das Auftreten thermoremanenter Magnetisierung (TRM), deren Größe mit dem Umformgrad der untersuchten Proben skaliert. Sie wird den durch Umformdefekte erzeugten unkompensierten Momenten in der afm Spinstruktur zugeschrieben. Diese werden durch eine magnetische Feldkühlung magnetisiert und koppeln durch Austauschwechselwirkung an die umgebende antiferromagnetische Matrix unterhalb der Néeltemperatur. Das komplexe thermomagnetische Verhalten der unkompensierten Momente wird experimentell beschrieben und phänomenologisch gedeutet. Die Weiterentwicklung und Bewertung technischer, ausscheidbarer FeMnNiCrBe- und FeMnNiCr(Ti, Al)-Legierungen wird mit Bezug zu den grundlegenden Untersuchungen dargestellt. Es wird gezeigt, dass die neu entwickelten ausscheidbaren FeMnNiCr(Ti, Al)-Legierungen eine vielversprechende Ausgangsbasis darstellen, afm Élinvarlegierungen technisch umzusetzen
High manganese iron-base alloys are austenitic and antiferromagnetic (afm) at room temperature. By further alloying it is possible to tune the afm transition temperature (Néel temperature) near room temperature. FeMn-base alloys show extraordinary strain hardening as well as ductility because of Transformation Induced Plasticity (TRIP) and/or Twinning Induced Plasticty (TWIP), i.e. in dependence on composition the generally low stacking fault energy in these alloys allows for the mechanically induced formation of metastable phases (TRIP) or deformation twinning (TWIP). Furthermore, magnetic order causes distinct magnetovolume and magnetoelastic effects in these afm FeMn-base alloys. The investigated FeMnNiCr-base alloys are therefore prototypic for afm Élinvar alloys. However, as Élinvar is meant for invariant elasticity, an application as temperature compensated alloy with constant elastic modulus requires the smoothing of the pronounced magnetic anomalies, that is not industrially available yet. The advantage of afm Élinvar alloys in precision mechanics applications, would be their impassiveness with respect to magnetic fields that is not achievable by their ferromagnetic counterparts. For precision components like mechanic oscillators not only the tuning of the magnetoelastic properties but also the processing, cold formability and mechanical properties as well as their interplay have strong influence. Therefore this work addresses the applicability of the studied FeMnNiCr alloys. Elementary investigations on plasticity characterise the occurrence of TWIP in these alloys and propose a modell for deformation twinning at low plastic strains that allows for an estimation of the stacking fault energy. The investigations on the antiferromagnetism of deformed samples show the appearance of thermoremanent magnetisation (TRM). Its magnitude scales with the degree of deformation. The TRM is therefore attributed to uncompensated moments in the afm spin structure due to deformation induced defects. These are magnetised by a magnetic field cooling and couple to the afm matrix by exchange interaction below the Néel temperature. The complex thermomagnetic behaviour of the uncompensated moments is experimentally described and phenomenologically explained. The further development and assessment of engineering-grade pecipitable FeMnNiCrBe and FeMnNiCr(Ti, Al) alloys is presented in relation to the aforementioned elementary investigations. It is shown that the newly developped precipitable FeMnNiCr(Ti, Al) alloys are good candidates for afm Élinvar alloys in application
APA, Harvard, Vancouver, ISO, and other styles
9

Hamada, A. S. (Atef Saad). "Manufacturing, mechanical properties and corrosion behaviour of high-Mn TWIP steels." Doctoral thesis, University of Oulu, 2007. http://urn.fi/urn:isbn:9789514285844.

Full text
Abstract:
Abstract Austenitic high-Mn (15–30 wt.%) based twinning-induced plasticity (TWIP) steels provide great potential in applications for structural components in the automotive industry, owing to their excellent tensile strength-ductility property combination. In certain cases, these steels might also substitute austenitic Cr-Ni stainless steels. The aim of this present work is to investigate the high-temperature flow resistance, recrystallisation and the evolution of microstructure of high-Mn steels by compression testing on a Gleeble simulator. The influence of Al alloying (0–8 wt.%) in the hot rolling temperature range (800°C–1100°C) is studied in particular, but also some observations are made regarding the influence of Cr alloying. Microstructures are examined in optical and electron microscopes. The results are compared with corresponding properties of carbon and austenitic stainless steels. In addition, the mechanical properties are studied briefly, using tension tests over the temperature range from -80°C to 200°C. Finally, a preliminary study is conducted on the corrosion behaviour of TWIP steels in two media, using the potentiodynamic polarization technique. The results show that the flow stress level of high-Mn TWIP steels is considerably higher than that of low-carbon steels and depends on the Al concentration up to 6 wt.%, while the structure is fully austenitic at hot rolling temperatures. At higher Al contents, the flow stress level is reduced, due to the presence of ferrite. The static recrystallisation kinetics is slower compared to that of carbon steels, but it is faster than is typical of Nb-microalloyed or austenitic stainless steels. The high Mn content is one reason for high flow stress as well as for slow softening. Al plays a minor role only; but in the case of austenitic-ferritic structure, the softening of the ferrite phase occurs very rapidly, contributing to overall faster softening. The high Mn content also retards considerably the onset of dynamic recrystallisation, but the influence of Al is minor. Similarly, the contribution of Cr to the hot deformation resistance and static and dynamic recrystallisation, is insignificant. The grain size effectively becomes refined by the dynamic and static recrystallisation processes. The tensile testing of TWIP steels revealed that the Al alloying and temperature have drastic effects on the yield strength, tensile strength and elongation. The higher Al raises the yield strength because of the solid solution strengthening. However, Al tends to increase the stacking fault energy that affects strongly the deformation mechanism. In small concentrations, Al suppresses martensite formation and enhances deformation twinning, leading to high tensile strength and good ductility. However, with an increasing temperature, SFE increases, and consequently, the density of deformation twins decreases and mechanical properties are impaired. Corrosion testing indicated that Al alloying improves the corrosion resistance of high-Mn TWIP steels. The addition of Cr is a further benefit for the passivation of these steels. The passive film that formed on 8wt.% Al-6wt.%Cr steel was found to be even more stable than that on Type 304 steel in 5–50% HNO3 solutions. A prolonged pre-treatment of the steel in the anodic passive regime created a thick, protective and stable passive film that enhanced the corrosion resistance also in 3.5% NaCl solution.
APA, Harvard, Vancouver, ISO, and other styles
10

Maeda, Milene Yumi. "ESTUDO DA DEFORMAÇÃO CRIOGÊNICA DE ALUMÍNIO, COBRE E PRATA." UNIVERSIDADE ESTADUAL DE PONTA GROSSA, 2017. http://tede2.uepg.br/jspui/handle/prefix/1485.

Full text
Abstract:
Made available in DSpace on 2017-07-21T20:43:51Z (GMT). No. of bitstreams: 1 Milene Yumi Maeda.pdf: 4409513 bytes, checksum: c08056fcd59620f956225201d8330824 (MD5) Previous issue date: 2017-02-24
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior
Commercially pure aluminum, copper and silver samples were rolled at room and cryogenic temperatures until approximately 99% of thickness total reduction, causing deformation (ε) between 3.93 and 4.61 Although not in balance state, the metals tend to have more defects density when cryo rolled, especially higher dislocation density, evidenced by calculations based on X-ray data for copper and silver. Higher defects density implies superior hardness, tensile strength limit and yield strength, but smaller elongation. There was evidence of stacking fault energy (SFE) influence in the process, evaluating hardness and properties obtained through tensile tests of the materials. The cryogenic temperature (CT) and room temperature (RT) rolled samples were evaluated by hardness tests, tensile tests, scanning electron microscopy (SEM) and X-ray diffraction (XRD), which indicate influence of stacking fault energy (SFE) on process. The hardness of all the materials tend to drop when they are kept at RT after cryo rolling and bigger larger hardness decrease was observed for silver, which one has the lowest SFE and slightest hardness decreased was noticed for aluminum, which has high SFE. There is evidence that cryo rolling is more attractive for low SFE materials after ageing at RT, as long as silver presented simultaneous increase in higher tensile strength of about 53% and 29% gain of elongation when compared to the same one rolled at RT. Elongation gain of silver can be associated to static recrystallization, as evidenced contrasting silver’s tensile charts after ageing and recrystallized silver. In turn, copper presented 15% of strength limit increase and just 5% elongation, whereas aluminum had both strength limit and elongation reduced.
Amostras de alumínio, cobre e prata comercialmente puros foram laminadas à temperatura ambiente (TA) e criogênica (TC) até aproximadamente 99% de redução total de espessura, causando deformações (ε) entre 3,93 e 4,61. Embora não seja em estado de equilíbrio, os metais tendem a possuir maior densidade de defeitos quando laminados criogenicamente, sobretudo maior densidade de discordâncias, evidenciado pelos cálculos baseados nos dados obtidos através difração de raios-X para cobre e prata. Uma quantidade maior de defeitos implica em maiores dureza e limites de escoamento e resistência, mas menor alongamento. Houve indícios da influência da energia de falha de empilhamento (EFE) no processo, avaliando-se a dureza e as propriedades obtidas através dos ensaios de tração dos materiais. A dureza de todos tende a cair quando mantidos em TA após a laminação criogênica e observou-se uma maior queda de dureza para a prata, que tem baixa EFE e uma menor queda de dureza para o alumínio, que tem elevada EFE. Há indicativos de que a laminação criogênica é mais vantajosa para metais de baixa EFE após envelhecimento em TA, visto que a prata apresentou um aumento simultâneo de limite de resistência de aproximadamente 53% e um ganho de 29% de alongamento quando comparado à mesma laminada em TA. O aumento de alongamento da prata pode ser associado à recristalização estática da mesma, como pode ser evidenciado comparando-se os gráficos de tração da prata após envelhecimento com a prata recristalizada. O cobre, por sua vez, apresentou um aumento de 15% do limite de resistência e apenas 5% de alongamento, enquanto o alumínio apresentou redução tanto do limite de resistência quanto de alongamento.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Stacking fault energy"

1

Fujita, S., Tokuteru Uesugi, Yorinobu Takigawa, and Kenji Higashi. "Stacking Fault Energy of Cu-Ga Alloys from First Principles." In Materials Science Forum, 1915–18. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-462-6.1915.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Li, Zhen-Bi, Xue-Yan Feng, Jin-Yang Xie, and Yi-Chen Xie. "Rolling Bearing Fault Diagnosis Method Based on Attention Mechanism Stacking." In Conference Proceedings of 2022 2nd International Joint Conference on Energy, Electrical and Power Engineering, 609–19. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-99-4334-0_76.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Cui, C. Y., C. G. Tian, Y. Z. Zhou, T. Jin, and X. F. Sun. "Dynamic Strain Aging in Ni Base Alloys with Different Stacking Fault Energy." In Superalloys 2012, 715–22. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118516430.ch79.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mahato, Jayanta Kumar, Partha Sarathi De, Amrita Kundu, and Pravash Chandra Chakraborti. "Role of Stacking Fault Energy on Symmetric and Asymmetric Cyclic Deformation Behavior of FCC Metals." In Lecture Notes in Mechanical Engineering, 691–702. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8767-8_59.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Dong Nyung. "Effect of Stacking Fault Energy on Evolution of Recrystallization and Grain Growth Textures of Metals." In Materials Science Forum, 93–100. Stafa: Trans Tech Publications Ltd., 2007. http://dx.doi.org/10.4028/0-87849-443-x.93.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Saka, H., T. Kondo, and T. Imura. "The Intrinsic Temperature Dependence of the Stacking-Fault Energy in Ag- and Cu-Base Alloys." In Dislocations in Solids, 255–58. London: CRC Press, 2023. http://dx.doi.org/10.1201/9780429070914-60.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hargather, Chelsey Z. "Efficient First-Principles Methodologies for Calculating Stacking Fault Energy in FCC and BCC High-Entropy Alloys." In High-Entropy Materials: Theory, Experiments, and Applications, 315–54. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-77641-1_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Dong Nyung. "Effect of Stacking Fault Energy on Evolution of Recrystallization Textures in Drawn Wires and Rolled Sheets." In Materials Science Forum, 1243–48. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/0-87849-975-x.1243.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Suwas, Satyam, László S. Tóth, Jean-Jacques Fundenberger, Thierry Grosdidier, and Werner Skrotzki. "Texture Evolution in FCC Metals during Equal Channel Angular Extrusion (ECAE) as a Function of Stacking Fault Energy." In Solid State Phenomena, 345–50. Stafa: Trans Tech Publications Ltd., 2005. http://dx.doi.org/10.4028/3-908451-09-4.345.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Abolghasem, Sepideh, Ravi Shankar, Raha Akhavan-Tabatabaei, and Roberto Zarama. "Universal Scaling Behaviour of Subgrain Size Evolution in Face-Centered Cubic Metals With Moderate to High Stacking Fault Energy." In TMS 2015 144th Annual Meeting & Exhibition, 1465–72. Cham: Springer International Publishing, 2015. http://dx.doi.org/10.1007/978-3-319-48127-2_174.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Stacking fault energy"

1

Cui, C., C. Tian, Y. Zhou, T. Jin, and X. Sun. "Dynamic Strain Aging in Ni Base Alloys with Different Stacking Fault Energy." In Superalloys. John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.7449/2012/superalloys_2012_715_722.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Qi, Hang, Changgang Li, Yutian Liu, Haifeng Fan, and Hua Ye. "Stacking-based estimation of maximal transient voltage drop with unified fault location representation." In 2020 IEEE Sustainable Power and Energy Conference (iSPEC). IEEE, 2020. http://dx.doi.org/10.1109/ispec50848.2020.9351169.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Horinouchi, Toshihiro, Satoshi Miyashiro, Mitsuhiro Itakura, and Taira Okita. "Molecular Dynamics Simulations to Evaluate the Effect of the Difference in Material Properties on Irradiation-Induced Defect Formation Under Applied Strain." In 2012 20th International Conference on Nuclear Engineering and the ASME 2012 Power Conference. American Society of Mechanical Engineers, 2012. http://dx.doi.org/10.1115/icone20-power2012-54840.

Full text
Abstract:
The influence of applied strain on the defect production rate during a cascade process was evaluated for several FCC metals with different Stacking Fault Energy by the method of molecular dynamics. It was found that applied strain increases the number of surviving defects, which is caused by the enhanced formation of larger clusters. It was also found that the number of defects is almost independent of Stacking Fault Energy even under applied strain.
APA, Harvard, Vancouver, ISO, and other styles
4

Astafurov, Sergey V., Galina G. Maier, Evgenii V. Melnikov, Valentina A. Moskvina, Marina Yu Panchenko, and Elena G. Astafurova. "Effect of stacking fault energy on Hall–Petch relationship parameters of austenitic stainless steels." In PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON ADVANCED MATERIALS WITH HIERARCHICAL STRUCTURE FOR NEW TECHNOLOGIES AND RELIABLE STRUCTURES 2019. AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5131887.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Fu, Yunchang, Huili Zhang, Chun Zhang, and Chunhua Zeng. "First-principles calculations of second-order elastic constants and generalized-stacking-fault energy for GaAs." In International Conference on Mechanics,Materials and Structural Engineering (ICMMSE 2016). Paris, France: Atlantis Press, 2016. http://dx.doi.org/10.2991/icmmse-16.2016.10.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Shepelev, Igor, and E. A. Korznikova. "Dependence of the supersonic propagation of 2-crowdions on the stacking fault energy in FCC metals." In MATHEMATICS EDUCATION AND LEARNING. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0099075.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Bala, M. N. V. S. Swetha, N. Uday Ranjan Goud, Dheeraj Kumar Gara, and R. Kannan. "Determination of stacking fault energy for a Nitinol based shape memory alloys by molecular dynamics simulation." In THE 8TH ANNUAL INTERNATIONAL SEMINAR ON TRENDS IN SCIENCE AND SCIENCE EDUCATION (AISTSSE) 2021. AIP Publishing, 2022. http://dx.doi.org/10.1063/5.0109530.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Payton, Lewis N. "Dislocation Theory of Orthogonal Metal Cutting of Cu-Zn Alloys." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87634.

Full text
Abstract:
The effects of stacking fault energy and hardness on the shear process during low-speed orthogonal metal cutting were examined in a designed experiment of 1680 tests in Copper Zinc (CU-ZN) alloys. Existing shear zone models were compared to the experimental results generated by a Videographic Quick Stop method. Analysis of the data indicates that the onset of shear plane is more properly viewed as the activation of glide plane. This in turn is a result of the available slip planes, which are a function of the materials crystalline structure, the stacking fault energy and the dislocation density (i.e., the amount of work-hardening), as constrained by the tool’s rake face angle. Merchant’s Force Diagram is revised using an extension of the existing diagram to incorporate the material’s crystalline structure, incorporating well established dislocation theory.
APA, Harvard, Vancouver, ISO, and other styles
9

Achmad, Tria Laksana, Wenxiang Fu, Hao Chen, Chi Zhang, and Zhi-Gang Yang. "Co-based alloys design based on first-principles calculations: Influence of transition metal and rare-earth alloying element on stacking fault energy." In PROCEEDINGS OF THE 1ST INTERNATIONAL PROCESS METALLURGY CONFERENCE (IPMC 2016). Author(s), 2017. http://dx.doi.org/10.1063/1.4974440.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yants, Anton Y., and Anton Y. Yakovlev. "Multilevel crystal plasticity model: Application to the analysis of the influence of stacking fault energy on scalar and vector properties of polycrystals under complex loading." In 28TH RUSSIAN CONFERENCE ON MATHEMATICAL MODELLING IN NATURAL SCIENCES. AIP Publishing, 2020. http://dx.doi.org/10.1063/5.0003546.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography