Academic literature on the topic 'Standard error of measurement'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Standard error of measurement.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Standard error of measurement"
Adamczak, Stanisław, Jacek Świderski, and Urszula Kmiecik-Sołtysiak. "Estimation of the uncertainty of the roundness measurement with a device with rotary spindle." Mechanik 90, no. 10 (October 9, 2017): 912–14. http://dx.doi.org/10.17814/mechanik.2017.10.145.
Full textFeldt, Leonard S., and Audrey L. Qualls. "Approximating Scale Score Standard Error of Measurement From the Raw Score Standard Error." Applied Measurement in Education 11, no. 2 (April 1998): 159–77. http://dx.doi.org/10.1207/s15324818ame1102_3.
Full textApanasovich, Tatiyana V., Raymond J. Carroll, and Arnab Maity. "SIMEX and standard error estimation in semiparametric measurement error models." Electronic Journal of Statistics 3 (2009): 318–48. http://dx.doi.org/10.1214/08-ejs341.
Full textWoodruff, David. "Conditional Standard Error of Measurement in Prediction." Journal of Educational Measurement 27, no. 3 (September 1990): 191–208. http://dx.doi.org/10.1111/j.1745-3984.1990.tb00743.x.
Full textAli, Salah H. R. "Performance Investigation of CMM Measurement Quality Using Flick Standard." Journal of Quality and Reliability Engineering 2014 (July 17, 2014): 1–11. http://dx.doi.org/10.1155/2014/960649.
Full textIcasio-Hernández, O., Y. I. Curiel-Razo, C. C. Almaraz-Cabral, S. R. Rojas-Ramirez, and J. J. González-Barbosa. "MEASUREMENT ERROR WITH DIFFERENT COMPUTER VISION TECHNIQUES." ISPRS - International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XLII-2/W7 (September 12, 2017): 227–35. http://dx.doi.org/10.5194/isprs-archives-xlii-2-w7-227-2017.
Full textDasika, Saket S., Michael P. Sama, L. Felipe Pampolini, and Christopher B. Good. "Performance Validation of a Multi-Channel LiDAR Sensor: Assessing the Effects of Target Height and Sensor Velocity on Measurement Error." Transactions of the ASABE 62, no. 1 (2019): 231–44. http://dx.doi.org/10.13031/trans.12971.
Full textHuo, Peng Fei, Chao Wang, and Ke Yu Qi. "Simulation and Analysis of Measurement Method for Projectile Axial Acceleration by MEMS Sensor." Advanced Materials Research 411 (November 2011): 461–65. http://dx.doi.org/10.4028/www.scientific.net/amr.411.461.
Full textBarabás, B. "A Simple Testing Procedure for near Infrared Instruments." Journal of Near Infrared Spectroscopy 6, A (January 1998): A163—A170. http://dx.doi.org/10.1255/jnirs.188.
Full textHarvill, Leo M. "An NCME Instructional Module on. Standard Error of Measurement." Educational Measurement: Issues and Practice 10, no. 2 (June 1991): 33–41. http://dx.doi.org/10.1111/j.1745-3992.1991.tb00195.x.
Full textDissertations / Theses on the topic "Standard error of measurement"
Tataryn, Douglas Joseph 1960. "Standard errors of measurement, confidence intervals, and the distribution of error for the observed score curve." Thesis, The University of Arizona, 1989. http://hdl.handle.net/10150/277223.
Full textDurney, Ann Wells. "Truncation and its effect on standard error of correlation coefficients." Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/277950.
Full textChoi, Jinah. "Conditional standard errors of measurement, confidence interval, and reliability for individual level student growth percentiles." Diss., University of Iowa, 2018. https://ir.uiowa.edu/etd/6074.
Full textFilipe, Vitor. "Cinemática tri-dimensional do tronco durante uma tarefa de lifting: estudo da fiabilidade teste-reteste e diferença mínima detetável em indivíduos saudáveis." Master's thesis, Instituto Politécnico de Setúbal. Escola Superior de Saúde, 2017. http://hdl.handle.net/10400.26/19914.
Full textINTRODUÇÃO: A dor lombar (DL) é uma das condições músculo-esqueléticas que provoca um maior índice de incapacidade entre os indivíduos. Devido à relação estabelecida entre o movimento, dor e incapacidade, avaliação do movimento lumbo-pélvico é extremamente importante durante o exame de um paciente com DL. Assim, o estudo de padrões de movimentos de indivíduos saudáveis é importante para criar uma base empírica para a diferenciação entre o movimento normal e patológico. Embora exista conhecimento sobre os padrões lumbo-pélvicos em indivíduos saudáveis durante diferentes atividades diárias, falta informação sobre as propriedades psicométricas dos instrumentos de medição usados na sua avaliação. Assim, este estudo tem como objetivo avaliar a fiabilidade teste-reteste, o erro padrão de medida (EPM) e a diferença mínima detetável (DMD) da análise cinemática 3D do tronco e membro inferior durante uma tarefa de lifting, em indivíduos assintomáticos. OBJETIVO: Avaliar a fiabilidade teste-reteste, o EPM e a DMD da análise cinemática 3D do tronco e membro inferior durante uma tarefa de lifting, em indivíduos assintomáticos. METODOLOGIA: O presente estudo utilizou uma amostra de 14 indivíduos assintomáticos, em que cada um participou em dois momentos de avaliação, separados por uma média de 7 dias. Esta avaliação consistiu na recolha e análise da cinemática 3D do tronco e membro inferior durante uma tarefa de lifting. Para aferir acerca da fiabilidade e da concordância, foram calculados os valores de coeficiente de correlação intraclasse (CCI), assim como os valores de EPM, DMD e os limites de concordância (LDC). RESULTADOS: Foram obtidos valores elevados de fiabilidade teste-reteste (CCI >0.80) assim como valores de EPM baixos (<4°) para a maioria dos ângulos articulares analisados. No que toca à EPM% observou-se uma variação de 1.7 a 619% para os ângulos articulares máximos e mínimos e uma variação de 6.9 a 37.8% para as amplitudes articulares nos diferentes planos. Por último os valores absolutos de DMD variaram entre 2.2º e 23º, sendo que para a DMD% variou entre 4.7 e 1715.7% para os ângulos articulares máximos e mínimos. Já para os valores das amplitudes articulares nos diferentes planos, os valores absolutos de DMD variaram entre 1.5º e 19.7º, sendo que para a DMD% variaram entre 419 e 104.7%. DISCUSSÃO E CONCLUSÃO: O presente estudo veio demonstrar uma elevada fiabilidade para a medição cinemática 3D dos ângulos articulares do tronco e do membro inferior, assim como valores de EPM clinicamente aceitáveis, principalmente no que diz respeito às amplitudes articulares. Os resultados obtidos suportam a utilização desta medida na avaliação da tarefa do lifting em indivíduos assintomáticos, particularmente em contexto de investigação.
INTRODUCTION and AIM: Low Back Pain (LBP) is one of the musculoskeletal conditions that led to high levels of disability among individuals. Due to the established relationship between movement, pain and disability, the assessment of lumbo-pelvic movement is extremely important during the examination of a LBP patient. Thus, the study of healthy individuals movement patterns` is of importance in order to create an empirical basis for differentiation between normal and pathological movement. Although, knowledge do exist regarding lumbo-pelvic patterns in healthy individuals during different daily activities, information regarding the psychometric properties of the measurement tools used in their assessment is lacking. Thus, this study aims to evaluate the test-retest reliability, measurement error (SEM) and the minimal detectable change (MDC) of 3D kinematic analysis of the trunk and lower limb during a lifting task, in healthy individuals METHODS: The present study used a sample of 14 healthy individuals, who participated in two measurement moments separated by 7 days. This measurement consisted on the collection and analysis of the trunk and lower limb 3D kinematics during a lifting task. Intraclass correlation coefficient (ICC) values and respective 95% CI, as well as the SEM values, the 95% of limits of agreement (95% LOA), and SEM% were calculated. Finally, the absolute and percentage values of MDC were computed. RESULTS: High test-retest reliability (ICC >0.80) as well as low SEM values (<4°) were obtained for the most of the peak joint angles. Regarding the SEM%, the values ranged from 1.7 to 619% for the maximum and minimum joint angles, and from 6.9 to 37.8% for range of motion (ROM) on different movement planes. Finally, absolute MDC for maximum and minimum joint angles ranged from 2.2 to 23°, and MDC% ranged from 4.7 to 1715.7%. The absolute MDC for range of motion on different planes ranged from 1.5 to 19.7°, and the MDC% ranged from 419 e 104.7%. DISCUSSION AND CONCLUSION: The results of this study show high test-retest reliability and low measurement error for trunk and the lower limb joint angles, particularly regarding ROM parameters. High values for SEM% and MDC% were also found, especially in the horizontal plane parameters. Despite this, the obtained results seem to support the use of 3D analysis of the trunk and lower limb during lifting task, particularly in research contexts.
Gomes, Luís. "Cinemática tri-dimensional do tronco durante uma tarefa de lifting: estudo da fiabilidade teste-reteste e diferença mínima detetável em indivíduos com dor lombar crónica." Master's thesis, Instituto Politécnico de Setúbal. Escola Superior de Saúde, 2017. http://hdl.handle.net/10400.26/18888.
Full textINTRODUÇÃO: A dor lombar crónica (DLC) é uma das condições musculo-esqueléticas que provoca um maior índice de incapacidade entre os indivíduos. Associada aos sintomas de dor e incapacidade, indivíduos com DLC apresentam alterações dos padrões de movimento (cinemáticas, cinéticas e eletromiográficas) em várias atividades da vida diária, especialmente aquelas que envolvem movimentos de flexão/ extensão do tronco como é o caso do lifting. Apesar de muito do conhecimento acerca destas alterações ter sido obtido com recurso a instrumentos considerados gold standard para a avaliação do movimento (instrumentos de medição regional e tri-dimensional (3D) do tronco e membros inferiores), a dúvida acerca das propriedades psicométricas destas medidas persiste. Assim, torna-se extremamente importante o estudo de propriedades como a fiabilidade teste-reteste, o erro padrão de medida (EPM) e a diferença mínima detetável (DMD) destas das medidas de forma a que estas possam ser utilizadas da forma mais fiável e precisa no estudo do movimento de indivíduos com DLC. OBJETIVO: Avaliar a fiabilidade teste-reteste, o EPM e a DMD da análise cinemática 3D do tronco e membro inferior durante uma tarefa de lifting, em indivíduos com DLC. METODOLOGIA: O presente estudo utilizou uma amostra de 14 indivíduos com DLC, em que cada um participou em dois momentos de avaliação, separados por uma média de 7.6 ±1.8 dias. Esta avaliação consistiu na recolha e análise da cinemática 3D do tronco e membro inferior durante uma tarefa de lifting. Para aferir acerca da fiabilidade e da concordância, foram calculados os valores de coeficiente de correlação intraclasse (CCI), e respetivos 95% IC, assim como os valores de EPM, respetivos 95% dos limites de concordância (LDC), e da EPM%. Por último, foram calculados os valores absolutos e de percentagem da DMD. RESULTADOS: Foram obtidos elevados valores de fiabilidade teste-reteste (CCI >0.80) assim como valores de EPM baixos (<4°) para a maioria dos ângulos articulares analisados. No que toca à EPM% foi encontrada uma grande variação de valores (variaram entre 1.57 e 23453.74%). Por último os valores absolutos de DMD variaram entre 2.12° e 20.22°, sendo que para a DMD% variou entre 4.36 e 65010.46%. DISCUSSÃO E CONCLUSÃO: O presente estudo veio demonstrar uma elevada fiabilidade para a medição cinemática 3D dos ângulos articulares do tronco e do membro inferior, assim como valores de EPM clinicamente aceitáveis. Por outro lado, foram também encontrados valores de EPM% e DMD% elevados, especialmente para os movimentos no plano horizontal. Apesar disto, os resultados obtidos suportam a utilização desta medida na avaliação da tarefa do lifting em indivíduos com DLC, em pelo menos contextos de investigação.
INTRODUCTION: Chronic low back pain (CLBP) is a musculoskeletal condition that causes a great level of disability among individuals. Associated with pain and disability, individuals with CLBP present changes in movement patterns (kinematic, kinetic and electromyographic) during many daily activities, especially those involving trunk flexion / extension movements such as lifting. Although much of the knowledge about these changes has been obtained using instruments considered as gold standard for movement study (regional and tri-dimensional instruments (3D) of the trunk and lower limbs), the question about the psychometric properties of these measures persists. Thus, gaining knowledge about properties such as reliability, standard error of measurement (SEM) and the minimal detectable change (MDC) of these measurements is extremely important so that they can be used in the most reliable and accurate way in the study of the movement of individuals with CLBP. AIM: Evaluate the test-retest reliability, SEM and MDC of 3D kinematic analysis of the trunk and lower limb during a lifting task, in individuals with CLBP. METHODOLOGY: The present study used a sample of 14 individuals with CLBP, that participated in two measurement moments separated by a mean of 7.6 ± 1.8 days. This measurement consisted on the collection and analysis of the 3D kinematics of the trunk and lower limb during a lifting task. Intraclass correlation coefficient (ICC) values, and their respective 95% CI, as well as the SEM values, respective 95% of limits of agreement (95% LOA), and SEM% were calculated. Finally, the absolute and percentage values of MDC were calculated. RESULTS: High values of test-retest reliability (ICC> 0.80) as well as low SEM values (< 4°) were obtained for the most of the peak joint angles. Regarding the SEM%, a large variation of values was found (varied between 1.57 and 23453.74%). Finally, absolute MDC ranged from 2.12 to 20.22°, and for MDC% ranged from 4.36 to 65010.46%. DISCUSSION AND CONCLUSION: The present study demonstrated a high test-retest reliability and a low SEM for the peak articular angles of the trunk and the lower limb. On the other hand, values of high SEM% and MDC% were also found, especially for the movements in the horizontal plane. Despite this, the results obtained support the use of this measure in the assessment of the lifting task in individuals with CLBP, at least in research contexts.
Šrámek, Jan. "Vyjadřování nejistoty u přesných délkových měření II." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2011. http://www.nusl.cz/ntk/nusl-229763.
Full textBashir, Saghir Ahmed. "Measurement error in epidemiology." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.264544.
Full textViprey, Fabien. "Modélisation et caractérisation des défauts de structure de machine-outil 5 axes pour la mesure in-process." Thesis, Université Paris-Saclay (ComUE), 2016. http://www.theses.fr/2016SACLN071/document.
Full textIn-process metrology consists in obtaining measurement data directly into the manufacturing process. This method results from an increasing need of manufacturers to carry out on-line measurements during one manufacturing task or between two manufacturing tasks by using the mean of production to measure the machined part. Monitoring the sources of errors like geometric errors is one of the prerequisites to ensure the traceable dimensional metrology directly on the machine tool.This thesis deals with the geometric modeling of 5-axis machine tool based on a standardized parameterization of geometric errors. This model is simulated and simplified by the use of a virtual machine developed in order to help understand and visualize the effects of geometric errors on the volumetric error.A new standard thermo-invariant material namely Multi-Feature Bar has been developed.After its calibration and after a European intercomparison, it provides a direct metrological traceability to the SI meter for dimensional measurement on machine tool in a hostile environment. The identification of three intrinsic parameters of this standard, coupled with a measurement procedure ensures complete and traceable identification of motion errors of linear axes. The identification of position and orientation errors of axis is based on an analysis of combinations of necessary parameters to characterize volumetric error and at best. A model parameter identification procedure is proposed by minimizing the time drift of the structural loop and the effects of previously identified motion errors. Asensitivity analysis of the measurement procedure settings and of the noise effects ensures the quality of this proposed identification
Ratzer, Edward Alexander. "Error-correction on non-standard communication channels." Thesis, University of Cambridge, 2004. https://www.repository.cam.ac.uk/handle/1810/237471.
Full textWang, Qiong. "Robust Estimation via Measurement Error Modeling." NCSU, 2005. http://www.lib.ncsu.edu/theses/available/etd-08112005-222926/.
Full textBooks on the topic "Standard error of measurement"
Geological Survey (U.S.), ed. Field evaluation of the error arising from inadequate time averaging in the standard use of depth-integrating suspended-sediment samplers. Reston, Va: U.S. Dept. of the Interior, U.S. Geological Survey, 2011.
Find full textChesher, Andrew. Wefare measurement and measurement error. Bristol: University of Bristol, Department of Economics, 1999.
Find full textFuller, Wayne A., ed. Measurement Error Models. Hoboken, NJ, USA: John Wiley & Sons, Inc., 1987. http://dx.doi.org/10.1002/9780470316665.
Full textHearn, Chase P. Q-circle measurement error. Hampton, Va: Langley Research Center, 1991.
Find full textChesher, Andrew. Measurement error bias reduction. Bristol: University of Bristol, Department of Economics, 1998.
Find full textCarroll, Raymond J. Measurement error in nonlinear models. Boca Raton: Chapman & Hall/CRC, 1998.
Find full textCarroll, R. J., D. Ruppert, and L. A. Stefanski. Measurement Error in Nonlinear Models. Boston, MA: Springer US, 1995. http://dx.doi.org/10.1007/978-1-4899-4477-1.
Full textW, Van Ness John, ed. Statistical regression with measurement error. London: Arnold, 1999.
Find full textBook chapters on the topic "Standard error of measurement"
Cerin, Ester. "Standard Error of Measurement." In Encyclopedia of Quality of Life and Well-Being Research, 6318–19. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-0753-5_2847.
Full textKeeble, Michael E. "Error and Uncertainty in Metallographic Measurement." In 100 Years of E04 Development of Metallographic Standards, 53–65. 100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959: ASTM International, 2019. http://dx.doi.org/10.1520/stp160720170221.
Full textFoster, Dean P., Robert A. Stine, and Richard P. Waterman. "Standard Error." In Basic Business Statistics, 67–94. New York, NY: Springer New York, 1997. http://dx.doi.org/10.1007/978-1-4757-2717-3_4.
Full textGooch, Jan W. "Standard Error." In Encyclopedic Dictionary of Polymers, 997. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_15384.
Full textNahler, Gerhard. "standard error." In Dictionary of Pharmaceutical Medicine, 173. Vienna: Springer Vienna, 2009. http://dx.doi.org/10.1007/978-3-211-89836-9_1319.
Full textFoster, Dean P., Robert A. Stine, and Richard P. Waterman. "Standard Error." In Basic Business Statistics, 65–92. New York, NY: Springer New York, 1998. http://dx.doi.org/10.1007/978-1-4612-1696-4_4.
Full textHutchins, Tiffany, Giacomo Vivanti, Natasa Mateljevic, Roger J. Jou, Frederick Shic, Lauren Cornew, Timothy P. L. Roberts, et al. "Measurement Error." In Encyclopedia of Autism Spectrum Disorders, 1817–18. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1698-3_1644.
Full textBuzas, Jeffrey S., Leonard A. Stefanski, and Tor D. Tosteson. "Measurement Error." In Handbook of Epidemiology, 1241–82. New York, NY: Springer New York, 2014. http://dx.doi.org/10.1007/978-0-387-09834-0_19.
Full textSuen, Yi Nam, and Ester Cerin. "Measurement Error." In Encyclopedia of Quality of Life and Well-Being Research, 3907–9. Dordrecht: Springer Netherlands, 2014. http://dx.doi.org/10.1007/978-94-007-0753-5_1758.
Full textCaulcutt, Roland. "Measurement Error." In Research Methods for Postgraduates: Third Edition, 275–86. Oxford, UK: John Wiley & Sons, Ltd, 2016. http://dx.doi.org/10.1002/9781118763025.ch27.
Full textConference papers on the topic "Standard error of measurement"
Tutsch, Rainer, and Dmitriy Sumin. "Achieving precision measurements under non-standard environmental conditions." In 19th International Congress of Metrology (CIM2019), edited by Sandrine Gazal. Les Ulis, France: EDP Sciences, 2019. http://dx.doi.org/10.1051/metrology/201926005.
Full textKirkham, Harold, Artis Riepnieks, Eddy So, and Jim McBride. "Error correction: A proposal for a standard." In 2016 Conference on Precision Electromagnetic Measurements (CPEM 2016). IEEE, 2016. http://dx.doi.org/10.1109/cpem.2016.7540557.
Full textGutierrez, David, and Chad Hanak. "Measurement-While-Drilling MWD Error Model Validation – Does the Model Reflect Reality?" In SPE/IADC International Drilling Conference and Exhibition. SPE, 2021. http://dx.doi.org/10.2118/204026-ms.
Full textSun Yingda, Xu Wenqin, Zhu Liangrong, Du Haiqing, and Zhang Ya. "Estimation of uncertainty in form error CMM measurement according to new GPS standard system." In International Technology and Innovation Conference 2009 (ITIC 2009). IET, 2009. http://dx.doi.org/10.1049/cp.2009.1501.
Full textLegarda, Aritz, Alberto Izaguirre, Nestor Arana, and Aitzol Iturrospe. "Comparison and error analysis of the standard pin-hole and Scheimpflug camera calibration models." In 2013 IEEE 11th International Workshop of Electronics, Control, Measurement, Signals and their application to Mechatronics (ECMSM). IEEE, 2013. http://dx.doi.org/10.1109/ecmsm.2013.6648945.
Full textLeask, Scott B., Alice K. Li, Vincent G. McDonell, and Scott Samuelsen. "Preliminary Development of a Measurement Standard Using a Research Simplex Atomizer." In ASME 2018 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2018. http://dx.doi.org/10.1115/imece2018-87940.
Full textZhang, Rui, Feng Zhou, Long-qing Guo, and Nan Wang. "Calibration standards for digital modulation error based on CW, AM or PM signal." In 2010 75th ARFTG Microwave Measurement Conference. IEEE, 2010. http://dx.doi.org/10.1109/arftg.2010.5496333.
Full textBerndt, Sebastian, Till Mrosk, Ralf Doerner, and Friedrich Lenk. "Residual errors in coplanar on-chip 1-port calibration caused by standard deviations." In 2013 81st ARFTG Microwave Measurement Conference (ARFTG). IEEE, 2013. http://dx.doi.org/10.1109/arftg.2013.6579054.
Full textBurroughs, C. J., A. Rufenacht, S. P. Benz, and P. D. Dresselhaus. "Systematic error analysis of stepwise approximated AC waveforms generated by a Programmable Josephson Voltage Standard." In 2008 Conference on Precision Electromagnetic Measurements (CPEM 2008). IEEE, 2008. http://dx.doi.org/10.1109/cpem.2008.4574658.
Full textChen, Shih-Fang, and Jimmy C. Hsu. "Phase Error Calibration of Current Shunts at Power Frequencies Using AC-Programmable Josephson Voltage Standard." In 2018 Conference on Precision Electromagnetic Measurements (CPEM 2018). IEEE, 2018. http://dx.doi.org/10.1109/cpem.2018.8501002.
Full textReports on the topic "Standard error of measurement"
Aruoba, S. Boraǧan, Francis Diebold, Jeremy Nalewaik, Frank Schorfheide, and Dongho Song. Improving GDP Measurement: A Measurement-Error Perspective. Cambridge, MA: National Bureau of Economic Research, April 2013. http://dx.doi.org/10.3386/w18954.
Full textSchoen, Robert, Xiaotong Yang, and Gizem Solmaz. Psychometric Report for the 2019 Knowledge for Teaching Early Elementary Mathematics (K-TEEM) Test. Florida State University Libraries, May 2021. http://dx.doi.org/10.33009/lsi.1620243057.
Full textBaker, Scott, Lorenz Kueng, Steffen Meyer, and Michaela Pagel. Measurement Error in Imputed Consumption. Cambridge, MA: National Bureau of Economic Research, September 2018. http://dx.doi.org/10.3386/w25078.
Full textNybom, Martin, Toru Kitagawa, and Jan Stuhler. Measurement error and rank correlations. The IFS, April 2018. http://dx.doi.org/10.1920/wp.cem.2081.2818.
Full textGhazarians, Alan, Subrata Sanyal, and Dennis H. Jackson. Application of Uniform Measurement Error Distribution. Fort Belvoir, VA: Defense Technical Information Center, March 2016. http://dx.doi.org/10.21236/ad1007537.
Full textStefanski, L. A., and R. J. Carroll. Covariate Measurement Error in Logistic Regression. Fort Belvoir, VA: Defense Technical Information Center, April 1985. http://dx.doi.org/10.21236/ada160277.
Full textKoepke, Galen, Bob Rakoski, Robert Smith, and Dennis Camell. A Standard source method for reducing antenna factor errors in shielded room measurements. Gaithersburg, MD: National Bureau of Standards, 1996. http://dx.doi.org/10.6028/nist.tn.1382.
Full textHanshaw, R. A. Coordinate Standard Measurement Development. Office of Scientific and Technical Information (OSTI), February 2000. http://dx.doi.org/10.2172/751342.
Full textCollard-Wexler, Allan, and Jan De Loecker. Production Function Estimation and Capital Measurement Error. Cambridge, MA: National Bureau of Economic Research, July 2016. http://dx.doi.org/10.3386/w22437.
Full textVickers, Jr, and Ross R. Measurement Error in Maximal Oxygen Uptake Tests. Fort Belvoir, VA: Defense Technical Information Center, November 2003. http://dx.doi.org/10.21236/ada454282.
Full text