Academic literature on the topic 'Standardized Precipitation Index (SPI), Standardized Precipitation and Evapotranspiration index (SPEI)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Standardized Precipitation Index (SPI), Standardized Precipitation and Evapotranspiration index (SPEI).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Standardized Precipitation Index (SPI), Standardized Precipitation and Evapotranspiration index (SPEI)"
Ariyanto, Dwi Priyo, Abdul Aziz, Komariah Komariah, Sumani Sumani, and Magarsa Abara. "Comparing the accuracy of estimating soil moisture using the Standardized Precipitation Index (SPI) and the Standardized Precipitation Evapotranspiration Index (SPEI)." SAINS TANAH - Journal of Soil Science and Agroclimatology 17, no. 1 (June 29, 2020): 23. http://dx.doi.org/10.20961/stjssa.v17i1.41396.
Full textAhmadebrahimpour, Edris, Babak Aminnejad, and Keivan Khalili. "Assessing future drought conditions under a changing climate: a case study of the Lake Urmia basin in Iran." Water Supply 19, no. 6 (April 12, 2019): 1851–61. http://dx.doi.org/10.2166/ws.2019.062.
Full textVicente-Serrano, Sergio M., Santiago Beguería, and Juan I. López-Moreno. "A Multiscalar Drought Index Sensitive to Global Warming: The Standardized Precipitation Evapotranspiration Index." Journal of Climate 23, no. 7 (April 1, 2010): 1696–718. http://dx.doi.org/10.1175/2009jcli2909.1.
Full textGocic, Milan, Danilo Misic, Slavisa Trajkovic, and Mladen Milanovic. "Using GIS tool for presenting spatial distribution of drought." Facta universitatis - series: Architecture and Civil Engineering 18, no. 1 (2020): 77–84. http://dx.doi.org/10.2298/fuace200409006g.
Full textZhao, Qingzhi, Xiongwei Ma, Wanqiang Yao, Yang Liu, and Yibin Yao. "A Drought Monitoring Method Based on Precipitable Water Vapor and Precipitation." Journal of Climate 33, no. 24 (December 15, 2020): 10727–41. http://dx.doi.org/10.1175/jcli-d-19-0971.1.
Full textKatipoğlu, Okan Mert, Reşat Acar, and Selim Şengül. "Comparison of meteorological indices for drought monitoring and evaluating: a case study from Euphrates basin, Turkey." Journal of Water and Climate Change 11, S1 (November 11, 2020): 29–43. http://dx.doi.org/10.2166/wcc.2020.171.
Full textOikonomou, Panagiotis D., Christos A. Karavitis, and Elpida Kolokytha. "Multi-Index Drought Assessment in Europe." Proceedings 7, no. 1 (November 15, 2018): 20. http://dx.doi.org/10.3390/ecws-3-05822.
Full textNagy, Patrik, Martina Zeleňáková, Slávka Galas, Helena Hlavatá, and Dorota Simonová. "Identification of dry and wet 6 months’ period in eastern Slovakia using indices." MATEC Web of Conferences 310 (2020): 00047. http://dx.doi.org/10.1051/matecconf/202031000047.
Full textLi, Lingcheng, Dunxian She, Hui Zheng, Peirong Lin, and Zong-Liang Yang. "Elucidating Diverse Drought Characteristics from Two Meteorological Drought Indices (SPI and SPEI) in China." Journal of Hydrometeorology 21, no. 7 (July 1, 2020): 1513–30. http://dx.doi.org/10.1175/jhm-d-19-0290.1.
Full textSerrano-Barrios, L., S. M. Vicente-Serrano, H. Flores-Magdaleno, L. Tijerina-Chávez, and D. Vázquez-Soto. "Variabilidad espacio-temporal de las sequías en la cuenca Pacífico Norte de México (1961-2010)." Cuadernos de Investigación Geográfica 42, no. 1 (June 27, 2016): 185. http://dx.doi.org/10.18172/cig.2857.
Full textDissertations / Theses on the topic "Standardized Precipitation Index (SPI), Standardized Precipitation and Evapotranspiration index (SPEI)"
Edossa, D. C., Y. E. Woyessa, and W. A. Welderufael. "Comparison between two meteorological drought indices in the central region of South Africa." Interim : Interdisciplinary Journal, Vol 13, Issue 3: Central University of Technology Free State Bloemfontein, 2013. http://hdl.handle.net/11462/309.
Full textThe objective of this study was to characterize meteorological droughts in the Central Region of South Africa, Modder River Basin, C52A quaternary catchment using two popular drought indices: Standardized Precipitation Index (SPI) and Standardized Precipitation-Evapotranspiration Index (SPEI) and to compare the two indices. Drought events were characterized based on their frequency, duration, magnitude and intensity. The indices were computed for the time-scales that are important for planning and management of water resources, i.e. 3-, 6- and 12-month time-scales. The basic meteorological input data used in the computation of these indices were 57 years (1950-2007) of monthly precipitation and monthly temperature data which were recorded at The Cliff weather station in the quaternary catchment. It was found that both SPI and SPEI responded to drought events in similar fashion in all time-scales. During the analysis period, a total of 37, 26 and 17 drought events were identified in the area based on 3-, 6-, and 12-month times-scales, respectively. Considering event magnitude as severity parameter, results from both indices identified the periods 1984-1985, 1992-1993 and 2003-2005 as the severest drought periods in the area. However, when the effects of both drought duration and magnitude are considered (drought intensity), the most severest drought events were identified during the years 1982/83, 1966 and 1973 based on 3-, 6- and 12-month timescales, respectively. It was concluded that although the SPEI generally exhibits veracity over SPI by including, apart from precipitation, additional meteorological parameter, mean temperature, SPI should be adopted as an appropriate drought monitoring tool in an area, like Africa, where meteorological data are scarce.
Patil, Sandeep 1986. "Analysis of Spatial Performance of Meteorological Drought Indices." Thesis, 2012. http://hdl.handle.net/1969.1/148327.
Full textBook chapters on the topic "Standardized Precipitation Index (SPI), Standardized Precipitation and Evapotranspiration index (SPEI)"
Chelcea, Silvia, Monica Ionita, and Mary-Jeanne Adler. "Identification of Dry Periods in the Dobrogea Region." In Civil and Environmental Engineering, 324–39. IGI Global, 2016. http://dx.doi.org/10.4018/978-1-4666-9619-8.ch012.
Full textConference papers on the topic "Standardized Precipitation Index (SPI), Standardized Precipitation and Evapotranspiration index (SPEI)"
Manganhar, Suhail, and Humayoon Sial. "Projection of Geographical Variability and Temporal Trends on Drought Characteristics Using Standardized Precipitation Evapotranspiration Index (SPEI) for Water Resource Management of Critical Zones in Sindh, Pakistan." In 5th International Electronic Conference on Water Sciences. Basel, Switzerland: MDPI, 2020. http://dx.doi.org/10.3390/ecws-5-08449.
Full textŻARSKI, Jacek, Stanisław DUDEK, and Renata KUŚMIEREK-TOMASZEWSKA. "DRIP IRRIGATION AS A FACTOR MITIGATING DROUGHT IMPACT IN CORN CULTIVATION IN CENTRAL POLAND." In RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.167.
Full text