To see the other types of publications on this topic, follow the link: Standart Penetration Test (SPT).

Dissertations / Theses on the topic 'Standart Penetration Test (SPT)'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 15 dissertations / theses for your research on the topic 'Standart Penetration Test (SPT).'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Daniel, Christopher Ryan. "Energy transfer and grain size effects during the Standard Penetration Test (SPT) and Large Penetration Test (LPT)." Thesis, University of British Columbia, 2008. http://hdl.handle.net/2429/775.

Full text
Abstract:
The Standard Penetration Test (SPT) is the most widely used in-situ soil test in the world. "Large Penetration Test" (LPT) is a term used to describe any scaled up version of the SPT. Several types of LPT have been developed around the world for the purpose of characterizing gravel deposits, as SPT blow counts are less reliable in gravels than in sands. Both tests suffer from the lack of a reliable means of determining transferred energy. Further, the use of LPT blow counts is generally limited to calculation of equivalent SPT blow counts using correlation factors measured in sands. Variation of LPT blow counts with grain size is assumed to be negligible. This research shows that safety hammer energies can be reliably estimated from measurements of hammer impact velocity for both SPT and LPT. This approach to determining transferred energy is relatively simple, and avoids the primary limitation of existing methods, which is the inability to calibrate the instrumentation. Transferred energies and hammer impact velocities are collected from various sources. These data are used to determine the ratio between the hammer kinetic energy and the transferred energy (energy transfer ratio, ETR), which is found to follow a roughly Normal distribution for the various hammers represented. An assessment of uncertainty is used to demonstrate that an ETR based approach could be superior to existing energy measurement methods. SPT grain size effects have primarily been characterized as the variation of an empirical relative density correlation factor, (CD)SPT, with mean grain size. In this thesis, equivalent (CD)LPT data are back-calculated from measured SPT-LPT correlation factors (CS/L). Results of a numerical study suggest that SPT and LPT grain size effects should be similar and related to the ratio of the sample size to the mean grain size. Based on this observation, trend-lines with the same shape as the (CD)SPT trend-line are established for the back-calculated (CD)LPT data. A method for generating the grain size effect trend-line for LPT is then proposed. These trend lines provide a rational approach to direct interpretation of LPT data, or to improved prediction of equivalent SPT blow counts.
APA, Harvard, Vancouver, ISO, and other styles
2

Perez, Waldo Flores, Jorge Chavez Cerdena, Gary Duran Ramirez, and Maggie Martinelli Montoya. "Correlation of dynamic probing light (DPL) and standard penetration test (SPT) for sandy soil of alluvial origin." Institute of Electrical and Electronics Engineers Inc, 2020. http://hdl.handle.net/10757/656568.

Full text
Abstract:
El texto completo de este trabajo no está disponible en el Repositorio Académico UPC por restricciones de la casa editorial donde ha sido publicado.
In geotechnical studies, the dynamic probing light (DPL) turns out to be an alternative method to the Standard Penetration test (SPT) for the determination of soil parameters. The requirement of various regulations for correlating both tests in the same field and not establishing a methodology to carry it out, limits the practical scope of dynamic probing light. Thus, this research presents a correlation methodology between the dynamic probing light (DPL) and the Standard Penetration test (SPT) specifically for sandy soils (SP and SP-SM) located in an area of Chilca, located in Cañete. - Lima Peru. For the analysis, more than 400 data pairs were used, obtaining two linear correlations between the count blow of Standard Penetration-NSPT test and the dynamic probing light method-N10, which presented an adjustment correlation between 84% and 87 %.
APA, Harvard, Vancouver, ISO, and other styles
3

Lukiantchuki, Juliana Azoia. "Interpretação de resultados do ensaio SPT com base em instrumentação dinâmica." Universidade de São Paulo, 2012. http://www.teses.usp.br/teses/disponiveis/18/18132/tde-24052013-103725/.

Full text
Abstract:
O ensaio de simples reconhecimento do solo (SPT) e usualmente utilizado para estimar a resistência do solo, atraves do índice NSPT, que representa a resistencia a penetração dinâmica do amostrador no solo. Esse índice é usado diretamente em correlações empíricas ou semi-empíricas na determinação da capacidade de suporte e recalque das fundações. Entretanto, esse ensaio tem sido alvo de críticas devido a utilização dessas correlações empíricas, geralmente baseadas em observações práticas e sem nenhum fundamento científico. Críticas também estão relacionadas com a dispersão dos resultados, devido a utilização de diferentes tipos de equipamentos e procedimentos executivos. O índice NSPT depende da parcela de energia que e efetivamente transmitida ao amostrador durante a queda do martelo. Assim, análises racionais dos resultados de ensaios SPT dependem essencialmente da estimativa da quantidade dessa energia. Por esse motivo, tem sido desenvolvidas diversas pesquisas relacionados com a energia envolvida no ensaio SPT. Este trabalho apresenta interpretações dos resultados do ensaio SPT a partir das quantidades de energia envolvidas durante a queda do martelo. Essas quantidades de energia são determinadas indiretamente, através dos sinais de força normal e aceleração durante a propagação da onda de tensão ao longo da composição de hastes. Para isso, foi desenvolvido um equipamento que inclui uma instrumentação capaz de registrar esses sinais de força normal e aceleração. Uma série de ensaios SPT foi realizada com instrumentação instalada tanto no topo como na base da composição de hastes. Esse arranjo permitiu estimar as quantidades de energia disponíveis no topo e na base da composição de hastes. Assim, foi possível determinar a eficiência dos equipamentos SPT com base na quantidade de energia que efetivamente atinge o amostrador. A partir dos sinais registrados, também foi possível determinar a resistência dinâmica mobilizada no sistema solo-amostrador. Os resultados experimentais foram comparados com resultados obtidos através de métodos teóricos, baseados no Princípio de Hamilton, para a determinação da resistência estática e dinâmica do solo. Essas análises mostraram que equações teóricas podem ser adequadas para a determinação da resistência do solo, desde que seja considerada a quantidade de energia que efetivamente atinge o amostrador. Desta forma, essas equações teóricas podem ser facilmente incorporadas na prática de projeto de fundações, contribuindo para o desenvolvimento de métodos baseados na quantidade de energia necessária para a penetração do amostrador no solo.
The standard penetration test (SPT) is usually used to estimate the soil strength through the NSPT index which represents the dynamic reaction force of the sampler penetration into the soil. This index is directly used in empirical or semi-empirical correlations for the determination of the bearing capacity and foundation settlements. However, this test has been criticized due to the use of these empirical correlations, often based on practical observation without any scientific basis. Criticism is also related to result dispersion due to the use of different types of equipment and execution procedures. The NSPT index depends on the amount of energy that is effectively transmitted to the sampler during the hammer fall. Thus, rational analyses of the SPT test results essentially depend on the estimation of this amount of energy. For this reason, several studies related to the energy involved in SPT test have been developed. This research presents interpretations of the SPT test results from the amounts of energy involved during the hammer fall. These amounts of energy are indirectly assessed by means of normal force and acceleration signals during the stress wave propagation along the string of rods. For this reason, a device that includes instrumentation capable of registering these signals of normal force and acceleration was developed. A series of tests was performed with the instrumentation installed at the top and the bottom of the string of rods. This arrangement allowed estimating the amount of energy available at the top and bottom of the string of rods. Thus, it was possible to estimate the efficiency of the SPT equipment basing on the amount of energy that actually reaches the sampler. From the recorded signals, it was also possible to assess the dynamic reaction force mobilized in the soil-sample system. The results were compared with other results obtained by theoretical methods, based on the Hamilton´s Principle, for evaluating the static and dynamic reaction force of the soil. These analyzes have shown that theoretical equations may be suitable for the determination of the soil strength, provided that the amount of energy that actually reaches the sampler be considered. Thus, these theoretical equations can be easily incorporated into the practice of foundation designs contributing to the development of methods based on the amount of energy required for the penetration of the sampler into the soil.
APA, Harvard, Vancouver, ISO, and other styles
4

Wright, Alexander David. "Comparison of Performance-Based Liquefaction Initiation Analyses Between Multiple Probabilistic Liquefaction Models Using the Standard Penetration Test." BYU ScholarsArchive, 2013. https://scholarsarchive.byu.edu/etd/3710.

Full text
Abstract:
For the most recent and correct article, please click here: http://ascelibrary.org/doi/abs/10.1061/9780784412787.086 This study examines the use of performance-based approaches in liquefaction hazard analysis. Two new methods of performance-based liquefaction initiation analysis are proposed which use the works of Juang et al. (2012) and Boulanger and Idriss (2012). Further advances are made by incorporating the performance-based magnitude scaling factors as proposed by Cetin et al. (2012). Using these new equations a comparative study is made between the three methods. Further comparisons are made between the performance-based approaches and the more widely used deterministic approaches. The comparisons reveal that on average for the 11 sites used in this study, the performance-based approaches tend to be slightly less conservative than deterministic approaches overall, with large differences possible for some locations in the country. They also reveal that the newer performance-based approaches are generally less conservative than the approach proposed by Kramer and Mayfield (2007). Some cases where this relationship does not hold true and the new relationships are more conservative are outlined.
APA, Harvard, Vancouver, ISO, and other styles
5

Ulmer, Kristin Jane. "Development of a Simplified Performance-Based Procedure for Assessment of Liquefaction Triggering Using Liquefaction Loading Maps." BYU ScholarsArchive, 2015. https://scholarsarchive.byu.edu/etd/5600.

Full text
Abstract:
Seismically-induced liquefaction has been the cause of significant damage to infrastructure and is a serious concern in current civil engineering practice. Several methods are available for assessing the risk of liquefaction at a given site, each with its own strengths and limitations. One probabilistic method has been shown to provide more consistent estimates of liquefaction risk and can be tailored to the specific needs of a given project through hazard-targeted (i.e. based on return periods or likelihoods) results. This type of liquefaction assessment is typically called “performance-based,” after the Pacific Earthquake Engineering Research (PEER) Center's performance-based earthquake engineering framework. Unfortunately, performance-based liquefaction assessment is not easily performed and can be difficult for practicing engineers to use on routine projects. Previous research has shown that performance-based methods of liquefaction assessment can be simplified into an approximation procedure. This simplification has successfully been completed for the Cetin et al. (2004) empirical, probabilistic standard penetration test -based liquefaction triggering model. Until now, such a simplification has not been performed for another popular liquefaction triggering model developed by Boulanger and Idriss (2012). As some engineers either wish to use or are required to use the Boulanger and Idriss (2012) model in their liquefaction assessments, there is a need for a simplified performance-based method based on this model to supplement that based on the Cetin et al. (2004) model. This thesis provides the derivation of a simplified performance-based procedure for the assessment of liquefaction triggering using the Boulanger and Idriss (2012) model. A validation study is performed in which 10 cities across the United States are analyzed using both the simplified procedure and the full performance-based procedure. A comparison of the results from these two analyses shows that the simplified procedure provides a reasonable approximation of the full performance-based procedure. This thesis also describes the development of liquefaction loading maps for six states and a spreadsheet that performs the necessary correction calculations for the simplified method.
APA, Harvard, Vancouver, ISO, and other styles
6

Salvaterra, Andre da Silva. "A investigação geotécnica como subsídio ao estudo da evolução quaternária de planícies costeiras." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/21/21136/tde-13072018-155247/.

Full text
Abstract:
A partir da avaliação de um banco de dados com 192 sondagens SPT realizadas na costa do Estado de São Paulo, foram detalhadas neste trabalho duas perfurações executadas na planície costeira da RMBS, Município de São Vicente, litoral sudeste do Brasil, com objetivo de contribuir com o estudo estratigráfico regional, apresentando a descrição macroscópica, NSPT, resultados granulométricos, geoquímicos e geocronológicos que indicam a correlação de depósitos lamosos amostrados em profundidade nestes furos com eventos transgressivos marinhos regionais. Tais resultados permitiram o reconhecimento de depósitos lamosos associados ao Estágio Isotópico Marinho 3 (MIS3) com idades entre 44890 AP e 40950 AP, formados em ambiente mixohalino desenvolvido entre 7 e 19 m abaixo do nível do mar atual, tendo-se ainda, proxies geoquímicos que sugerem uma transgressão marinha (ou mudança climática) entre 43000 e 42000 AP. Os resultados de granulometria indicaram o predomínio de areia fina nos intervalos arenosos e silte grosso nos lamosos, com NSPT das areias entre 2 e 40 e NSPT das lamas entre 1 e 8, sendo que para as areias os números mais elevados estão relacionados aos depósitos com melhor seleção granulométrica, possivelmente, pela ação de dunas e/ou posicionadas inferiormente na coluna estratigráfica (e/ou próximas à base de cada intervalo), e para as lamas os maiores valores são encontrados nas porções inferiores das sondagens, provavelmente, devido ao peso da coluna sedimentar sobrejacente. Os resultados de diâmetro médio (φ), NSPT e CaCO3 apresentaram correlação em ambas as sondagens, observando-se para os maiores valores de φ, os menores de NSPT e os maiores de CaCO3. A distribuição dos metais na sondagem SP-02 revelou a existência de dois grupos principais, sendo o primeiro associado à dominância de minerais argilosos (K, Ba, Sc, Al, Mg e Sr), e o segundo, associado a óxidos (Fe, Ti, Cr, V, Mn, Cu, Ni e Zn), com a sequência basal lamosa (MIS5e) associada à fácies terrestre, e, as lamas intermediárias (MIS3) associadas a um ambiente mixohalino, indicando a possibilidade de rochas-fonte distintas ou mudanças nas condições climáticas entre MIS5e e MIS3.
In this work, new evidence regarding a Marine Isotope Stage 3 (MIS3) transgression on the south-eastern Brazilian coast (Baixada Santista coastal plain) is shown. Data collected from two Standard Penetration Test (SPT) drillings allowed the distinction of four sandy intervals of three mud intervals, with the intermediate sequences revealing the occurrence of myxohaline sediments between BP 45,000 and 41,000 BP. A deeper sequence, which shows a clear transition from terrestrial to a myxohaline environment, was associated with the MIS5e. Organic and inorganic proxies have been used to recognize the variations on the terrestrial/myxohaline/marine deposits, as well as to infer about climate and energy of the depositional environment. Environmental change, which could correspond to a sea-level peak or the occurrence of drier conditions, was recognized between 43,000 and 42,000 BP. The SPT values in the sands varied between 2 and 40, while for muds the SPT values ranged from 1 to 8. The results of mean diameter (φ), SPT and CaCO3 presented a correlation in both drillings, with the highest values of φ, being the lowest of SPT and the highest of CaCO3. The results reinforce the need for future works on MIS3 variability on the South American Atlantic coast.
APA, Harvard, Vancouver, ISO, and other styles
7

Rojas, Parco Frank Gabriel, and Ortiz Jhow Mckevin Zamora. "Correlación de los valores Nspt con Ndpl en los suelos arenosos de la Asociación Agropecuaria Sumac Pacha - Lurin." Bachelor's thesis, Universidad Ricardo Palma, 2015. http://cybertesis.urp.edu.pe/handle/urp/1252.

Full text
Abstract:
El presente trabajo de tesis, trata sobre las correlaciones de 2 diferentes equipos de penetración, en los suelos arenosos de la Asociación Agropecuaria Sumac Pacha ubicado en el distrito de Lurín, a fin de establecer ecuaciones de correlación entre ellas. Para el desarrollo de la presente investigación, cuyo objeto es correlacionar el número de golpes del ensayo SPT con el número de golpes DPL. Para ello se realizaron los ensayos de campo en un terreno Arenoso de 25x40m (1000 m2) de la Asociación Agropecuaria Sumac Pacha, ubicado en el distrito de Lurín. El ensayo SPT, es un ensayo de campo estandarizado que sirve para la determinación de la resistencia a la penetración del suelo y que se realiza dentro de una perforación, desde la superficie del terreno y con una profundidad y penetración definida. El ensayo DPL es un ensayo de campo para la determinación de la resistencia a la penetración del suelo. Se realiza el ensayo en terrenos arenosos con profundidades de hasta 8m. Se realizó un estudio tipo no experimental transversal, que se llevaron a cabo en un depósito arenoso con poca presencia de finos. Se realizaron las caracterizaciones correspondientes por medio de ensayos de granulometría, Límites de Attemberg, Corte Directo, Humedad natural, Densidad natural. Los Ensayos de Penetración se hicieron en suelos con características SP y SM en su mayoría, y de alto estado de densidad que varía de 1.483gr/cm3 hasta 2.182gr/cm3. Los resultados obtenidos sobre la correlación entre los valores NSPT y NDPLfueron 2 ecuaciones que fueron hallados por diferentes métodos estadísticos. Concluye que las correlaciones obtenidas serán válidas hasta los 1.80 m de profundidad; siendo las ecuaciones de correlación únicas y exclusivas para la zona de estudio (Terreno de 1000m2 dentro de la Asociación Agropecuaria Sumac Pacha) de donde se puede deducir que el número de golpes NSPT y NDPL son directamente proporcionales. This thesis, deals with two different tools correlations penetration in the sandy soils of the Agricultural Association Sumac Pacha located in the district of LurÍn, in order to establish correlation equations between them. For the development of this research, which principal trial is to correlate the number of strokes of the SPT with the number of strokes DPL. To do field trials were conducted on sandy ground of 25x40m (1000 m2) of the Agricultural Association Sumac Pacha, located in the district of LurÍn. The SPT is a standardized test field serving for the determination of resistance to soil penetration and is performed within a borehole from the earth surface and a defined penetration depth. The DPL assay is a field for determining the resistance to penetration of the soil. The trial in sandy soils with depths of up to 8m is performed. A transverse non-experimental study, which was conducted in a sandy deposit with little presence of fines was performed. The corresponding characterizations by tests of grain, Attemberg limits, Straight Cut, natural humidity, natural density were performed. Penetration tests were done in soil characteristics SP and SM mostly state and high density ranging from 1.483gr / cm3 to 2.182gr / cm3. The results on the correlation between NSPT and NDPL values were two equations were found by various statistical methods. It concludes that the correlations obtained are valid until 1.80 m depth; equations being unique and exclusive correlation for the study area (1000m2 land within the Agricultural Association Sumac Pacha) where it can be deduced that the number of strokes and NDPL NSPT are directly proportional.
APA, Harvard, Vancouver, ISO, and other styles
8

Lee, Wai-ming. "Correlation of PCPT and SPT data from a shallow marine site investigation /." View the Table of Contents & Abstract, 2004. http://sunzi.lib.hku.hk/hkuto/record/B30110385.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lee, Wai-ming, and 李慧明. "Correlation of PCPT and SPT data from a shallow marine site investigation." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2004. http://hub.hku.hk/bib/B44570077.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Vieira, Fernando de Paula. "Critério estatístico para obtenção de valores de NSPT para previsão da capacidade de carga de estacas por métodos semi empíricos." Universidade do Estado do Rio de Janeiro, 2015. http://www.bdtd.uerj.br/tde_busca/arquivo.php?codArquivo=8381.

Full text
Abstract:
Uma das tarefas mais desafiadoras do engenheiro na área da Geotecnia é a escolha dos valores de parâmetros geotécnicos obtidos de ensaios de campo ou laboratório e que serão utilizados nos modelos analíticos ou numéricos na fase de projeto de fundações. Diante das incertezas inerentes aos ensaios de SPT e da heterogeneidade de abordagens para a utilização dos valores de NSPT, é proposta neste estudo, a aplicação de um critério estatístico para obtenção de valores de NSPT, a partir da construção de intervalos de confiança de 95% de probabilidade em torno da reta ajustada de regressão linear simples entre a variável aleatória NSPT e a profundidade. Os valores obtidos de NSPT pelo critério aplicado foram utilizados na previsão da capacidade de carga de 19 estacas isoladas a partir da utilização de três métodos semi-empíricos: Aoki-Velloso (1975) com coeficientes alterados por Monteiro (1997), Décourt & Quaresma (1978) alterado pelo método de Décourt (1996) e Método de Alonso (1996). As cargas de ruptura dessas 19 estacas ensaiadas através de Provas de Carga Estática foram obtidas pelos métodos de extrapolação de Van Der Veen (1953) e Décourt (1996) e serviram para comparação e consequente validação do critério estatístico. Adicionalmente, com fulcro no item 6.2.1.2.1 da ABNT NBR 6122:2010 Resistência calculada por método semi-empírico, foram avaliados os fatores de segurança em relação às cargas de projeto, inclusive, também se utilizando da premissa de reconhecimento de regiões representativas, levando em conta o número de ensaios de SPT executados, fato que promove uma diminuição da incerteza dos parâmetros, apontando a um menor fator de segurança. A dissertação enfatiza as vantagens de um adequado tratamento estatístico dos parâmetros geotécnicos, a exemplo da recomendação já existente nas normas internacionais como Eurocódigo e outras. O critério construído permite e encoraja análises e decisões racionais no universo das partes interessadas consumidores, projetistas, fiscais de obras, contratantes e comunidade científica promovendo as discussões de forma mais objetiva e harmoniosa sobre o tema.
One of the most challenging aspects of geotechnical engineering is the selection of soil parameters from field and / or laboratory tests to be used in analytical or numerical models for foundation design. Due to known uncertainties in SPT tests and wide availability of criteria for NSPT interpretation, a proposed procedure is presented based on 95% confidence limits around a trend line defined by simple linear regression analysis expressing the variation of NSPT with depth. The NSPT values obtained by the proposed approach have been used to estimate the pile ultimate capacity of 19 isolated continuous flight auger piles using different semi-empirical methods, such as Aoki and Velloso (1975) with modified coefficients as proposed by Monteiro (1997), Décourt and Quaresma (1978) modified by Décourt (1996) and Alonso (1996). Static load tests of the same 19 piles have been extrapolated by Van Der Veen (1953) and Décourt (1996) methods, as an aid for comparison and validation of the statistical criterion. Additionally, were made with the fulcrum in item 6.2.1.2.1 of ABNT NBR 6122: 2010 - Resistance calculated by semi-empirical method, evaluations of safety factors in relation to load project, also including the premise of recognizing representative regions and taking into account the number of SPT tests, a fact that provides the decreased uncertainty of the parameters, indicating a lower FS. The dissertation emphasizes the advantages of an adequate statistical treatment of the geotechnical data, similar to what is recommended by the Eurocode. Such approach allows and encourages a more rational decision including all interested parties - consumers, designers, inspectors, contractors and scientific community providing more objective and harmonious discussions on this subject.
APA, Harvard, Vancouver, ISO, and other styles
11

Sy, Alexander. "Energy measurements and correlations of the standard penetration test (SPT) and the becker penetration test (BPT)." Thesis, 1993. http://hdl.handle.net/2429/8848.

Full text
Abstract:
The Standard penetration test (SPT) and the Becker penetration test (BPT) are two of the most widely used in-situ tests in North America. The SPT is most commonly used in sands and silty sands, while the BPT, being a large-scale penetration test, is more useful in gravelly soils. Both tests involve hammer impact on penetration rods, and the resulting penetration resistance or blow count is strongly influenced by the amount of hammer energy actually transferred into the drill rods. To make use of the large world-wide foundation performance data base currently available for the SPT, the BPT blow counts are commonly correlated to the SPT blow counts. Most of the existing correlations, however, have limited applications since they do not take into account the inherently variable output of the diesel hammer used in the Becker system and they ignore the soil friction acting on the Becker casing during driving. This research shows that the existing methods of SPT and BPT energy calibrations have serious shortcomings, and that a more fundamental approach of determining the transferred energy, based on force and acceleration measurements, should be adopted for both tests. The proposed approach provides a unified method of measuring transferred energy in the SPT and BPT, similar in principle to that currently used in dynamic testing of piles. At four research sites in Greater Vancouver, SPTs, BPTs and electric cone penetration tests were conducted. Dynamic measurements were also carried out which included force and acceleration near the top of the drill rods or pipes in the SPT and BPT, as well as bounce-chamber and combustion-chamber pressures in the double-acting diesel hammer during the BPT. An energy approach for correcting the measured BPT blow count to a reference energy level, similar in concept to that used for the SPT, is proposed. Factors affecting the BPT blow counts are investigated including hammer combustion conditions, different drill rigs, and different pipe sizes. The test results confirm that the measured transferred energy is a fundamental and useful parameter for normalizing the BPT blow counts to account for the variable energy output of the diesel hammer. The effect of casing friction in the BPT is investigated by field measurements and numerical analyses. New BPT-SPT correlations are proposed which consider the energy transfer in both tests and which, for the first time, account for casing friction in the BPT. It is shown that the proposed BPT-SPT correlations provide a rational framework for determining equivalent SPTN60 values from measured BPT blow counts, and can be applied with some confidence to gravel sites for which the BPT has proven to be a most practical and economical testing technique.
APA, Harvard, Vancouver, ISO, and other styles
12

Destéfano, Victor do Carmo. "Ensaios de penetração dinâmica – correlações entre o ensaio standard penetration test (SPT) e o penetrómetro dinâmico super pesado (DPSH)." Master's thesis, 2021. http://hdl.handle.net/10198/23738.

Full text
Abstract:
Mestrado de dupla diplomação com a Associação Educativa Evangélica - UniEvangélica
Esta dissertação pretende apresentar e correlacionar os resultados dos ensaios Standard Penetration Test (SPT) e Penetrómetro Dinâmico Superpesado (DPSH), realizados em diferentes solos da região do nordeste transmontano. Ao submeter os solos dos campos experimentais a ensaios in situ e de laboratório, foi reunido um importante conjunto de informações, relacionadas ao solo analisado e aos equipamentos empregados, podendo ser fonte útil a futuras investigações. No decorrer do trabalho, são tecidas considerações a respeito da importância da caracterização geotécnica, das vantagens da associação dos ensaios SPT e DPSH nas campanhas de caracterização geotécnica e das correlações existentes entre os ensaios e entre outros parâmetros geotécnicos. As relações obtidas entre os ensaios (NSPT/NDPSH) estão entre 0,97 a 1,35, e o valor de R² varia entre 0,79 a 0,99, próximos ao valor da unidade, indicando uma boa correlação entre os resultados dos ensaios.
This thesis goal is to present and correlate the results of the Standard Penetration Test (SPT) and Superheavy Dynamic Penetrometer (DPSH), performed in different soil types from the northeast of Portugal. When the experience with the soil types - in situ and in the laboratory - was done, an important set of information related to the analyzed soil and the equipment used was gathered and can be a useful source for future investigations. While the work was in progress, considerations are made about the importance of geotechnical characterization, the advantages of the association of SPT and DPSH tests in the geotechnical characterization and the correlations that exist between these in situ tests and other geotechnical parameters. The ratios obtained when we compared the tests (NSPT/NDPSH) are from 0.97 to 1.35, and the value of R² varies from 0.79 to 0.99, close to the unit value, indicating a good correlation between the tests results.
APA, Harvard, Vancouver, ISO, and other styles
13

Καπατσώλου, Αθηνά. "Εκτίμηση της επικινδυνότητας για ρευστοποίηση των εδαφών στην ευρύτερη περιοχή της πόλης των Πατρών." Thesis, 2008. http://nemertes.lis.upatras.gr/jspui/handle/10889/1064.

Full text
Abstract:
Σκοπός της παρούσας Διατριβής Ειδίκευσης είναι η ανάλυση, η παρουσίαση και η αξιολόγηση των γεωτεχνικών συνθηκών της πόλης των Πατρών, σε σχέση με την εκδήλωση του φαινόμενου της ρευστοποίησης και τις συνθήκες γεωλογικής καταλληλότητας για τις προς δόμηση περιοχές. Στα πλαίσια της διατριβής πραγματοποιήθηκαν γεωτεχνικές έρευνες για είκοσι πέντε (25) γεωτρήσεις που έχουν διανοιχθεί κατά μήκος της πόλης των Πατρών, και αξιολογήθηκαν τα αποτελέσματα των επί τόπου και των εργαστηριακών δοκιμών. Με τη βοήθεια του λογισμικού Petal υπολογίστηκε ο συντελεστής ασφάλειας για ρευστοποίηση σε κάθε γεώτρηση και συντάχθηκαν χάρτες ζωνών επικινδυνότητας για την πόλη των Πατρών. Η έρευνα αυτή πραγματοποιήθηκε για δύο σεισμικά γεγονότα. Για το σεισμό των Πατρών το 1993 με μέγεθος 5.4 Richter και το σεισμό του Αιγίου το 1995 με μέγεθος 6.2 Richter.
The aim of this MSc Project is the presentation, the analysis and the assessment of the geotechnical conditions in city of Patras, Western Greece, for liquefaction phenomenon and geological suitability for construction purposes. In this project were done geotechnical surveys for twenty-five (25) boreholes in area of Patras, and assessment insitu and laboratory tests. Using Petal program we can estimate the factor of safety against liquefaction. The data used to perform mapping, in some zones of liquefaction risk. The survey based on seismic facts. The first one was the earthquake in 1993 in city of Patras with magnitude 5.4 Richter and the second one was the earthquake in city of Aigio in 1995 with magnitude 6.2 Richter.
APA, Harvard, Vancouver, ISO, and other styles
14

Samui, Pijush. "Geotechnical Site Characterization And Liquefaction Evaluation Using Intelligent Models." Thesis, 2009. http://hdl.handle.net/2005/628.

Full text
Abstract:
Site characterization is an important task in Geotechnical Engineering. In situ tests based on standard penetration test (SPT), cone penetration test (CPT) and shear wave velocity survey are popular among geotechnical engineers. Site characterization using any of these properties based on finite number of in-situ test data is an imperative task in probabilistic site characterization. These methods have been used to design future soil sampling programs for the site and to specify the soil stratification. It is never possible to know the geotechnical properties at every location beneath an actual site because, in order to do so, one would need to sample and/or test the entire subsurface profile. Therefore, the main objective of site characterization models is to predict the subsurface soil properties with minimum in-situ test data. The prediction of soil property is a difficult task due to the uncertainities. Spatial variability, measurement ‘noise’, measurement and model bias, and statistical error due to limited measurements are the sources of uncertainities. Liquefaction in soil is one of the other major problems in geotechnical earthquake engineering. It is defined as the transformation of a granular material from a solid to a liquefied state as a consequence of increased pore-water pressure and reduced effective stress. The generation of excess pore pressure under undrained loading conditions is a hallmark of all liquefaction phenomena. This phenomena was brought to the attention of engineers more so after Niigata(1964) and Alaska(1964) earthquakes. Liquefaction will cause building settlement or tipping, sand boils, ground cracks, landslides, dam instability, highway embankment failures, or other hazards. Such damages are generally of great concern to public safety and are of economic significance. Site-spefific evaluation of liquefaction susceptibility of sandy and silty soils is a first step in liquefaction hazard assessment. Many methods (intelligent models and simple methods as suggested by Seed and Idriss, 1971) have been suggested to evaluate liquefaction susceptibility based on the large data from the sites where soil has been liquefied / not liquefied. The rapid advance in information processing systems in recent decades directed engineering research towards the development of intelligent models that can model natural phenomena automatically. In intelligent model, a process of training is used to build up a model of the particular system, from which it is hoped to deduce responses of the system for situations that have yet to be observed. Intelligent models learn the input output relationship from the data itself. The quantity and quality of the data govern the performance of intelligent model. The objective of this study is to develop intelligent models [geostatistic, artificial neural network(ANN) and support vector machine(SVM)] to estimate corrected standard penetration test (SPT) value, Nc, in the three dimensional (3D) subsurface of Bangalore. The database consists of 766 boreholes spread over a 220 sq km area, with several SPT N values (uncorrected blow counts) in each of them. There are total 3015 N values in the 3D subsurface of Bangalore. To get the corrected blow counts, Nc, various corrections such as for overburden stress, size of borehole, type of sampler, hammer energy and length of connecting rod have been applied on the raw N values. Using a large database of Nc values in the 3D subsurface of Bangalore, three geostatistical models (simple kriging, ordinary kriging and disjunctive kriging) have been developed. Simple and ordinary kriging produces linear estimator whereas, disjunctive kriging produces nonlinear estimator. The knowledge of the semivariogram of the Nc data is used in the kriging theory to estimate the values at points in the subsurface of Bangalore where field measurements are not available. The capability of disjunctive kriging to be a nonlinear estimator and an estimator of the conditional probability is explored. A cross validation (Q1 and Q2) analysis is also done for the developed simple, ordinary and disjunctive kriging model. The result indicates that the performance of the disjunctive kriging model is better than simple as well as ordinary kriging model. This study also describes two ANN modelling techniques applied to predict Nc data at any point in the 3D subsurface of Bangalore. The first technique uses four layered feed-forward backpropagation (BP) model to approximate the function, Nc=f(x, y, z) where x, y, z are the coordinates of the 3D subsurface of Bangalore. The second technique uses generalized regression neural network (GRNN) that is trained with suitable spread(s) to approximate the function, Nc=f(x, y, z). In this BP model, the transfer function used in first and second hidden layer is tansig and logsig respectively. The logsig transfer function is used in the output layer. The maximum epoch has been set to 30000. A Levenberg-Marquardt algorithm has been used for BP model. The performance of the models obtained using both techniques is assessed in terms of prediction accuracy. BP ANN model outperforms GRNN model and all kriging models. SVM model, which is firmly based on the theory of statistical learning theory, uses regression technique by introducing -insensitive loss function has been also adopted to predict Nc data at any point in 3D subsurface of Bangalore. The SVM implements the structural risk minimization principle (SRMP), which has been shown to be superior to the more traditional empirical risk minimization principle (ERMP) employed by many of the other modelling techniques. The present study also highlights the capability of SVM over the developed geostatistic models (simple kriging, ordinary kriging and disjunctive kriging) and ANN models. Further in this thesis, Liquefaction susceptibility is evaluated from SPT, CPT and Vs data using BP-ANN and SVM. Intelligent models (based on ANN and SVM) are developed for prediction of liquefaction susceptibility using SPT data from the 1999 Chi-Chi earthquake, Taiwan. Two models (MODEL I and MODEL II) are developed. The SPT data from the work of Hwang and Yang (2001) has been used for this purpose. In MODEL I, cyclic stress ratio (CSR) and corrected SPT values (N1)60 have been used for prediction of liquefaction susceptibility. In MODEL II, only peak ground acceleration (PGA) and (N1)60 have been used for prediction of liquefaction susceptibility. Further, the generalization capability of the MODEL II has been examined using different case histories available globally (global SPT data) from the work of Goh (1994). This study also examines the capabilities of ANN and SVM to predict the liquefaction susceptibility of soils from CPT data obtained from the 1999 Chi-Chi earthquake, Taiwan. For determination of liquefaction susceptibility, both ANN and SVM use the classification technique. The CPT data has been taken from the work of Ku et al.(2004). In MODEL I, cone tip resistance (qc) and CSR values have been used for prediction of liquefaction susceptibility (using both ANN and SVM). In MODEL II, only PGA and qc have been used for prediction of liquefaction susceptibility. Further, developed MODEL II has been also applied to different case histories available globally (global CPT data) from the work of Goh (1996). Intelligent models (ANN and SVM) have been also adopted for liquefaction susceptibility prediction based on shear wave velocity (Vs). The Vs data has been collected from the work of Andrus and Stokoe (1997). The same procedures (as in SPT and CPT) have been applied for Vs also. SVM outperforms ANN model for all three models based on SPT, CPT and Vs data. CPT method gives better result than SPT and Vs for both ANN and SVM models. For CPT and SPT, two input parameters {PGA and qc or (N1)60} are sufficient input parameters to determine the liquefaction susceptibility using SVM model. In this study, an attempt has also been made to evaluate geotechnical site characterization by carrying out in situ tests using different in situ techniques such as CPT, SPT and multi channel analysis of surface wave (MASW) techniques. For this purpose a typical site was selected wherein a man made homogeneous embankment and as well natural ground has been met. For this typical site, in situ tests (SPT, CPT and MASW) have been carried out in different ground conditions and the obtained test results are compared. Three CPT continuous test profiles, fifty-four SPT tests and nine MASW test profiles with depth have been carried out for the selected site covering both homogeneous embankment and natural ground. Relationships have been developed between Vs, (N1)60 and qc values for this specific site. From the limited test results, it was found that there is a good correlation between qc and Vs. Liquefaction susceptibility is evaluated using the in situ test data from (N1)60, qc and Vs using ANN and SVM models. It has been shown to compare well with “Idriss and Boulanger, 2004” approach based on SPT test data. SVM model has been also adopted to determine over consolidation ratio (OCR) based on piezocone data. Sensitivity analysis has been performed to investigate the relative importance of each of the input parameters. SVM model outperforms all the available methods for OCR prediction.
APA, Harvard, Vancouver, ISO, and other styles
15

Abhishek, Kumar *. "Seismic Microzonation Of Lucknow Based On Region Specific GMPE's And Geotechnical Field Studies." Thesis, 2012. http://etd.iisc.ernet.in/handle/2005/2559.

Full text
Abstract:
Mankind is facing the problem due to earthquake hazard since prehistoric times. Many of the developed and developing countries are under constant threats from earthquakes hazards. Theories of plate tectonics and engineering seismology have helped to understand earthquakes and also to predicate earthquake hazards on a regional scale. However, the regional scale hazard mapping in terms of seismic zonation has been not fully implemented in many of the developing countries like India. Agglomerations of large population in the Indian cities and poor constructions have raised the risk due to various possible seismic hazards. First and foremost step towards hazard reduction is estimation of the seismic hazards in regional scale. Objective of this study is to estimate the seismic hazard parameters for Lucknow, a part of Indo-Gangetic Basin (IGB) and develop regional scale microzonation map. Lucknow is a highly populated city which is located close to the active seismic belt of Himalaya. This belt came into existence during the Cenozoic era (40-50 million years ago) and is a constant source of seismic threats. Many of the devastating earthquakes which have happened since prehistoric times such as 1255 Nepal, 1555 Srinagar, 1737 Kolkata, 1803 Nepal, 1833 Kathmandu, 1897 Shillong, 1905 Kangra, 1934 Bihar-Nepal, 1950 Assam and 2005 Kashmir. Historic evidences show that many of these earthquakes had caused fatalities even up to 0.1 million. At present, in the light of building up strains and non-occurrence of a great event in between 1905 Kangra earthquake and 1934 Bihar-Nepal earthquake regions the stretch has been highlighted as central seismic gap. This location may have high potential of great earthquakes in the near future. Geodetic studies in these locations indicate a possible slip of 9.5 m which may cause an event of magnitude 8.7 on Richter scale in the central seismic gap. Lucknow, the capital of Uttar Pradesh has a population of 2.8 million as per Census 2011. It lies in ZONE III as per IS1893: 2002 and can be called as moderate seismic region. However, the city falls within 350 km radial distance from Main Boundary Thrust (MBT) and active regional seismic source of the Lucknow-Faizabad fault. Considering the ongoing seismicity of Himalayan region and the Lucknow-Faizabad fault, this city is under high seismic threat. Hence a comprehensive study of understanding the earthquake hazards on a regional scale for the Lucknow is needed. In this work the seismic microzonation of Lucknow has been attempted. The whole thesis is divided into 11 chapters. A detailed discussion on the importance of this study, seismicity of Lucknow, and methodology adopted for detailed seismic hazard assessment and microzonation are presented in first three chapters. Development of region specific Ground Motion Prediction Equation (GMPE) and seismic hazard estimation at bedrock level using highly ranked GMPEs are presented in Chapters 4 and 5 respectively. Subsurface lithology, measurement of dynamic soil properties and correlations are essential to assess region specific site effects and liquefaction potential. Discussion on the experimental studies, subsurface profiling using geotechnical and geophysical tests results and correlation between shear wave velocity (SWV) and standard penetration test (SPT) N values are presented in Chapter 6. Detailed shear wave velocity profiling with seismic site classification and ground response parameters considering multiple ground motion data are discussed in Chapters 7 and 8. Chapters 9 and 10 present the assessment of liquefaction potential and determination of hazard index with microzonation maps respectively. Conclusions derived from each chapter are presented in Chapter 11. A brief summary of the work is presented below: Attenuation relations or GMPEs are important component of any seismic hazard analysis which controls accurate prediction of the hazard values. Even though the Himalayas have experienced great earthquakes since ancient times, suitable GMPEs which are applicable for a wide range of distance and magnitude are limited. Most of the available regional GMPEs were developed considering limited recorded data and/or pure synthetic ground motion data. This chapter presents development of a regional GMPE considering both the recorded as well as synthetic ground motions. In total 14 earthquakes consisting of 10 events with recorded data and 4 historic events with Isoseismal maps are used for the same. Synthetic ground motions based on finite fault model have been generated at unavailable locations for recorded events and complete range distances for historic earthquakes. Model parameters for synthetic ground motion were arrived by detailed parametric study and from literatures. A concept of Apparent Stations (AS) has been used to generate synthetic ground motion in a wide range of distance as well as direction around the epicenter. Synthetic ground motion data is validated by comparing with available recorded data and peak ground acceleration (PGA) from Isoseismal maps. A new GMPE has been developed based on two step stratified regression procedure considering the combined dataset of recorded and synthetic ground motions. The new GMPE is validated by comparing with three recently recorded earthquakes events. GMPE proposed in this study is capable of predicting PGA values close to recorded data and spectral acceleration up to period of 2 seconds. Comparison of new GMPE with the recorded data of recent earthquakes shows a good matching of ground motion as well as response spectra. The new GMPE is applicable for wide range of earthquake magnitudes from 5 to 9 on Mw scale. Reduction of future earthquake hazard is possible if hazard values are predicted precisely. A detailed seismic hazard analysis is carried out in this study considering deterministic and probabilistic approaches. New seismotectonic map has been generated for Lucknow considering a radial distance of 350 km around the city centre, which also covers active Himalayan plate boundaries. Past earthquakes within the seismotectonic region have been collected from United State Geological Survey (USGS), Northern California Earthquake Data Centre (NCEDC), Indian Meteorological Department (IMD), Seismic Atlas of India and its Environs (SEISAT) etc. A total of 1831 events with all the magnitude range were obtained. Collected events were homogenized, declustered and filtered for Mw ≥ 4 events. A total of 496 events were found within the seismic study region. Well delineated seismic sources are compiled from SEISAT. Superimposing the earthquake catalogue on the source map, a seismotectonic map of Lucknow was generated. A total of 47 faults which have experienced earthquake magnitude of 4 and above are found which are used for seismic hazard analysis. Based on the distribution of earthquake events on the seismotectonic map, two regions have been identified. Region I which shows high density of seismic events in the area in and around of Main Boundary Thrust (MBT) and Region II which consists of area surrounding Lucknow with sparse distribution of earthquake events. Data completeness analysis and estimation of seismic parameter “a” and “b” are carried out separately for both the regions. Based on the analysis, available earthquake data is complete for a period of 80 years in both the regions. Using the complete data set, the regional recurrence relations have been developed. It shows a “b” value of 0.86 for region I and 0.9 for Region II which are found comparable with earlier studies. Maximum possible earthquake magnitude in each source has been estimated using observed magnitude and doubly truncated Gutenberg-Richter relation. The study area of Lucknow is divided into 0.015o x 0.015o grid size and PGA at each grid has been estimated by considering all sources and the three GMPEs. A Matlab code was generated for seismic hazard analysis and maximum PGA value at each grid point was determined and mapped. Deterministic seismic hazard analysis (DSHA) shows that maximum expected PGA values at bedrock level varies from 0.05g in the eastern part to 0.13g in the northern region. Response spectrum at city centre is also developed up to a period of 2 seconds. Further, Probabilistic seismic hazard analysis (PSHA) has been carried out and PGA values for 10 % and 2 % probability of exceedence in 50 years have been estimated and mapped. PSHA for 10 % probability shows PGA variation from 0.035g in the eastern parts to 0.07g in the western and northern parts of Lucknow. Similarly PSHA for 2 % probability of exceedence indicates PGA variation from 0.07g in the eastern parts while the northern parts are expecting PGA of 0.13g. Uniform hazard spectra are also developed for 2 % and 10 % probability for a period of up to 2 seconds. The seismic hazard analyses in this study show that the northern and western parts of Lucknow are more vulnerable when compared to other part. Bedrock hazard values completely change due to subsoil properties when it reaches the surface. A detailed geophysical and geotechnical investigation has been carried out for subsoil profiling and seismic site classification. The study area has been divided into grids of 2 km x 2 km and roughly one geophysical test using MASW (Multichannel Analysis Surface Wave) has been carried out in each grid and the shear wave velocity (SWV) profiles of subsoil layers are obtained. A total of 47 MASW tests have been carried out and which are uniformly distributed in Lucknow. In addition, 12 boreholes have also been drilled with necessary sampling and measurement of N-SPT values at 1.5 m interval till a depth of 30 m. Further, 11 more borelog reports are collected from the same agency hired for drilling the boreholes. Necessary laboratory tests are conducted on disturbed and undisturbed soil samples for soil classification and density measurement. Based on the subsoil informations obtained from these boreholes, two cross-sections up to a depth of 30 m have been generated. These cross-sections show the presence of silty sand in the top 10 m at most of the locations followed by clayey sand of low to medium compressibility till a depth of 30 m. In between the sand and clay traces of silt were also been found in many locations. In addition to these boreholes, 20 deeper boreholes (depth ≥150 m) are collected from Jal Nigam (Water Corporation) Lucknow, Government of Uttar Pradesh. Typical cross-section along the alignment of these deeper boreholes has been generated up to 150 m depth. This cross-section shows the presence of fine sand near Gomati while other locations are occupied by surface clayey sand. Also, the medium sand has been found in the western part of the city at a depth of 110 m which continues till 150 m depth. On careful examination of MASW and boreholes with N-SPT, 17 locations are found very close and SWV and N-SPT values are available up to 30 m depth. These SWV and N-SPT values are complied and used to develop correlations between SWV and N-SPT for sandy soil, clayey soil and all soil types. This correlation is the first correlation for IGB soil deposits considered measured data up to 30 m. The new correlation is verified graphically using normal consistency ratio and standard percentage error with respect to measured N-SPT and SWV. Further, SWV and N-SPT profiles are used Another important earthquake induced hazard is liquefaction. Even though many historic earthquakes caused liquefaction in India, very limited attempt has been made to map liquefaction potential in IGB. In this study, a detailed liquefaction analysis has been carried out for Lucknow a part of Ganga Basin to map liquefaction potential. Initially susceptibility of liquefaction for soil deposits has been assessed by comparing the grain size distribution curve obtained from laboratory tests with the range of grain size distribution for potentially liquefiable soils. Most of surface soil deposits in the study area are susceptible to liquefaction. At all the 23 borehole locations, measured N-SPT values are corrected for (a) Overburden Pressure (CN), (b) Hammer energy (CE), (c) Borehole diameter (CB), (d) presence or absence of liner (CS), (e) Rod length (CR) and (f) fines content (Cfines). Surface PGA values at each borehole locations are used to estimate Cyclic Stress Ratio (CSR). Corrected N-SPT values [(N1)60CS] are used to estimate Cyclic Resistance Ratio (CRR) at each layer. CSR and CRR values are used to estimate Factor of Safety (FOS) against liquefaction in each layer. Least factor safety values are indentified from each location and presented liquefaction factor of safety map for average and maximum amplified PGA values. These maps highlight that northern, western and central parts of Lucknow are very critical to critical against liquefaction while southern parts shows moderate to low critical area. The entire alignment of river Gomati falls in very critical to critical regions for liquefaction. Least FOS shows worst scenario and does not account thickness of liquefiable soil layers. Further, these FOS values are used to determine Liquefaction Potential Index (LPI) of each site and developed LPI map. Based on LPI map, the Gomati is found as high to very high liquefaction potential region. Southern and the central parts of Lucknow show low to moderate liquefaction potential while the northern and western Lucknow has moderate to high liquefaction potential. All possible seismic hazards maps for Lucknow have been combined to develop final microzonation map in terms of hazard index values. Hazard index maps are prepared by combining rock PGA map, site classification map in terms of shear wave velocity, amplification factor map, and FOS map and predominant period map by adopting Analytical Hierarchy Process (AHP). All these parameters have been given here in the order starting with maximum weight of 6 for PGA to lower weight of 1 for predominant frequency. Normalized weights of each parameter have been estimated. Depending upon the variation of each hazard parameter values, three to five ranks are assigned and the normalized ranks are calculated. Final hazard index values have been estimated by multiplying normalized ranks of each parameter with the normalized weights. Microzonation map has been generated by mapping hazard index values. Three maps were generated based on DSHA, PSHA for 2% and 10 % probability of exceedence in 50 years. Hazard index maps from DSHA and PSHA for 2 % probability show similar pattern. Higher hazard index were obtained in northern and western parts of Lucknow and lower values in others. The new microzonation maps can help in dividing the Lucknow into three parts as high area i.e. North western part, moderate hazard area i.e. central part and low hazard area which covers southern and eastern parts of Lucknow. This microzonation is different from the current seismic code where all area is lumped in one zone without detailed assessment of different earthquake hazard parameters. Finally this study brings out first region specific GMPE considering recorded and synthetic ground monitions for wide range of magnitudes and distances. Proposed GMPE can also be used in other part of the Himalayan region as it matches well with the highly ranked GMPEs. Detailed rock level PGA map has been generated for Lucknow considering DSHA and PSHA. A detailed geotechnical and geophysical experiments are carried out in Lucknow. These results are used to develop correction between SWV and N-SPT values for soil deposit in IGB and site classification maps for the study area. Amplification and liquefaction potential of Lucknow are estimated by considering multiple ground motions data to account different earthquake ground motion amplitude, duration and frequency, which is unique in the seismic microzonation study.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography