Academic literature on the topic 'Star formation, astrochemistry'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Star formation, astrochemistry.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Star formation, astrochemistry"

1

Jørgensen, Jes K., Arnaud Belloche, and Robin T. Garrod. "Astrochemistry During the Formation of Stars." Annual Review of Astronomy and Astrophysics 58, no. 1 (2020): 727–78. http://dx.doi.org/10.1146/annurev-astro-032620-021927.

Full text
Abstract:
Star-forming regions show a rich and varied chemistry, including the presence of complex organic molecules—in both the cold gas distributed on large scales and the hot regions close to young stars where protoplanetary disks arise. Recent advances in observational techniques have opened new possibilities for studying this chemistry. In particular, the Atacama Large Millimeter/submillimeter Array has made it possible to study astrochemistry down to Solar System–size scales while also revealing molecules of increasing variety and complexity. In this review, we discuss recent observations of the c
APA, Harvard, Vancouver, ISO, and other styles
2

Cridland, Alexander J., Christian Eistrup, and Ewine F. van Dishoeck. "Connecting planet formation and astrochemistry." Astronomy & Astrophysics 627 (July 2019): A127. http://dx.doi.org/10.1051/0004-6361/201834378.

Full text
Abstract:
Combining a time-dependent astrochemical model with a model of planet formation and migration, we compute the carbon-to-oxygen ratio (C/O) of a range of planetary embryos starting their formation in the inner solar system (1–3 AU). Most of the embryos result in hot Jupiters (M ≥ MJ, orbital radius <0.1 AU) while the others result in super-Earths at wider orbital radii. The volatile and ice abundance of relevant carbon and oxygen bearing molecular species are determined through a complex chemical kinetic code that includes both gas and grain surface chemistry. This is combined with a model f
APA, Harvard, Vancouver, ISO, and other styles
3

Tan, Jonathan C. "Fire from Ice - Massive Star Birth from Infrared Dark Clouds." Proceedings of the International Astronomical Union 13, S332 (2017): 139–52. http://dx.doi.org/10.1017/s1743921317009784.

Full text
Abstract:
AbstractI review massive star formation in our Galaxy, focussing on initial conditions in Infrared Dark Clouds (IRDCs), including the search for massive pre-stellar cores (PSCs), and modeling of later stages of massive protostars, i.e., hot molecular cores (HMCs). I highlight how developments in astrochemistry, coupled with rapidly improving theoretical/computational and observational capabilities are helping to improve our understanding of the complex process of massive star formation.
APA, Harvard, Vancouver, ISO, and other styles
4

Ishak, B. "Introduction to astrochemistry: chemical evolution from interstellar clouds to star and planet formation." Contemporary Physics 60, no. 3 (2019): 262. http://dx.doi.org/10.1080/00107514.2019.1621938.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Aalto, S. "Astrochemistry and star formation in nearby galaxies: from galaxy disks to hot nuclei." EAS Publications Series 75-76 (2015): 73–80. http://dx.doi.org/10.1051/eas/1575013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Mason, Nigel J., Binukumar Nair, Sohan Jheeta, and Ewelina Szymańska. "Electron induced chemistry: a new frontier in astrochemistry." Faraday Discuss. 168 (2014): 235–47. http://dx.doi.org/10.1039/c4fd00004h.

Full text
Abstract:
The commissioning of the ALMA array and the next generation of space telescopes heralds the dawn of a new age of Astronomy, in which the role of chemistry in the interstellar medium and in star and planet formation may be quantified. A vital part of these studies will be to determine the molecular complexity in these seemingly hostile regions and explore how molecules are synthesised and survive. The current hypothesis is that many of these species are formed within the ice mantles on interstellar dust grains with irradiation by UV light or cosmic rays stimulating chemical reactions. However,
APA, Harvard, Vancouver, ISO, and other styles
7

Nishimura, Yuri, Takashi Shimonishi, Yoshimasa Watanabe, et al. "Molecular Composition of Local Dwarf Galaxies: Astrochemistry in Low-metallicity Environments." Proceedings of the International Astronomical Union 14, S344 (2018): 182–85. http://dx.doi.org/10.1017/s1743921318006336.

Full text
Abstract:
AbstractTo investigate molecular composition of low-metallicity environments, we conducted spectral line survey observations in the 3 mm band toward three dwarf galaxies, the Large Magellanic Cloud, IC 10, and NGC 6822 with the Mopra 22 m, the Nobeyama 45 m and the IRAM 30 m, respectively. The rotational transitions of CCH, HCN, HCO+, HNC, CS, SO, 13CO, and 12CO were detected in all three galaxies. We found that the spectral intensity patterns are similar to one another regardless of star formation activities. Compared with Solar-metallicity environments, the molecular compositions of dwarf ga
APA, Harvard, Vancouver, ISO, and other styles
8

Harada, Nanase. "High-Temperature Chemistry in External Galaxies." Proceedings of the International Astronomical Union 13, S332 (2017): 25–36. http://dx.doi.org/10.1017/s1743921317006755.

Full text
Abstract:
AbstractIn external galaxies, some galaxies have higher activities of star formation and central supermassive black holes. The interstellar medium in those galaxies can be heated by different mechanisms such as UV-heating, X-ray heating, cosmic-ray heating, and shock/mechanical heating. Chemical compositions can also be affected by those heating mechanisms. Observations of many molecular species in those nearby galaxies are now possible with the high sensitivity of Atacama Large Millimeter/sub-millimeter Array (ALMA). Here I cover different chemical models for those heating mechanisms. In addi
APA, Harvard, Vancouver, ISO, and other styles
9

Qin, Sheng-Li, Tie Liu, Xunchuan Liu, et al. "ATOMS: ALMA Three-millimeter Observations of Massive Star-forming regions – VIII. A search for hot cores by using C2H5CN, CH3OCHO, and CH3OH lines." Monthly Notices of the Royal Astronomical Society 511, no. 3 (2022): 3463–76. http://dx.doi.org/10.1093/mnras/stac219.

Full text
Abstract:
ABSTRACT Hot cores characterized by rich lines of complex organic molecules are considered as ideal sites for investigating the physical and chemical environments of massive star formation. We present a search for hot cores by using typical nitrogen- and oxygen-bearing complex organic molecules (C2H5CN, CH3OCHO, and CH3OH), based on ALMA Three-millimeter Observations of Massive Star-forming regions (ATOMS). The angular resolutions and line sensitivities of the ALMA observations are better than 2 arcsec and 10 mJy beam−1, respectively. A total of 60 hot cores are identified with 45 being newly
APA, Harvard, Vancouver, ISO, and other styles
10

Caselli, P., O. Sipilä, and J. Harju. "Deuterated forms of H 3 + and their importance in astrochemistry." Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 377, no. 2154 (2019): 20180401. http://dx.doi.org/10.1098/rsta.2018.0401.

Full text
Abstract:
At the low temperatures (approx. 10 K) and high densities (approx. 100 000 H 2 molecules per cm −3 ) of molecular cloud cores and protostellar envelopes, a large amount of molecular species (in particular those containing C and O) freeze-out onto dust grain surfaces. It is in these regions that the deuteration of H 3 + becomes very efficient, with a sharp abundance increase of H 2 D + and D 2 H + . The multi-deuterated forms of H 3 + participate in an active chemistry: (i) their collision with neutral species produces deuterated molecules such as the commonly observed N 2 D + , DCO + and multi
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Star formation, astrochemistry"

1

Von, Procházka Azrael Alžbeta. "Prestellar and hot molecular cores : astrochemistry in the early stages of star formation." Thesis, Queen's University Belfast, 2013. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.603432.

Full text
Abstract:
This thesis addresses the problem of complex molecule formation in the prestellar and hot core stages of interstellar star formation. We have enhanced a modified rates chemical code to include calculations of physisorption and chemisorption on interstellar grains consisting of amorphous carbon, graphite PAH particles, para-site PAH particles, and silicates as well as calculations of non-thermal desorption via cosmic ray heating, H2 desorption, and cosmic ray-induced photodesorption. We incorporate a time-dependent, warm-up parameter in order to self-consistently treat the chemistry of our dark
APA, Harvard, Vancouver, ISO, and other styles
2

Hernandez, Gomez Antonio. "IRAS 16293-2422 : des longueurs d'onde centimétriques à l'infrarouge lointain et détermination de sa structure tridimensionnelle." Thesis, Toulouse 3, 2019. http://www.theses.fr/2019TOU30004.

Full text
Abstract:
Dans cette thèse, nous présentons une étude observationnelle et multifréquence des propriétés d'IRAS16293-2422 (I16293), un système d'étoiles multiples de faible masse et de type solaire bien étudié, qui se trouve dans le nuage sombre L1689N dans le complexe d'Ophiuchus. I16293 est la source prototype pour les études d'astrochimie en raison de sa richesse en raies moléculaires, elle constitue un laboratoire idéal pour étudier non seulement la formation de systèmes stellaires, mais également la chimie pendant les premiers stades de la formation des étoiles. Dans ce travail, nous mettrons partic
APA, Harvard, Vancouver, ISO, and other styles
3

Stephán, Gwendoline. "Modélisation de la chimie dans les régions de formation d'étoiles massives avec des PDRs internes." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEO012/document.

Full text
Abstract:
Les conditions menant à la formation des étoiles massives sont toujours étudiées mais un scénario de leur évolution a été avancé : lors de l’effondrement d’un coeur froid pré-stellaire sous l’effet de la gravité, le milieu se réchauffe et entre ainsi dans la phase de coeur chaud moléculaire (CCM). La proto-étoile centrale en formation accrète de la matière, augmentant sa masse et sa luminosité, et finalement devient suffisamment évoluée pour émettre des photons UV qui irradient l’entourage de l’étoile formant ainsi une région HII hypercompact (HC), puis une région HII ultracompact (UC). À ce s
APA, Harvard, Vancouver, ISO, and other styles
4

Al-Edhari, Ali Jaber. "Complex organic molecules in solar-type star forming regions." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAY048/document.

Full text
Abstract:
Le but de la présente thèse est l'étude de la compléxité moléculaire dans les régions de formation stellaires. Cette thèse s'axe sur deux classes de molécule aux caractéristiques prébiotiques : les molécules organiques complexes et les cyanopolyynes.Dans ce contexte, j'ai analysé des données d'un seul échantillon de relevés spec- traux en exploitant des codes de transfert radiatif à l'équilibre thermodynamique local (LTE) et/ou non-LTE pour deux sources : une proto-étoile de type solaire dans un environnement calme (IRAS 16293-2422) et un proto-ama constitué de proto-étoile de type solaire (OM
APA, Harvard, Vancouver, ISO, and other styles
5

Vidal, Thomas. "Revisiting the chemistry of star formation." Thesis, Bordeaux, 2018. http://www.theses.fr/2018BORD0151/document.

Full text
Abstract:
Les études astrochimiques de la formation stellaire sont particulièrement importantes pour la compréhension de l'évolution de l'Univers, du milieu interstellaire diffus à la formation des systèmes stellaires. Les récentes avancées en matière de modélisation chimique permettent d'apporter de nouveaux résultats sur le processus de formation stellaire et les structures mises en jeu. L'objectif de ma thèse était donc d'apporter un regard neuf sur la chimie de la formation stellaire en utilisant les récentes avancées sur le modèle chimique Nautilus. J'ai pour cela étudié l'évolution de la chimie du
APA, Harvard, Vancouver, ISO, and other styles
6

Ospina-Zamudio, Juan David. "Complexité chimique des protoétoiles de masse intermédiaire : une étude de Cep E-mm." Thesis, Université Grenoble Alpes (ComUE), 2019. http://www.theses.fr/2019GREAY013/document.

Full text
Abstract:
Les étoiles de masse intermédiaire (2M⊙ ≤ M ≤ 10M⊙) sont parmi les sources dominantes du champ interstellaire FUV dans la Galaxie. Elles régulent les phases du milieu interstellaire et l’ensemble des processus de formation stellaire galactique. Alors que les protoétoiles de type solaire et massives ont été et continuent à faire l’objet de nombreuses études, la formation des étoiles intermédiaires a été relativement peu étudiée. Leur structure physique, composition chimique et leur richesse moléculaire sont un domaine à explorer.L’objectif de ma thèse est d’obtenir un recensement détaillé et au
APA, Harvard, Vancouver, ISO, and other styles
7

Fechtenbaum, Sarah. "Conditions initiales de la formation des étoiles massives : Astrochimie de la protoétoile CygX-N63." Thesis, Bordeaux, 2015. http://www.theses.fr/2015BORD0204/document.

Full text
Abstract:
La naissance des étoiles massives est aujourd’hui encore mal comprise. En particulier, les conditions initiales de leur formation restent largement inconnues. Pour éclairer cette question, nous avons réalisé un relevé spectral complet non biaisé avec le télescope 30 m de l’IRAM vers la protoétoile massive CygX-N63 (M ~ 58 M◦ et L~ 340 L◦). Nous avons mis en évidence une complexité moléculaire significative avec plus de 40 espèces. L’ion CF+ est observé pour la première fois dans une protoétoile. Une possible première détection de l’espèce prébiotique CH2NH dans une protoétoile est aussi propos
APA, Harvard, Vancouver, ISO, and other styles
8

Rimmer, Paul Brandon. "The Chemical Impact of Physical Conditions in the Interstellar Medium." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1331086619.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Tabone, Benoît. "L'origine des jets protostellaires à l'ère d'ALMA : de la modélisation aux observations." Thesis, Paris Sciences et Lettres (ComUE), 2018. http://www.theses.fr/2018PSLEO024/document.

Full text
Abstract:
L’extraction du moment cinétique au sein des disques protostellaires est le processus clé qui détermine la masse finale accrétée par une étoile, ainsi que les conditions de formation de son cortège planétaire. Il a été proposé que les jets protostellaires pourraient jouer un rôle essentiel dans cette extraction, via un processus magnétohydrodynamique (MHD). L’objectif principal de ce travail de thèse est de mettre à profit le gain révolutionnaire en résolution et en sensibilité apporté par l’interféromètre submillimétrique ALMA afin de clarifier le processus d’accrétion-éjection à l’œuvre dans
APA, Harvard, Vancouver, ISO, and other styles
10

Hincelin, Ugo. "Caractérisation physico-chimique des premières phases de formation des disques protoplanétaires." Thesis, Bordeaux 1, 2012. http://www.theses.fr/2012BOR14603/document.

Full text
Abstract:
Les étoiles de type solaire se forment par l'effondrement d'un nuage moléculaire, durant lequel la matière s'organise autour de l'étoile en formation sous la forme d'un disque, appelé disque protoplanétaire. Dans ce disque se forment les planètes, comètes et autres objets du système stellaire. La nature de ces objets peut donc avoir un lien avec l'histoire de la matière du disque.J'ai étudié l'évolution chimique et physique de cette matière, du nuage au disque, à l'aide du code de chimie gaz-grain Nautilus.Une étude de sensibilité à divers paramètres du modèle (comme les abondances élémentaire
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Star formation, astrochemistry"

1

C, Minh Y., and Dishoeck, Ewine Fleur van, 1955-, eds. Astrochemistry : from molecular clouds to planetary systems: Proceedings of the 197th Symposium of the International Astronomical Union held in Sogwipo, Cheju, Korea, 23-27 August 1999. Published on behalf of the International Astronomical Union by Astronomical Society of the Pacific, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Introduction to Astrochemistry: Chemical Evolution from Interstellar Clouds to Star and Planet Formation. Springer Japan, 2018.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Yamamoto, Satoshi (Illustrator). Introduction to Astrochemistry: Chemical Evolution from Interstellar Clouds to Star and Planet Formation. Springer London, Limited, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Korea) International Astronomical Union Symposium 1999 (Sogwipo-Si and Ewine F. Van Dishoeck. Astrochemistry: From Molecular Clouds to Planetary Systems. Astronomical Society of the Pacific, 2000.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Yamamoto, Satoshi (Illustrator). Introduction to Astrochemistry: Chemical Processes in Stars and Planet Formation. Springer Japan, 2017.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Star formation, astrochemistry"

1

Rana, N. C., and D. A. Wilkinson. "The Role of Metallicity and H2 in Star Formation in the Galaxy." In Astrochemistry. Springer Netherlands, 1987. http://dx.doi.org/10.1007/978-94-009-4774-0_55.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nejad, L. A. M., and D. A. Williams. "The C:O ratio in dark clouds with cyclic star formation." In Astrochemistry of Cosmic Phenomena. Springer Netherlands, 1992. http://dx.doi.org/10.1007/978-94-011-2761-5_56.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"Chemistry and Dust Formation in Circumstellar Regions and Supernovae." In Astrochemistry. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781839163968-00129.

Full text
Abstract:
Dust is an important component of the interstellar gas, but it isn't formed in interstellar clouds. It is made in some particular and much denser regions associated with stars, and dust formation follows a period of extensive chemistry in those regions. We describe chemistry and dust formation in two types of region that are believed to make the most significant contributions to dust in the Milky Way. The first regions are the envelopes of fairly cool modest stars (these stars are of about solar mass); these envelopes develop towards the final stages of the stellar evolution. Chemistry, nucleation and then dust deposition may occur in these envelopes, and the amount of dust produced may be sufficient to extinguish the light of the star itself. Newly-formed dust is ultimately driven away from the star by radiation pressure and mixes with pre-existing interstellar dust. The second type of location in which dust is formed is in the explosions that end the lives of much more massive stars; the supernovae. These highly energetic explosions eject large amounts of material from the star, and – unlikely though it may seem – conditions may become favourable for chemistry and for nuclei to form, on which solid dust grains may then be deposited. We discuss the chemistry that leads to nucleation and grain growth in both these scenarios.
APA, Harvard, Vancouver, ISO, and other styles
4

"Conclusions." In Astrochemistry. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781839163968-00227.

Full text
Abstract:
The chemical richness of the Milky Way and other galaxies can be explained by a combination of gas phase reactions together with reactions on the surfaces of dust grains and reactions in ices deposited on those grains. Molecules and dust grains play important roles within galaxies, affecting their physical evolution by driving star and planet formation and modifying the content of the interstellar medium. We show that the difficulties (expressed in Chapter 1) of creating extensive chemistry in the apparently hostile environments of the Milky Way and other galaxies can be readily overcome. Star and planet formation provide locations in which a remarkably rich range of organic molecules can form; these species include a number of amino acids that may form the building blocks of RNA and DNA. This result, confirmed by many laboratory experiments, lends support to the concept of abiogenesis – the origin of life as a consequence of reactions in non-living matter. However, the necessary intervening steps are not yet understood.
APA, Harvard, Vancouver, ISO, and other styles
5

"Interstellar Chemistry, Astrobiology, and the Origin of Life." In Astrochemistry. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781839163968-00185.

Full text
Abstract:
We examine the idea that life may have arisen as a consequence of chemistry occurring in non-living (abiotic) matter, a concept known as abiogenesis. We describe how the formation of stars and planets may provide locations favourable for abiogenesis, and we discuss the chemical and mineralogical diversity in various regions of the solar system. Using evidence from many relevant laboratory experiments we discuss the suitability of these regions for abiogenesis. The difficulties associated with proceeding from a rich chemistry of organic molecules to a chemistry organized and controlled by RNA and DNA are described. There is still much to discover.
APA, Harvard, Vancouver, ISO, and other styles
6

"Surface Chemistry on Interstellar Dust Grains." In Astrochemistry. The Royal Society of Chemistry, 2023. http://dx.doi.org/10.1039/9781839163968-00158.

Full text
Abstract:
The presence of dust in the interstellar medium was discovered because of the obscuration it causes of the light of distant stars. That obscuration also shields the interiors of interstellar clouds from the destructive effects of starlight and encourages chemistry to develop there. However, dust contributes to interstellar chemistry in other ways, too. In this chapter, we describe the role of dust in enabling surface chemistry to take place in interstellar clouds. This surface chemistry is of greatest importance in the case of molecular hydrogen formation, because H2 plays a seminal role in almost all of interstellar chemistry (as seen in Chapters 4 and 5, particularly). Theoretical and experimental evidence supporting the production of H2 and some other species in surface chemistry is described in this chapter.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Star formation, astrochemistry"

1

Hincelin, Ugo, Kenji Furuya, Yuri Aikawa, Tatiana Vasyunina, Qiang Chang, and Eric Herbst. "MODELING OF ASTROCHEMISTRY DURING STAR FORMATION." In 69th International Symposium on Molecular Spectroscopy. University of Illinois at Urbana-Champaign, 2014. http://dx.doi.org/10.15278/isms.2014.mf09.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Herbst, E. "Gas-Grain Models of Low-Mass Star Formation." In ASTROCHEMISTRY: From Laboratory Studies to Astronomical Observations. AIP, 2006. http://dx.doi.org/10.1063/1.2359564.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!