Academic literature on the topic 'Statistical inference'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Statistical inference.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Statistical inference"
Rennolls, Keith, P. H. Garthwaite, I. T. Jolliffe, and B. Jones. "Statistical Inference." Journal of the Royal Statistical Society. Series A (Statistics in Society) 159, no. 3 (1996): 622. http://dx.doi.org/10.2307/2983341.
Full textCrowder, Martin, P. H. Garthwaite, I. T. Jolliffe, and B. Jones. "Statistical Inference." Statistician 45, no. 3 (1996): 386. http://dx.doi.org/10.2307/2988478.
Full textBrunson, Barry W., and Vijay K. Rohatgi. "Statistical Inference." American Mathematical Monthly 94, no. 2 (February 1987): 210. http://dx.doi.org/10.2307/2322441.
Full textLindley, D. V., and Vijay K. Rohatgi. "Statistical Inference." Mathematical Gazette 69, no. 447 (March 1985): 63. http://dx.doi.org/10.2307/3616474.
Full textRohatgi, V. K. "Statistical Inference." Biometrics 41, no. 4 (December 1985): 1102. http://dx.doi.org/10.2307/2530991.
Full textGhosh, Malay, George Casella, and Roger L. Berger. "Statistical Inference." Journal of the American Statistical Association 89, no. 426 (June 1994): 712. http://dx.doi.org/10.2307/2290879.
Full textCasella, G., and R. L. Berger. "Statistical Inference." Biometrics 49, no. 1 (March 1993): 320. http://dx.doi.org/10.2307/2532634.
Full textZiegel, Eric R. "Statistical Inference." Technometrics 44, no. 4 (November 2002): 407–8. http://dx.doi.org/10.1198/tech.2002.s94.
Full textAngus, John E. "Statistical Inference." Technometrics 33, no. 4 (November 1991): 493. http://dx.doi.org/10.1080/00401706.1991.10484898.
Full textRandles, Ronald H., and Vijay K. Rohatgi. "Statistical Inference." Journal of the American Statistical Association 81, no. 393 (March 1986): 258. http://dx.doi.org/10.2307/2288010.
Full textDissertations / Theses on the topic "Statistical inference"
Thabane, Lehana. "Contributions to Bayesian statistical inference." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq31133.pdf.
Full textYang, Liqiang. "Statistical Inference for Gap Data." NCSU, 2000. http://www.lib.ncsu.edu/theses/available/etd-20001110-173900.
Full textThis thesis research is motivated by a special type of missing data - Gap Data, which was first encountered in a cardiology study conducted at Duke Medical School. This type of data include multiple observations of certain event time (in this medical study the event is the reopenning of a certain artery), some of them may have one or more missing periods called ``gaps'' before observing the``first'' event. Therefore, for those observations, the observed first event may not be the true first event because the true first event might have happened in one of the missing gaps. Due to this kind of missing information, estimating the survival function of the true first event becomes very difficult. No research nor discussion has been done on this type of data by now. In this thesis, the auther introduces a new nonparametric estimating method to solve this problem. This new method is currently called Imputed Empirical Estimating (IEE) method. According to the simulation studies, the IEE method provide a very good estimate of the survival function of the true first event. It significantly outperforms all the existing estimating approaches in our simulation studies. Besides the new IEE method, this thesis also explores the Maximum Likelihood Estimate in thegap data case. The gap data is introduced as a special type of interval censored data for thefirst time. The dependence between the censoring interval (in the gap data case is the observedfirst event time point) and the event (in the gap data case is the true first event) makes the gap data different from the well studied regular interval censored data. This thesis points of theonly difference between the gap data and the regular interval censored data, and provides a MLEof the gap data under certain assumptions.The third estimating method discussed in this thesis is the Weighted Estimating Equation (WEE)method. The WEE estimate is a very popular nonparametric approach currently used in many survivalanalysis studies. In this thesis the consistency and asymptotic properties of the WEE estimateused in the gap data are discussed. Finally, in the gap data case, the WEE estimate is showed to be equivalent to the Kaplan-Meier estimate. Numerical examples are provied in this thesis toillustrate the algorithm of the IEE and the MLE approaches. The auther also provides an IEE estimate of the survival function based on the real-life data from Duke Medical School. A series of simulation studies are conducted to assess the goodness-of-fit of the new IEE estimate. Plots and tables of the results of the simulation studies are presentedin the second chapter of this thesis.
Sun, Xiaohai. "Causal inference from statistical data /." Berlin : Logos-Verl, 2008. http://d-nb.info/988947331/04.
Full textCzogiel, Irina. "Statistical inference for molecular shapes." Thesis, University of Nottingham, 2010. http://eprints.nottingham.ac.uk/12217/.
Full text方以德 and Yee-tak Daniel Fong. "Statistical inference on biomedical models." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31210788.
Full textLiu, Fei, and 劉飛. "Statistical inference for banding data." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B41508701.
Full textJunklewitz, Henrik. "Statistical inference in radio astronomy." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-177457.
Full textBell, Paul W. "Statistical inference for multidimensional scaling." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327197.
Full textCovarrubias, Carlos Cuevas. "Statistical inference for ROC curves." Thesis, University of Warwick, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399489.
Full textOe, Bianca Madoka Shimizu. "Statistical inference in complex networks." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-28032017-095426/.
Full textVários fenômenos naturais e artificiais compostos de partes interconectadas vem sendo estudados pela teoria de redes complexas. Tal representação permite o estudo de processos dinâmicos que ocorrem em redes complexas, tais como propagação de epidemias e rumores. A evolução destes processos é influenciada pela organização das conexões da rede. O tamanho das redes do mundo real torna a análise da rede inteira computacionalmente proibitiva. Portanto, torna-se necessário representá-la com medidas topológicas ou amostrá-la para reduzir seu tamanho. Além disso, muitas redes são amostras de redes maiores cuja estrutura é difícil de ser capturada e deve ser inferida de amostras. Neste trabalho, ambos os problemas são estudados: a influência da estrutura da rede em processos de propagação e os efeitos da amostragem na estrutura da rede. Os resultados obtidos sugerem que é possível predizer o tamanho da epidemia ou do rumor com base em um modelo de regressão beta com dispersão variável, usando medidas topológicas como regressores. A medida mais influente em ambas as dinâmicas é a informação de busca média, que quantifica a facilidade com que se navega em uma rede. Também é mostrado que a estrutura de uma rede amostrada difere da original e que o tipo de mudança depende do método de amostragem utilizado. Por fim, quatro métodos de amostragem foram aplicados para estudar o comportamento do limiar epidêmico de uma rede quando amostrada com diferentes taxas de amostragem. Os resultados sugerem que a amostragem por busca em largura é a mais adequada para estimar o limiar epidêmico entre os métodos comparados.
Books on the topic "Statistical inference"
Bromek, Tadeusz, and Elżbieta Pleszczyńska, eds. Statistical Inference. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0575-7.
Full textPanik, Michael J. Statistical Inference. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2012. http://dx.doi.org/10.1002/9781118309773.
Full textL, Berger Roger, ed. Statistical inference. Pacific Grove, Calif: Brooks/Cole Pub. Co., 1990.
Find full textGarthwaite, Paul H. Statistical inference. 2nd ed. Oxford: Oxford University Press, 2002.
Find full textOakes, Michael W. Statistical inference. Chestnut Hill, MA: Epidemiology Resources Inc., 1990.
Find full textL, Berger Roger, ed. Statistical Inference. 2nd ed. Australia: Thomson Learning, 2002.
Find full textT, Jolliffe I., and Jones Byron 1951-, eds. Statistical inference. Oxford: Oxford University Press, 2002.
Find full textDeshmukh, Shailaja, and Madhuri Kulkarni. Asymptotic Statistical Inference. Singapore: Springer Singapore, 2021. http://dx.doi.org/10.1007/978-981-15-9003-0.
Full textBook chapters on the topic "Statistical inference"
Lynch, Scott M. "Statistical Inference." In Using Statistics in Social Research, 83–105. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8573-5_6.
Full textKroese, Dirk P., and Joshua C. C. Chan. "Statistical Inference." In Statistical Modeling and Computation, 121–59. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4614-8775-3_5.
Full textRahlf, Thomas. "Statistical Inference." In Handbook of Cliometrics, 471–507. Berlin, Heidelberg: Springer Berlin Heidelberg, 2015. http://dx.doi.org/10.1007/978-3-642-40406-1_16.
Full textGooch, Jan W. "Statistical Inference." In Encyclopedic Dictionary of Polymers, 998. New York, NY: Springer New York, 2011. http://dx.doi.org/10.1007/978-1-4419-6247-8_15388.
Full textHelland, Inge S. "Statistical Inference." In Epistemic Processes, 21–39. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-95068-6_2.
Full textVerma, J. P. "Statistical Inference." In Statistics and Research Methods in Psychology with Excel, 365–438. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-3429-0_10.
Full textHaenni, Rolf, Jan-Willem Romeijn, Gregory Wheeler, and Jon Williamson. "Statistical Inference." In Probabilistic Logics and Probabilistic Networks, 49–61. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-94-007-0008-6_5.
Full textTurner, J. Rick. "Statistical Inference." In Encyclopedia of Behavioral Medicine, 2136. Cham: Springer International Publishing, 2020. http://dx.doi.org/10.1007/978-3-030-39903-0_1047.
Full textTurner, J. Rick. "Statistical Inference." In Encyclopedia of Behavioral Medicine, 1878. New York, NY: Springer New York, 2013. http://dx.doi.org/10.1007/978-1-4419-1005-9_1047.
Full textBarnard, G. A., J. C. Kiefer, L. M. LeCam, and L. J. Savage. "Statistical Inference." In Collected Papers, 601–22. New York, NY: Springer US, 1985. http://dx.doi.org/10.1007/978-1-4613-8505-9_38.
Full textConference papers on the topic "Statistical inference"
Singh, Pawan Kumar, and Pawan Kumar Upadhyay. "Informatics for dementia detection using statistical inference." In 2024 4th International Conference on Advancement in Electronics & Communication Engineering (AECE), 446–51. IEEE, 2024. https://doi.org/10.1109/aece62803.2024.10911793.
Full textKunisky, Dmitriy, Cristopher Moore, and Alexander S. Wein. "Tensor Cumulants for Statistical Inference on Invariant Distributions." In 2024 IEEE 65th Annual Symposium on Foundations of Computer Science (FOCS), 1007–26. IEEE, 2024. http://dx.doi.org/10.1109/focs61266.2024.00067.
Full textBorovcnik, Manfred. "Informal inference – approaches towards statistical inference." In Decision Making Based on Data. International Association for Statistical Education, 2019. http://dx.doi.org/10.52041/srap.19101.
Full textMu, Weiyan, and Xiaona Yuan. "Statistical inference for ANOVA under heteroscedasticity: Statistical inference." In 2012 2nd International Conference on Consumer Electronics, Communications and Networks (CECNet). IEEE, 2012. http://dx.doi.org/10.1109/cecnet.2012.6201745.
Full textBITYUKOV, S. I., V. V. SMIRNOVA, N. V. KRASNIKOV, and V. A. TAPERECHKINA. "STATISTICALLY DUAL DISTRIBUTIONS IN STATISTICAL INFERENCE." In Proceedings of PHYSTAT05. PUBLISHED BY IMPERIAL COLLEGE PRESS AND DISTRIBUTED BY WORLD SCIENTIFIC PUBLISHING CO., 2006. http://dx.doi.org/10.1142/9781860948985_0023.
Full textMézard, Marc. "Statistical physics and statistical inference." In GECCO '21: Genetic and Evolutionary Computation Conference. New York, NY, USA: ACM, 2021. http://dx.doi.org/10.1145/3449639.3465420.
Full textJones, Peter, Kay Lipson, and Brian Phillips. "A role for computer intensive methods in introducing statistical inference." In Proceedings of the First Scientific Meeting of the IASE. International Association for Statistical Education, 1993. http://dx.doi.org/10.52041/srap.93311.
Full textMasucci, Antonia, Oyvind Ryan, Sheng Yang, and Merouane Debbah. "Finite dimensional statistical inference." In 2009 International Conference on Ultra Modern Telecommunications & Workshops. ICUMT 2009. IEEE, 2009. http://dx.doi.org/10.1109/icumt.2009.5345347.
Full textVesely, Sara, Leonardo Vesely, and Alessandro Vesely. "Nanotechnology and statistical inference." In NANOINNOVATION 2016. Author(s), 2017. http://dx.doi.org/10.1063/1.4997131.
Full textdu Pin Calmon, Flavio, and Nadia Fawaz. "Privacy against statistical inference." In 2012 50th Annual Allerton Conference on Communication, Control, and Computing (Allerton). IEEE, 2012. http://dx.doi.org/10.1109/allerton.2012.6483382.
Full textReports on the topic "Statistical inference"
Carroll, Raymond J. Research in Statistical Inference. Fort Belvoir, VA: Defense Technical Information Center, August 1991. http://dx.doi.org/10.21236/ada252928.
Full textManski, Charles F. Remarks on statistical inference for statistical decisions. The IFS, January 2019. http://dx.doi.org/10.1920/wp.cem.2019.06.
Full textManski, Charles F. Remarks on statistical inference for statistical decisions. The IFS, January 2019. http://dx.doi.org/10.1920/wp.cem.2019.0619.
Full textKarr, Alan F. Statistical Inference for Stochastic Processes. Fort Belvoir, VA: Defense Technical Information Center, October 1987. http://dx.doi.org/10.21236/ada190491.
Full textMasry, Elias. Statistical Inference from Sampled Data. Fort Belvoir, VA: Defense Technical Information Center, May 1998. http://dx.doi.org/10.21236/ada342544.
Full textGimpel, K., and D. Rudoy. Statistical Inference in Graphical Models. Fort Belvoir, VA: Defense Technical Information Center, June 2008. http://dx.doi.org/10.21236/ada482530.
Full textBatchelder, William H. Statistical Inference for Cultural Consensus Theory. Fort Belvoir, VA: Defense Technical Information Center, February 2014. http://dx.doi.org/10.21236/ada605989.
Full textHill, Bruce M. Bayesian Nonparametric Prediction and Statistical Inference. Fort Belvoir, VA: Defense Technical Information Center, September 1989. http://dx.doi.org/10.21236/ada218473.
Full textZhao, Hongwei, and David Oakes. Statistical Inference for Quality-Adjusted Survival Time. Fort Belvoir, VA: Defense Technical Information Center, August 2004. http://dx.doi.org/10.21236/ada437896.
Full textZhao, Hongwei. Statistical Inference for Quality-Adjusted Survival Time. Fort Belvoir, VA: Defense Technical Information Center, July 2006. http://dx.doi.org/10.21236/ada456901.
Full text