Dissertations / Theses on the topic 'Statistical inference'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Statistical inference.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Thabane, Lehana. "Contributions to Bayesian statistical inference." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq31133.pdf.
Full textYang, Liqiang. "Statistical Inference for Gap Data." NCSU, 2000. http://www.lib.ncsu.edu/theses/available/etd-20001110-173900.
Full textThis thesis research is motivated by a special type of missing data - Gap Data, which was first encountered in a cardiology study conducted at Duke Medical School. This type of data include multiple observations of certain event time (in this medical study the event is the reopenning of a certain artery), some of them may have one or more missing periods called ``gaps'' before observing the``first'' event. Therefore, for those observations, the observed first event may not be the true first event because the true first event might have happened in one of the missing gaps. Due to this kind of missing information, estimating the survival function of the true first event becomes very difficult. No research nor discussion has been done on this type of data by now. In this thesis, the auther introduces a new nonparametric estimating method to solve this problem. This new method is currently called Imputed Empirical Estimating (IEE) method. According to the simulation studies, the IEE method provide a very good estimate of the survival function of the true first event. It significantly outperforms all the existing estimating approaches in our simulation studies. Besides the new IEE method, this thesis also explores the Maximum Likelihood Estimate in thegap data case. The gap data is introduced as a special type of interval censored data for thefirst time. The dependence between the censoring interval (in the gap data case is the observedfirst event time point) and the event (in the gap data case is the true first event) makes the gap data different from the well studied regular interval censored data. This thesis points of theonly difference between the gap data and the regular interval censored data, and provides a MLEof the gap data under certain assumptions.The third estimating method discussed in this thesis is the Weighted Estimating Equation (WEE)method. The WEE estimate is a very popular nonparametric approach currently used in many survivalanalysis studies. In this thesis the consistency and asymptotic properties of the WEE estimateused in the gap data are discussed. Finally, in the gap data case, the WEE estimate is showed to be equivalent to the Kaplan-Meier estimate. Numerical examples are provied in this thesis toillustrate the algorithm of the IEE and the MLE approaches. The auther also provides an IEE estimate of the survival function based on the real-life data from Duke Medical School. A series of simulation studies are conducted to assess the goodness-of-fit of the new IEE estimate. Plots and tables of the results of the simulation studies are presentedin the second chapter of this thesis.
Sun, Xiaohai. "Causal inference from statistical data /." Berlin : Logos-Verl, 2008. http://d-nb.info/988947331/04.
Full textCzogiel, Irina. "Statistical inference for molecular shapes." Thesis, University of Nottingham, 2010. http://eprints.nottingham.ac.uk/12217/.
Full text方以德 and Yee-tak Daniel Fong. "Statistical inference on biomedical models." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31210788.
Full textLiu, Fei, and 劉飛. "Statistical inference for banding data." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2008. http://hub.hku.hk/bib/B41508701.
Full textJunklewitz, Henrik. "Statistical inference in radio astronomy." Diss., Ludwig-Maximilians-Universität München, 2014. http://nbn-resolving.de/urn:nbn:de:bvb:19-177457.
Full textBell, Paul W. "Statistical inference for multidimensional scaling." Thesis, University of Newcastle Upon Tyne, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.327197.
Full textCovarrubias, Carlos Cuevas. "Statistical inference for ROC curves." Thesis, University of Warwick, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.399489.
Full textOe, Bianca Madoka Shimizu. "Statistical inference in complex networks." Universidade de São Paulo, 2017. http://www.teses.usp.br/teses/disponiveis/55/55134/tde-28032017-095426/.
Full textVários fenômenos naturais e artificiais compostos de partes interconectadas vem sendo estudados pela teoria de redes complexas. Tal representação permite o estudo de processos dinâmicos que ocorrem em redes complexas, tais como propagação de epidemias e rumores. A evolução destes processos é influenciada pela organização das conexões da rede. O tamanho das redes do mundo real torna a análise da rede inteira computacionalmente proibitiva. Portanto, torna-se necessário representá-la com medidas topológicas ou amostrá-la para reduzir seu tamanho. Além disso, muitas redes são amostras de redes maiores cuja estrutura é difícil de ser capturada e deve ser inferida de amostras. Neste trabalho, ambos os problemas são estudados: a influência da estrutura da rede em processos de propagação e os efeitos da amostragem na estrutura da rede. Os resultados obtidos sugerem que é possível predizer o tamanho da epidemia ou do rumor com base em um modelo de regressão beta com dispersão variável, usando medidas topológicas como regressores. A medida mais influente em ambas as dinâmicas é a informação de busca média, que quantifica a facilidade com que se navega em uma rede. Também é mostrado que a estrutura de uma rede amostrada difere da original e que o tipo de mudança depende do método de amostragem utilizado. Por fim, quatro métodos de amostragem foram aplicados para estudar o comportamento do limiar epidêmico de uma rede quando amostrada com diferentes taxas de amostragem. Os resultados sugerem que a amostragem por busca em largura é a mais adequada para estimar o limiar epidêmico entre os métodos comparados.
ZHAO, SHUHONG. "STATISTICAL INFERENCE ON BINOMIAL PROPORTIONS." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1115834351.
Full textLiu, Fei. "Statistical inference for banding data." Click to view the E-thesis via HKUTO, 2008. http://sunzi.lib.hku.hk/hkuto/record/B41508701.
Full textFong, Yee-tak Daniel. "Statistical inference on biomedical models /." [Hong Kong] : University of Hong Kong, 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13456921.
Full textPeiris, Thelge Buddika. "Constrained Statistical Inference in Regression." OpenSIUC, 2014. https://opensiuc.lib.siu.edu/dissertations/934.
Full textFANIZZA, MARCO. "Quantum statistical inference and communication." Doctoral thesis, Scuola Normale Superiore, 2021. http://hdl.handle.net/11384/109209.
Full textJinn, Nicole Mee-Hyaang. "Toward Error-Statistical Principles of Evidence in Statistical Inference." Thesis, Virginia Tech, 2014. http://hdl.handle.net/10919/48420.
Full textMaster of Arts
Zhai, Yongliang. "Stochastic processes, statistical inference and efficient algorithms for phylogenetic inference." Thesis, University of British Columbia, 2016. http://hdl.handle.net/2429/59095.
Full textScience, Faculty of
Statistics, Department of
Graduate
Gwet, Jean-Philippe. "Robust statistical inference in survey sampling." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq22168.pdf.
Full textGuo, H. "Statistical causal inference and propensity analysis." Thesis, University of Cambridge, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.599787.
Full text屠烈偉 and Lit-wai Tao. "Statistical inference on a mixture model." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1993. http://hub.hku.hk/bib/B31977480.
Full textMukherjee, Rajarshi. "Statistical Inference for High Dimensional Problems." Thesis, Harvard University, 2014. http://dissertations.umi.com/gsas.harvard:11516.
Full textNourmohammadi, Mohammad. "Statistical inference with randomized nomination sampling." Elsevier B.V, 2014. http://hdl.handle.net/1993/30150.
Full textThorpe, Matthew. "Variational methods for geometric statistical inference." Thesis, University of Warwick, 2015. http://wrap.warwick.ac.uk/74241/.
Full textChen, Yixin. "Statistical inference for varying coefficient models." Diss., Kansas State University, 2014. http://hdl.handle.net/2097/17690.
Full textDepartment of Statistics
Weixin Yao
This dissertation contains two projects that are related to varying coefficient models. The traditional least squares based kernel estimates of the varying coefficient model will lose some efficiency when the error distribution is not normal. In the first project, we propose a novel adaptive estimation method that can adapt to different error distributions and provide an efficient EM algorithm to implement the proposed estimation. The asymptotic properties of the resulting estimator is established. Both simulation studies and real data examples are used to illustrate the finite sample performance of the new estimation procedure. The numerical results show that the gain of the adaptive procedure over the least squares estimation can be quite substantial for non-Gaussian errors. In the second project, we propose a unified inference for sparse and dense longitudinal data in time-varying coefficient models. The time-varying coefficient model is a special case of the varying coefficient model and is very useful in longitudinal/panel data analysis. A mixed-effects time-varying coefficient model is considered to account for the within subject correlation for longitudinal data. We show that when the kernel smoothing method is used to estimate the smooth functions in the time-varying coefficient model for sparse or dense longitudinal data, the asymptotic results of these two situations are essentially different. Therefore, a subjective choice between the sparse and dense cases may lead to wrong conclusions for statistical inference. In order to solve this problem, we establish a unified self-normalized central limit theorem, based on which a unified inference is proposed without deciding whether the data are sparse or dense. The effectiveness of the proposed unified inference is demonstrated through a simulation study and a real data application.
Scipione, Catherine Marie. "Statistical inference in nonlinear dynamical systems /." The Ohio State University, 1992. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487777170404657.
Full textGwet, J. P. (Jean Philippe) Carleton University Dissertation Mathematics and Statistics. "Robust statistical inference in survey sampling." Ottawa, 1997.
Find full textTao, Lit-wai. "Statistical inference on a mixture model." [Hong Kong] : University of Hong Kong, 1993. http://sunzi.lib.hku.hk/hkuto/record.jsp?B13781479.
Full textQin, Yingli. "Statistical inference for high-dimensional data." [Ames, Iowa : Iowa State University], 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3389139.
Full textNovelli, Marco <1985>. "Statistical Inference in Open Quantum Systems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7259/1/Novelli_Marco_tesi.pdf.
Full textNovelli, Marco <1985>. "Statistical Inference in Open Quantum Systems." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2016. http://amsdottorato.unibo.it/7259/.
Full textPasetto, Michela Eugenia <1989>. "Statistical Inference for the Duffing Process." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2018. http://amsdottorato.unibo.it/8514/1/Pasetto.pdf.
Full textLa presente ricerca ha l'obiettivo di sviluppare metodi d'inferenza per sistemi dinamici non lineari. In particolare, l'analisi è incentrata su una equazione differenziale chiamata l'oscillatore di Duffing. Tale equazione è utilizzata per modellare diversi fenomeni non lineari, quali salti, isteresi o subarmoniche, e, in generale, può mostrare comportamenti caotici al variare di parametri di controllo. Tali fenomeni sono diffusi in diversi scenari reali, sia in economia sia in biologia. L'inferenza nel processo di Duffing è condotta tramite unscented Kalman filter (UKF) attraverso la riscrittura del sistema nella forma stato-spazio. Nel contesto di equazioni differenziali ordinarie, l'incertezza delle stime di UKF per sistemi caotici è quantificato tramite uno studio di simulazione. Per superare le limitazioni di UKF quando applicato al sistema di Duffing, viene proposto un nuovo algoritmo che unisce ottimizzazione bayesiana (BO) e approximate bayesian computation (ABC) all'interno dello schema UKF. Le novità del metodo consistono in: (i) ottimizzazione della posizione dei punti sigma tramite la massimizzazione della verosimiglianza delle osservazioni e (ii) inizializzazione di UKF con valori provenienti dallo schema ABC. L'algoritmo proposto può portare stime dei parametri migliori rispetto a UKF nel caso di sistemi complessi dove la funzione di verosimiglianza è altamente multi-modale. Per l'analisi di equazioni differenziali stocastiche, viene presentato un cospicuo studio di simulazione al fine di valutare i risultati del UKF per la stima dei parametri. Infine, si illustra un'applicazione del metodo su dati reali e si discutono gli sviluppi futuri della ricerca.
Frey, Jesse C. "Inference procedures based on order statistics." Connect to this title online, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1122565389.
Full textTitle from first page of PDF file. Document formatted into pages; contains xi, 148 p.; also includes graphics. Includes bibliographical references (p. 146-148). Available online via OhioLINK's ETD Center
El, Ghouch Anouar. "Nonparametric statistical inference for dependent censored data." Université catholique de Louvain, 2007. http://edoc.bib.ucl.ac.be:81/ETD-db/collection/available/BelnUcetd-09262007-123927/.
Full textCan, Mutan Oya. "Statistical Inference From Complete And Incomplete Data." Phd thesis, METU, 2010. http://etd.lib.metu.edu.tr/upload/3/12611531/index.pdf.
Full textn-r) in a random sample of size n (i) on the mean E(X) and variance V(X) of X, (ii) on the cost of observing the x-observations, (iii) on the conditional mean E(Y|X=x) and variance V(Y|X=x) and (iv) on the regression coefficient. It is shown that unduly large x-observations have a detrimental effect on the allowable sample size and the estimators, both least squares and modified maximum likelihood. The advantage of not observing a few largest observations are evaluated. The distributions considered are Weibull, Generalized Logistic and the scaled Student&rsquo
s t.
Ng, Edmund Tze-Man. "Statistical inference for heterogeneous event history data." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq22223.pdf.
Full textEklund, Bruno. "Four contributions to statistical inference in econometrics." Doctoral thesis, Stockholm : Economic Research Institute, Stockholm School of Economics [Ekonomiska forskningsinstitutet vid Handelshögsk.] (EFI), 2003. http://www.hhs.se/efi/summary/624.htm.
Full textKällberg, David. "Nonparametric Statistical Inference for Entropy-type Functionals." Doctoral thesis, Umeå universitet, Institutionen för matematik och matematisk statistik, 2013. http://urn.kb.se/resolve?urn=urn:nbn:se:umu:diva-79976.
Full textYuan, Yinyin. "Statistical inference from large-scale genomic data." Thesis, University of Warwick, 2009. http://wrap.warwick.ac.uk/1066/.
Full text曾達誠 and Tat-shing Tsang. "Statistical inference on the coefficient of variation." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B31223503.
Full textGolalizadeh, Lehi Mousa. "Statistical modelling and inference for shape diffusions." Thesis, University of Nottingham, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435446.
Full textCecchini, Gloria. "Improving network inference by overcoming statistical limitations." Thesis, University of Aberdeen, 2019. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=240835.
Full textAlmarashi, Abdullah Maedh. "Statistical inference for Poisson time series models." Thesis, University of Strathclyde, 2014. http://oleg.lib.strath.ac.uk:80/R/?func=dbin-jump-full&object_id=23669.
Full textSalimi-Khorshidi, Gholamreza. "Statistical models for neuroimaging meta-analytic inference." Thesis, University of Oxford, 2011. http://ora.ox.ac.uk/objects/uuid:40a10327-7f36-42e7-8120-ae04bd8be1d4.
Full textCerqueira, Andressa. "Statistical inference on random graphs and networks." Universidade de São Paulo, 2018. http://www.teses.usp.br/teses/disponiveis/45/45133/tde-04042018-094802/.
Full textNessa tese estudamos dois modelos probabilísticos definidos em grafos: o modelo estocástico por blocos e o modelo de grafos exponenciais. Dessa forma, essa tese está dividida em duas partes. Na primeira parte nós propomos um estimador penalizado baseado na mistura de Krichevsky-Trofimov para o número de comunidades do modelo estocástico por blocos e provamos sua convergência quase certa sem considerar um limitante conhecido para o número de comunidades. Na segunda parte dessa tese nós abordamos o problema de simulação perfeita para o modelo de grafos aleatórios Exponenciais. Nós propomos um algoritmo de simulação perfeita baseado no algoritmo Coupling From the Past usando a dinâmica de Glauber. Esse algoritmo é eficiente apenas no caso em que o modelo é monotóno e nós provamos que esse é o caso para um subconjunto do espaço paramétrico. Nós também propomos um algoritmo de simulação perfeita baseado no algoritmo Backward and Forward que pode ser aplicado à modelos monótonos e não monótonos. Nós provamos a existência de um limitante superior para o número esperado de passos de ambos os algoritmos.
Csilléry, Katalin. "Statistical inference in population genetics using microsatellites." Thesis, University of Edinburgh, 2009. http://hdl.handle.net/1842/3865.
Full textLiu, Ge. "Statistical Inference for Multivariate Stochastic Differential Equations." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1562966204796479.
Full textLiu, Shibo. "Statistical inference and efficient portfolio investment performance." Thesis, Loughborough University, 2014. https://dspace.lboro.ac.uk/2134/15185.
Full textTsang, Tat-shing. "Statistical inference on the coefficient of variation /." Hong Kong : University of Hong Kong, 2000. http://sunzi.lib.hku.hk/hkuto/record.jsp?B21903980.
Full textWozny, David R. "Statistical inference in multisensory perception and learning." Diss., Restricted to subscribing institutions, 2009. http://proquest.umi.com/pqdweb?did=1970597951&sid=1&Fmt=2&clientId=1564&RQT=309&VName=PQD.
Full textZhou, Ziqian. "Statistical inference of distributed delay differential equations." Diss., University of Iowa, 2016. https://ir.uiowa.edu/etd/2173.
Full text