Dissertations / Theses on the topic 'Statistical multivariate analysis'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Statistical multivariate analysis.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
何志興 and Chi-hing Ho. "The statistical analysis of multivariate counts." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1991. http://hub.hku.hk/bib/B31232218.
Full textHo, Chi-hing. "The statistical analysis of multivariate counts /." [Hong Kong] : University of Hong Kong, 1991. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12922602.
Full textLawrence, James. "A Multivariate Statistical Analysis of Stock Trends." Miami University Honors Theses / OhioLINK, 2004. http://rave.ohiolink.edu/etdc/view?acc_num=muhonors1111001677.
Full textStensholt, B. K. "Statistical analysis of multivariate bilinear time series models." Thesis, University of Manchester, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.582853.
Full textWang, Lianming. "Statistical analysis of multivariate interval-censored failure time data." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4375.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (May 2, 2007) Vita. Includes bibliographical references.
Chen, Man-Hua. "Statistical analysis of multivariate interval-censored failure time data." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4776.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on March 6, 2009) Includes bibliographical references.
Pan, Jian-Xin. "Multivariate statistical diagnostics with application to the growth curve model." HKBU Institutional Repository, 1996. http://repository.hkbu.edu.hk/etd_ra/64.
Full textChowdhury, Ashraful Aziz. "Path analysis : a multivariate statistical procedure for nuptiality studies." Virtual Press, 1986. http://liblink.bsu.edu/uhtbin/catkey/445620.
Full textAhmadi-Nedushan, Behrooz 1966. "Multivariate statistical analysis of monitoring data for concrete dams." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=82815.
Full textStatistical models such as multiple linear regression, and back propagation neural networks have been used to estimate the response of individual instruments. Multiple linear regression models are of two kinds, (1) Hydro-Seasonal-Time (HST) models and (2) models that consider concrete temperatures as predictors.
Univerariate, bivariate, and multivariate methods are proposed for the identification of anomalies in the instrumentation data. The source of these anomalies can be either bad readings, faulty instruments, or changes in dam behavior.
The proposed methodologies are applied to three different dams, Idukki, Daniel Johnson and Chute-a-Caron, which are respectively an arch, multiple arch and a gravity dam. Displacements, strains, flow rates, and crack openings of these three dams are analyzed.
This research also proposes various multivariate statistical analyses and artificial neural networks techniques to analyze dam monitoring data. One of these methods, Principal Component Analysis (PCA) is concerned with explaining the variance-covariance structure of a data set through a few linear combinations of the original variables. The general objectives are (1) data reduction and (2) data interpretation. Other multivariate analysis methods such as canonical correlation analysis, partial least squares and nonlinear principal component analysis are discussed. The advantages of methodologies for noise reduction, the reduction of number of variables that have to be monitored, the prediction of response parameters, and the identification of faulty readings are discussed. Results indicated that dam responses are generally correlated and that only a few principal components can summarize the behavior of a dam.
Woldegeorgis, Fasil. "Analysis on seroepidemiology of pertussis, a multivariate statistical approach." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ36539.pdf.
Full textColes, Stuart. "Statistical methodology for the multivariate analysis of environmental extremes." Thesis, University of Sheffield, 1991. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.358244.
Full textAgrawala, Gautam Kumar. "Regional ground water interpretation using multivariate statistical methods." To access this resource online via ProQuest Dissertations and Theses @ UTEP, 2007. http://0-proquest.umi.com.lib.utep.edu/login?COPT=REJTPTU0YmImSU5UPTAmVkVSPTI=&clientId=2515.
Full textShah, Nauman. "Statistical dynamical models of multivariate financial time series." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:428015e6-8a52-404e-9934-0545c80da4e1.
Full textOunpraseuth, Songthip T. Young Dean M. "Selected topics in statistical discriminant analysis." Waco, Tex. : Baylor University, 2006. http://hdl.handle.net/2104/4883.
Full textShiells, Helen. "Advanced multivariate statistical analysis of directly and indirectly observed systems." Thesis, University of Aberdeen, 2017. http://digitool.abdn.ac.uk:80/webclient/DeliveryManager?pid=234061.
Full textHetzer, Joel D. Johnston Dennis A. "Statistical considerations in the analysis of multivariate Phase II testing." Waco, Tex. : Baylor University, 2008. http://hdl.handle.net/2104/5277.
Full textVillasante, Tezanos Alejandro G. "COMPOSITE NONPARAMETRIC TESTS IN HIGH DIMENSION." UKnowledge, 2019. https://uknowledge.uky.edu/statistics_etds/42.
Full text李友榮 and Yau-wing Lee. "Modelling multivariate survival data using semiparametric models." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2000. http://hub.hku.hk/bib/B4257528X.
Full textYan, Lipeng. "The application of multivariate statistical analysis and optimization to batch processes." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/the-application-of-multivariate-statistical-analysis-and-optimization-to-batch-processes(e6dbe45d-94bb-4e84-a12f-542876af54f5).html.
Full textHervás, Marín David. "Use of multivariate statistical methods for the analysis of metabolomic data." Doctoral thesis, Universitat Politècnica de València, 2019. http://hdl.handle.net/10251/130847.
Full text[CAT] En les últimes dècades els avançaments tecnològics han tingut com a conseqüència la generació d'una creixent quantitat de dades en el camp de la biologia i la biomedicina. A dia d'avui, les anomenades tecnologies "òmiques", com la genòmica, epigenòmica, transcriptòmica o metabolòmica entre altres, produeixen bases de dades amb centenars, milers o fins i tot milions de variables. L'anàlisi de dades 'òmiques' presenta una sèrie de complexitats tant metodolò-giques com computacionals que han portat a una revolució en el desenvolupament de nous mètodes estadístics específicament dissenyats per a tractar amb aquest tipus de dades. A aquestes complexitats metodològiques cal afegir que, en la major part dels casos, les restriccions logístiques i / o econòmiques dels projectes de recerca solen comportar que les magnituts de les mostres en aquestes bases de dades amb tantes variables siguen molt baixes, el que no fa sinó empitjorar les dificultats d'anàlisi, ja que es tenen moltíssimes més variables que observacions Entre les tècniques desenvolupades per a tractar amb aquest tipus de dades podem trobar algunes basades en la penalització dels coeficients, com lasso o elastic net, altres basades en tècniques de projecció sobre estructures latents com PCA o PLS i altres basades en arbres o combinacions d'arbres com random forest. Totes aquestes tècniques funcionen molt bé sobre diferents dades 'òmiques' presentats en forma de matriu (IxJ), però, en ocasions les dades òmiques poden estar expandits, per exemple, cuan ni ha mesures repetides en el temps sobre els mateixos individus, trobant-se amb estructures de dades que ja no són matrius, sinó arrays tridimensionals o three-way (IxJxK). En aquestos casos, la majoria de les tècniques mencionades perden tota o bona part de la seua aplicabilitat, quedant molt poques opcions viables per a l'anàlisi d'aquest tipus d'estructures de dades. Una de les tècniques que sí que és útil per a l'anàlisi d'estructures three-way es N-PLS, que permet ajustar models predictius raonablement precisos, així com interpretar-los mitjançant diferents gràfics. No obstant això, relacionat amb el problema de l'escassetat de mostres relativa al desorbitat nombre de variables, apareix la necessitat de realitzar una selecció de variables relacionades amb la variable resposta. Això és especialment cert en l'àmbit de la biologia i la biomedicina, ja que no només es vol poder predir el que va a succeir, sinó entendre per què passa, quines variables estan implicades i, si pot ser, no haver de tornar a recollir els centenars de milers de variables per realitzar una nova predicció, sinó utilitzar unes quantes, les més importants, per poder dissenyar kits predictius cost / efectius d'utilitat real. Per això, l'objectiu principal d'aquesta tesi és millorar les tècniques existents per a l'anàlisi de dades òmiques, específicament les encaminades a analitzar dades three-way, incorporant la capacitat de selecció de variables, millorant la capacitat predictiva i millorant la interpretabilitat dels resultats obtinguts. Tot això s'implementarà a més en un paquet de R completament documentat, que inclourà totes les funcions necessàries per a dur a terme anàlisis completes de dades three-way. El treball inclòs en aquesta tesi per tant, consta d'una primera part teorica-conceptual de desenvolupament de la idea de l'algoritme, així com la seua posada a punt, validació i comprovació de la seua eficàcia, d'una segona part empíric-pràctica de comparació dels resultats de l'algoritme amb altres metodologies de selecció de variables existents i d'una part adicional de programació i desenvolupament de programació en la qual es presenta tot el desenvolupament del paquet de R, la seua funcionalitat i capacitats d'anàlisi. El desenvolupament i validació de la tècnica, així com la publicació del paquet de R, ha permès ampliar les opcions actuals per a l'anàlis
[EN] In the last decades, advances in technology have enabled the gathering of an increasingly amount of data in the field of biology and biomedicine. The so called "-omics" technologies such as genomics, epigenomics, transcriptomics or metabolomics, among others, produce hundreds, thousands or even millions of variables per data set. The analysis of 'omic' data presents different complexities that can be methodological and computational. This has driven a revolution in the development of new statistical methods specifically designed for dealing with these type of data. To this methodological complexities one must add the logistic and economic restrictions usually present in scientific research projects that lead to small sample sizes paired to these wide data sets. This makes the analyses even harder, since there is a problem in having many more variables than observations. Among the methods developed to deal with these type of data there are some based on the penalization of the coefficients, such as lasso or elastic net, others based on projection techniques, such as PCA or PLS, and others based in regression or classification trees and ensemble methods such as random forest. All these techniques work fine when dealing with different 'omic' data in matrix format (IxJ), but sometimes, these IxJ data sets can be expanded by taking, for example, repeated measurements at different time points for each individual, thus having IxJxK data sets that raise more methodological complications to the analyses. These data sets are called three-way data. In this cases, the majority of the cited techniques lose all or a good part of their applicability, leaving very few viable options for the analysis of this type of data structures. One useful tool for analyzing three-way data, when some Y data structure is to be predicted, is N-PLS. N-PLS reduces the inclusion of noise in the models and obtains more robust parameters when compared to PLS while, at the same time, producing easy-to-understand plots. Related to the problem of small sample sizes and exorbitant variable numbers, comes the issue of variable selection. Variable selection is essential for facilitating biological interpretation of the results when analyzing 'omic' data sets. Often, the aim of the study is not only predicting the outcome, but also understanding why it is happening and also what variables are involved. It is also of interest being able to perform new predictions without having to collect all the variables again. Because all of this, the main goal of this thesis is to improve the existing methods for 'omic' data analysis, specifically those for dealing with three-way data, incorporating the ability of variable selection, improving predictive capacity and interpretability of results. All this will be implemented in a fully documented R package, that will include all the necessary functions for performing complete analyses of three-way data. The work included in this thesis consists in a first theoretical-conceptual part where the idea and development of the algorithm takes place, as well as its tuning, validation and assessment of its performance. Then, a second empirical-practical part comes where the algorithm is compared to other variable selection methodologies. Finally, an additional programming and software development part is presented where all the R package development takes place, and its functionality and capabilities are exposed. The development and validation of the technique, as well as the publication of the R package, has opened many future research lines.
Hervás Marín, D. (2019). Use of multivariate statistical methods for the analysis of metabolomic data [Tesis doctoral no publicada]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/130847
TESIS
Mudavanhu, Precious. "A brief introduction to basic multivariate economic statistical process control." Thesis, Stellenbosch : Stellenbosch University, 2012. http://hdl.handle.net/10019.1/71679.
Full textENGLISH ABSTRACT: Statistical process control (SPC) plays a very important role in monitoring and improving industrial processes to ensure that products produced or shipped to the customer meet the required specifications. The main tool that is used in SPC is the statistical control chart. The traditional way of statistical control chart design assumed that a process is described by a single quality characteristic. However, according to Montgomery and Klatt (1972) industrial processes and products can have more than one quality characteristic and their joint effect describes product quality. Process monitoring in which several related variables are of interest is referred to as multivariate statistical process control (MSPC). The most vital and commonly used tool in MSPC is the statistical control chart as in the case of the SPC. The design of a control chart requires the user to select three parameters which are: sample size, n , sampling interval, h and control limits, k.Several authors have developed control charts based on more than one quality characteristic, among them was Hotelling (1947) who pioneered the use of the multivariate process control techniques through the development of a 2 T -control chart which is well known as Hotelling 2 T -control chart. Since the introduction of the control chart technique, the most common and widely used method of control chart design was the statistical design. However, according to Montgomery (2005), the design of control has economic implications. There are costs that are incurred during the design of a control chart and these are: costs of sampling and testing, costs associated with investigating an out-of-control signal and possible correction of any assignable cause found, costs associated with the production of nonconforming products, etc. The paper is about giving an overview of the different methods or techniques that have been employed to develop the different economic statistical models for MSPC. The first multivariate economic model presented in this paper is the economic design of the Hotelling‟s 2 T -control chart to maintain current control of a process developed by Montgomery and Klatt (1972). This is followed by the work done by Kapur and Chao (1996) in which the concept of creating a specification region for the multiple quality characteristics together with the use of a multivariate quality loss function is implemented to minimize total loss to both the producer and the customer. Another approach by Chou et al (2002) is also presented in which a procedure is developed that simultaneously monitor the process mean and covariance matrix through the use of a quality loss function. The procedure is based on the test statistic 2ln L and the cost model is based on Montgomery and Klatt (1972) as well as Kapur and Chao‟s (1996) ideas. One example of the use of the variable sample size technique on the economic and economic statistical design of the control chart will also be presented. Specifically, an economic and economic statistical design of the 2 T -control chart with two adaptive sample sizes (Farazet al, 2010) will be presented. Farazet al (2010) developed a cost model of a variable sampling size 2 T -control chart for the economic and economic statistical design using Lorenzen and Vance‟s (1986) model. There are several other approaches to the multivariate economic statistical process control (MESPC) problem, but in this project the focus is on the cases based on the phase II stadium of the process where the mean vector, and the covariance matrix, have been fairly well established and can be taken as known, but both are subject to assignable causes. This latter aspect is often ignored by researchers. Nevertheless, the article by Farazet al (2010) is included to give more insight into how more sophisticated approaches may fit in with MESPC, even if the mean vector, only may be subject to assignable cause. Keywords: control chart; statistical process control; multivariate statistical process control; multivariate economic statistical process control; multivariate control chart; loss function.
AFRIKAANSE OPSOMMING: Statistiese proses kontrole (SPK) speel 'n baie belangrike rol in die monitering en verbetering van industriële prosesse om te verseker dat produkte wat vervaardig word, of na kliënte versend word wel aan die vereiste voorwaardes voldoen. Die vernaamste tegniek wat in SPK gebruik word, is die statistiese kontrolekaart. Die tradisionele wyse waarop statistiese kontrolekaarte ontwerp is, aanvaar dat ‟n proses deur slegs 'n enkele kwaliteitsveranderlike beskryf word. Montgomery and Klatt (1972) beweer egter dat industriële prosesse en produkte meer as een kwaliteitseienskap kan hê en dat hulle gesamentlik die kwaliteit van 'n produk kan beskryf. Proses monitering waarin verskeie verwante veranderlikes van belang mag wees, staan as meerveranderlike statistiese proses kontrole (MSPK) bekend. Die mees belangrike en algemene tegniek wat in MSPK gebruik word, is ewe eens die statistiese kontrolekaart soos dit die geval is by SPK. Die ontwerp van 'n kontrolekaart vereis van die gebruiker om drie parameters te kies wat soos volg is: steekproefgrootte, n , tussensteekproefinterval, h en kontrolegrense, k . Verskeie skrywers het kontrolekaarte ontwikkel wat op meer as een kwaliteitseienskap gebaseer is, waaronder Hotelling wat die gebruik van meerveranderlike proses kontrole tegnieke ingelei het met die ontwikkeling van die T2 -kontrolekaart wat algemeen bekend is as Hotelling se 2 T -kontrolekaart (Hotelling, 1947). Sedert die ingebruikneming van die kontrolekaart tegniek is die statistiese ontwerp daarvan die mees algemene benadering en is dit ook in daardie formaat gebruik. Nietemin, volgens Montgomery and Klatt (1972) en Montgomery (2005), het die ontwerp van die kontrolekaart ook ekonomiese implikasies. Daar is kostes betrokke by die ontwerp van die kontrolekaart en daar is ook die kostes t.o.v. steekproefneming en toetsing, kostes geassosieer met die ondersoek van 'n buite-kontrole-sein, en moontlike herstel indien enige moontlike korreksie van so 'n buite-kontrole-sein gevind word, kostes geassosieer met die produksie van niekonforme produkte, ens. In die eenveranderlike geval is die hantering van die ekonomiese eienskappe al in diepte ondersoek. Hierdie werkstuk gee 'n oorsig oor sommige van die verskillende metodes of tegnieke wat al daargestel is t.o.v. verskillende ekonomiese statistiese modelle vir MSPK. In die besonder word aandag gegee aan die gevalle waar die vektor van gemiddeldes sowel as die kovariansiematriks onderhewig is aan potensiële verskuiwings, in teenstelling met 'n neiging om slegs na die vektor van gemiddeldes in isolasie te kyk synde onderhewig aan moontlike verskuiwings te wees.
Yue, Hongyu. "Multivariate statistical monitoring and diagnosis with applications in semiconductor processes /." Digital version accessible at:, 2000. http://wwwlib.umi.com/cr/utexas/main.
Full textYoon, Seongkyu. "Using external information for statistical process control /." *McMaster only, 2001.
Find full textLee, David, and 李大為. "Statistical inference of a threshold model in extreme value analysis." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2012. http://hub.hku.hk/bib/B4819945X.
Full textpublished_or_final_version
Statistics and Actuarial Science
Master
Master of Philosophy
Stempski, Mark Owen. "Multivariate statistical strategies for the diagnosis of space-occupying liver disease." Diss., The University of Arizona, 1987. http://hdl.handle.net/10150/184280.
Full textMurphy, Terrence Edward. "Multivariate Quality Control Using Loss-Scaled Principal Components." Diss., Available online, Georgia Institute of Technology, 2004:, 2004. http://etd.gatech.edu/theses/available/etd-11222004-122326/unrestricted/murphy%5Fterrence%5Fe%5F200412%5Fphd.pdf.
Full textVictoria Chen, Committee Co-Chair ; Kwok Tsui, Committee Chair ; Janet Allen, Committee Member ; David Goldsman, Committee Member ; Roshan Vengazhiyil, Committee Member. Vita. Includes bibliographical references.
Beltran, Luis. "NONPARAMETRIC MULTIVARIATE STATISTICAL PROCESS CONTROL USING PRINCIPAL COMPONENT ANALYSIS AND SIMPLICIAL DEPTH." Doctoral diss., University of Central Florida, 2006. http://digital.library.ucf.edu/cdm/ref/collection/ETD/id/4080.
Full textPh.D.
Department of Industrial Engineering and Management Systems
Engineering and Computer Science
Industrial Engineering and Management Systems
Lin, Haisheng. "The application of multivariate statistical analysis and batch process control in industrial processes." Thesis, University of Manchester, 2010. https://www.research.manchester.ac.uk/portal/en/theses/the-application-of-multivariate-statistical-analysis-and-batch-process-control-in-industrial-processes(a80fba25-82b1-4f55-a38e-c486262e18dd).html.
Full textLynch, James Charles. "A flexible class of models for regression modelling of multivariate failure time data /." Thesis, Connect to this title online; UW restricted, 1996. http://hdl.handle.net/1773/9561.
Full textHu, Cecilia X. Matthew C. Knitt. "A comparative analysis of multivariate statistical detection methods applied to syndromic surveillance." Monterey, Calif. : Naval Postgraduate School, 2007. http://bosun.nps.edu/uhtbin/hyperion-image.exe/07Jun%5FHu.pdf.
Full textThesis Advisor(s): Ronald D. Fricker. "June 2007." Includes bibliographical references (p. 71-72). Also available in print.
Hong, Jeong Jin. "Multivariate statistical modelling for fault analysis and quality prediction in batch processes." Thesis, University of Newcastle Upon Tyne, 2011. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.576960.
Full textKnitt, Matthew C. "A comparative analysis of multivariate statistical detection methods applied to syndromic surveillance." Thesis, Monterey, California. Naval Postgraduate School, 2007. http://hdl.handle.net/10945/3417.
Full textRameseder, Jonathan. "Multivariate methods for the statistical analysis of hyperdimensional high-content screening data." Thesis, Massachusetts Institute of Technology, 2014. http://hdl.handle.net/1721.1/92957.
Full textThis electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections.
Cataloged from student-submitted PDF version of thesis.
Includes bibliographical references.
In the post-genomic era, greater emphasis has been placed on understanding the function of genes at the systems level. To meet these needs, biologists are creating larger, and increasingly complex datasets. In recent years, high-content screening (HCS) using RNA interference (RNAi) or other perturbation techniques in combination with automated microscopy has emerged as a promising investigative tool to explore intricate biological processes. Image-based HC screens produce massive hyperdimensional data sets. To identify novel components of the DNA damage response (DDR) after ionizing radiation, we recently performed an image-based HC RNAi screen in an osteosarcoma cell line. Robust univariate hit identication methods and manual network analysis identied an isoform of BRD4, a bromodomain and extra-terminal domain family member, as an endogenous inhibitor of DDR signaling. However, despite the plethora of data generated from our and other HC screens, little progress has been made in analyzing HC data using multivariate computational methods that exploit the full richness of hyperdimensional data and identify more than just the most salient knockdown phenotypes to gain a detailed understanding of how gene products cooperate to regulate complex cellular processes. We developed a novel multivariate method using logistic regression models and least absolute shrinkage and selection operator regularization for analyzing hyperdimensional HC data. We applied this method to our HC screen to identify genes that exhibit subtle but consistent phenotypic changes upon knockdown that would have been missed by conventional univariate hit identication approaches. Our method automatically selects the most predictive features at the most predictive time points to facilitate the more ecient design of follow-up experiments and puts the identied hits in a network context using the Prize-Collecting Steiner Tree algorithm. This method offers superior performance over the current gold standard for the analysis of HC RNAi screens. A surprising finding from our analysis is that training sets of genes involved in complex biological phenomena used to train predictive models must be broken down into functionally coherent subsets in order to enhance new gene discovery. Additionally, we found that in the case of RNAi screening, statistical cell-to-cell variation in phenotypic responses in a well of cells targeted by a single shRNA is an important predictor of gene dependent events.
by Jonathan Rameseder.
Ph. D.
Loddo, Antonello. "Bayesian analysis of multivariate stochastic volatility and dynamic models." Diss., Columbia, Mo. : University of Missouri-Columbia, 2006. http://hdl.handle.net/10355/4359.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file viewed on (April 26, 2007) Vita. Includes bibliographical references.
Eno, Daniel R. "Noninformative Prior Bayesian Analysis for Statistical Calibration Problems." Diss., Virginia Tech, 1999. http://hdl.handle.net/10919/27140.
Full textPh. D.
Ley, Christophe. "Univariate and multivariate symmetry: statistical inference and distributional aspects." Doctoral thesis, Universite Libre de Bruxelles, 2010. http://hdl.handle.net/2013/ULB-DIPOT:oai:dipot.ulb.ac.be:2013/210029.
Full textThe first part, composed of Chapters 1, 2 and 3 of the thesis, solves two conjectures associated with multivariate skew-symmetric distributions. Since the introduction in 1985 by Adelchi Azzalini of the most famous representative of that class of distributions, namely the skew-normal distribution, it is well-known that, in the vicinity of symmetry, the Fisher information matrix is singular and the profile log-likelihood function for skewness admits a stationary point whatever the sample under consideration. Since that moment, researchers have tried to determine the subclasses of skew-symmetric distributions who suffer from each of those problems, which has led to the aforementioned two conjectures. This thesis completely solves these two problems.
The second part of the thesis, namely Chapters 4 and 5, aims at applying and constructing extremely general skewing mechanisms. As such, in Chapter 4, we make use of the univariate mechanism of Ferreira and Steel (2006) to build optimal (in the Le Cam sense) tests for univariate symmetry which are very flexible. Actually, their mechanism allowing to turn a given symmetric distribution into any asymmetric distribution, the alternatives to the null hypothesis of symmetry can take any possible shape. These univariate mechanisms, besides that surjectivity property, enjoy numerous good properties, but cannot be extended to higher dimensions in a satisfactory way. For this reason, we propose in Chapter 5 different general mechanisms, sharing all the nice properties of their competitors in Ferreira and Steel (2006), but which moreover can be extended to any dimension. We formally prove that the surjectivity property holds in dimensions k>1 and we study the principal characteristics of these new multivariate mechanisms.
Finally, the third part of this thesis, composed of Chapter 6, proposes a test for multivariate central symmetry by having recourse to the concepts of statistical depth and runs. This test extends the celebrated univariate runs test of McWilliams (1990) to higher dimensions. We analyze its asymptotic behavior (especially in dimension k=2) under the null hypothesis and its invariance and robustness properties. We conclude by an overview of possible modifications of these new tests./
Cette thèse traite de différents aspects statistiques et probabilistes de symétrie et asymétrie univariées et multivariées, et est subdivisée en trois parties distinctes.
La première partie, qui comprend les chapitres 1, 2 et 3 de la thèse, est destinée à la résolution de deux conjectures associées aux lois skew-symétriques multivariées. Depuis l'introduction en 1985 par Adelchi Azzalini du plus célèbre représentant de cette classe de lois, à savoir la loi skew-normale, il est bien connu qu'en un voisinage de la situation symétrique la matrice d'information de Fisher est singulière et la fonction de vraisemblance profile pour le paramètre d'asymétrie admet un point stationnaire quel que soit l'échantillon considéré. Dès lors, des chercheurs ont essayé de déterminer les sous-classes de lois skew-symétriques qui souffrent de chacune de ces problématiques, ce qui a mené aux deux conjectures précitées. Cette thèse résoud complètement ces deux problèmes.
La deuxième partie, constituée des chapitres 4 et 5, poursuit le but d'appliquer et de proposer des méchanismes d'asymétrisation très généraux. Ainsi, au chapitre 4, nous utilisons le méchanisme univarié de Ferreira and Steel (2006) pour construire des tests de symétrie univariée optimaux (au sens de Le Cam) qui sont très flexibles. En effet, leur méchanisme permettant de transformer une loi symétrique donnée en n'importe quelle loi asymétrique, les contre-hypothèses à la symétrie peuvent prendre toute forme imaginable. Ces méchanismes univariés, outre cette propriété de surjectivité, possèdent de nombreux autres attraits, mais ne permettent pas une extension satisfaisante aux dimensions supérieures. Pour cette raison, nous proposons au chapitre 5 des méchanismes généraux alternatifs, qui partagent toutes les propriétés de leurs compétiteurs de Ferreira and Steel (2006), mais qui en plus sont généralisables à n'importe quelle dimension. Nous démontrons formellement que la surjectivité tient en dimension k > 1 et étudions les caractéristiques principales de ces nouveaux méchanismes multivariés.
Finalement, la troisième partie de cette thèse, composée du chapitre 6, propose un test de symétrie centrale multivariée en ayant recours aux concepts de profondeur statistique et de runs. Ce test étend le célèbre test de runs univarié de McWilliams (1990) aux dimensions supérieures. Nous en analysons le comportement asymptotique (surtout en dimension k = 2) sous l'hypothèse nulle et les propriétés d'invariance et de robustesse. Nous concluons par un aperçu sur des modifications possibles de ces nouveaux tests.
Doctorat en Sciences
info:eu-repo/semantics/nonPublished
Zhao, Hongya. "Statistical analysis of gene expression data in cDNA microarray experiments." HKBU Institutional Repository, 2006. http://repository.hkbu.edu.hk/etd_ra/657.
Full textTao, Hui. "An Investigation of False Discovery Rates in Multiple Testing under Dependence." Fogler Library, University of Maine, 2005. http://www.library.umaine.edu/theses/pdf/TaoH2005.pdf.
Full textMohamed, Nuri Eltabit [Verfasser], Rainer [Akademischer Betreuer] Schwabe, and Waltraud [Akademischer Betreuer] Kahle. "Statistical analysis in multivariate sampling / Nuri Eltabit Mohamed. Betreuer: Rainer Schwabe ; Waltraud Kahle." Magdeburg : Universitätsbibliothek, 2011. http://d-nb.info/1047558963/34.
Full textRowland, Adewumi. "GIS-based prediction of pipeline third-party interference using hybrid multivariate statistical analysis." Thesis, University of Newcastle Upon Tyne, 2011. http://hdl.handle.net/10443/2529.
Full textAlbazzaz, Hamza. "Multivariate statistical batch process control and data visualisation based on independent component analysis." Thesis, University of Leeds, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.432293.
Full textCrawford, Jesse B. "Interpretation of eigenvalues in multivariate statistical analysis and Bartlett's test for Riesz distributions." [Bloomington, Ind.] : Indiana University, 2008. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3331317.
Full textTitle from PDF t.p. (viewed on Jul 27, 2009). Source: Dissertation Abstracts International, Volume: 69-11, Section: B, page: 6890. Adviser: Steen A. Andersson.
Petters, Patrik. "Development of a Supervised Multivariate Statistical Algorithm for Enhanced Interpretability of Multiblock Analysis." Thesis, Linköpings universitet, Matematiska institutionen, 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-138112.
Full textHajigholizadeh, Mohammad. "Water Quality Modelling Using Multivariate Statistical Analysis and Remote Sensing in South Florida." FIU Digital Commons, 2016. http://digitalcommons.fiu.edu/etd/2992.
Full textHeeb, Thomas Gregory. "Examination of turbulent mixing with multiple second order chemical reactions by the statistical analysis technique /." The Ohio State University, 1986. http://rave.ohiolink.edu/etdc/view?acc_num=osu1487267024995615.
Full textLopez, Montero Eduardo. "Use of multivariate statistical methods for control of chemical batch processes." Thesis, University of Manchester, 2016. https://www.research.manchester.ac.uk/portal/en/theses/use-of-multivariate-statistical-methods-for-control-of-chemical-batch-processes(6cf45624-2388-4e85-b4c6-99503547ad06).html.
Full textLawal, Najib. "Modelling and multivariate data analysis of agricultural systems." Thesis, University of Manchester, 2015. https://www.research.manchester.ac.uk/portal/en/theses/modelling-and-multivariate-data-analysis-of-agricultural-systems(f6b86e69-5cff-4ffb-a696-418662ecd694).html.
Full textHolland, Jennifer M. "An Exploration of the Ground Water Quality of the Trinity Aquifer Using Multivariate Statistical Techniques." Thesis, University of North Texas, 2011. https://digital.library.unt.edu/ark:/67531/metadc84218/.
Full textKong, Xiaoli. "High Dimensional Multivariate Inference Under General Conditions." UKnowledge, 2018. https://uknowledge.uky.edu/statistics_etds/33.
Full textIdrus, Muhammad Rijal. "Multivariate morphometric analysis of seasonal changes in overwintering arctic charr (Salvelinus alpinus L.)." Thesis, McGill University, 1996. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=27346.
Full text