To see the other types of publications on this topic, follow the link: Stator simulations.

Journal articles on the topic 'Stator simulations'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Stator simulations.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Reinmo¨ller, U., B. Stephan, S. Schmidt, and R. Niehuis. "Clocking Effects in a 1.5 Stage Axial Turbine—Steady and Unsteady Experimental Investigations Supported by Numerical Simulations." Journal of Turbomachinery 124, no. 1 (2001): 52–60. http://dx.doi.org/10.1115/1.1425811.

Full text
Abstract:
The interaction between rotor and stator airfoils in a multistage turbomachine causes an inherently unsteady flow field. In addition, different relative circumferential positions of several stator rows and rotor rows, respectively, have an influence on the flow behavior in terms of loss generation, energy transport and secondary flow. The objective of the presented study is to investigate the effects of stator airfoil clocking on the performance of a 1-1/2 stage axial cold air turbine. The investigated axial turbine consists of two identical stators. The low aspect ratio of the blades and thei
APA, Harvard, Vancouver, ISO, and other styles
2

Tomasello, Stella Grazia, Roberto Meloni, Luca Andrei, and Antonio Andreini. "Study of Combustor–Turbine Interactions by Performing Coupled and Decoupled Hybrid RANS-LES Simulations under Representative Engine-like Conditions." Energies 16, no. 14 (2023): 5395. http://dx.doi.org/10.3390/en16145395.

Full text
Abstract:
Combustion–turbine interaction phenomena are attracting ever-growing interest in recent years. As a matter of fact, the strong unsteady and three-dimensional flow field that characterizes the combustor is usually conserved up to the first-stage nozzle, possibly affecting its design and performance in terms of aerodynamics and the effectiveness of the cooling system as well. Such conditions are also exacerbated by the employment of lean-burn combustors, where high turbulence levels are required for the flame stabilization, resulting in even greater temperature and velocity distortions at the in
APA, Harvard, Vancouver, ISO, and other styles
3

Jiang, Yongjiang, Kejie Wang, Lingkang Zhou, Wenfeng Zhang, and Zhen Hu. "Characteristics Improvement of Brushless Doubly-Fed Wind Turbine Generator with Minimized Asymmetric Phenomena." Electronics 14, no. 8 (2025): 1649. https://doi.org/10.3390/electronics14081649.

Full text
Abstract:
Compared with the traditional brushless doubly-fed generator (BDFG), the BDFG with double stator (BDFG-DS) architecture achieves enhanced configurability by physically decoupling the power and control windings onto independent stator assemblies. The design offers benefits such as expanded slot dimensions and enhanced power density, yet it remains constrained by inherent asymmetry in three phases, which causes large harmonics and torque ripples. In this paper, the working mechanism of the BDFG-DS is introduced. Then the root cause of the asymmetric phenomena is discussed. And based on the analy
APA, Harvard, Vancouver, ISO, and other styles
4

Wang, Ziwei, Xiong Jiang, Ti Chen, Yan Hao, and Min Qiu. "Numerical simulation of transonic compressor under circumferential inlet distortion and rotor/stator interference using harmonic balance method." Modern Physics Letters B 32, no. 12n13 (2018): 1840021. http://dx.doi.org/10.1142/s0217984918400213.

Full text
Abstract:
Simulating the unsteady flow of compressor under circumferential inlet distortion and rotor/stator interference would need full-annulus grid with a dual time method. This process is time consuming and needs a large amount of computational resources. Harmonic balance method simulates the unsteady flow in compressor on single passage grid with a series of steady simulations. This will largely increase the computational efficiency in comparison with the dual time method. However, most simulations with harmonic balance method are conducted on the flow under either circumferential inlet distortion
APA, Harvard, Vancouver, ISO, and other styles
5

Akwa, J. V., and A. P. Petry. "STATORS USE INFLUENCE ON THE PERFORMANCE OF A SAVONIUS WIND ROTOR USING COMPUTATIONAL FLUID DYNAMICS." Revista de Engenharia Térmica 10, no. 1-2 (2011): 63. http://dx.doi.org/10.5380/reterm.v10i1-2.61965.

Full text
Abstract:
This paper aims at verifying the influence of using five kinds of stators in the averaged moment and power coefficients of a Savonius wind rotor using computational fluid dynamics (CFD). The analyzed stators have cylindrical shape with two and three openings, one and four deflector blades and walls shaped like a wings. The equations of continuity, Reynolds Averaged Navier-Stokes – RANS and the Eddy Viscosity Model k-ω SST, in its Low-Reynolds approaches, with hybrid near wall treatment; are numerically solved using the commercial software Star-CCM+, based on Finite Volume Method, resulting in
APA, Harvard, Vancouver, ISO, and other styles
6

Tang, Jing, Jie Chen, Kan Dong, Yongheng Yang, Haichen Lv, and Zhigang Liu. "Modeling and Evaluation of Stator and Rotor Faults for Induction Motors." Energies 13, no. 1 (2019): 133. http://dx.doi.org/10.3390/en13010133.

Full text
Abstract:
The modeling of stator and rotor faults is the basis of the development of online monitoring techniques. To obtain reliable stator and rotor fault models, this paper focuses on dynamic modeling of the stator and rotor faults in real-time, which adopts a multiple-coupled-circuit method by using a winding function approach for inductance calculation. Firstly, the model of the induction machine with a healthy cage is introduced, where a rotor mesh that consists of a few rotor loops and an end ring loop is considered. Then, the stator inter-turn fault model is presented by adding an extra branch w
APA, Harvard, Vancouver, ISO, and other styles
7

Karanayil, Baburaj, Muhammed Fazlur Rahman, and Colin Grantham. "Identification of Induction Motor Parameters in Industrial Drives with Artificial Neural Networks." Advances in Fuzzy Systems 2009 (2009): 1–10. http://dx.doi.org/10.1155/2009/241809.

Full text
Abstract:
This paper presents a new method of online estimation of the stator and rotor resistance of the induction motor in the indirect vector-controlled drive, with artificial neural networks. The back propagation algorithm is used for training of the neural networks. The error between the rotor flux linkages based on a neural network model and a voltage model is back propagated to adjust the weights of the neural network model for the rotor resistance estimation. For the stator resistance estimation, the error between the measured stator current and the estimated stator current using neural network
APA, Harvard, Vancouver, ISO, and other styles
8

Rai, M. M., and N. K. Madavan. "Multi-Airfoil Navier–Stokes Simulations of Turbine Rotor–Stator Interaction." Journal of Turbomachinery 112, no. 3 (1990): 377–84. http://dx.doi.org/10.1115/1.2927670.

Full text
Abstract:
An accurate numerical analysis of the flows associated with rotor–stator configurations in turbomachinery can be extremely helpful in optimizing the performance of turbomachinery. In this study the unsteady, thin-layer, Navier–Stokes equations in two spatial dimensions are solved on a system of patched and overlaid grids for an axial-turbine rotor–stator configuration. The governing equations are solved using a finite-difference, upwind algorithm that is set in an iterative, implicit framework. Results are presented in the form of pressure contours, time-averaged pressures, unsteady pressures,
APA, Harvard, Vancouver, ISO, and other styles
9

Hembera, M., H. P. Kau, and E. Johann. "Simulation of Casing Treatments of a Transonic Compressor Stage." International Journal of Rotating Machinery 2008 (2008): 1–10. http://dx.doi.org/10.1155/2008/657202.

Full text
Abstract:
This article presents the study of casing treatments on an axial compressor stage for improving stability and enhancing stall margin. So far, many simulations of casing treatments on single rotor or rotor-stator configurations were performed. But as the application of casing treatments in engines will be in a multistage compressor, in this study, the axial slots are applied to a typical transonic first stage of a high-pressure 4.5-stage compressor including an upstream IGV, rotor, and stator. The unsteady simulations are performed with a three-dimensional time accurate Favre-averaged Navier-st
APA, Harvard, Vancouver, ISO, and other styles
10

Xu, Jieqiong, Qunhong Li, and Shimin Wang. "Impulsive Control of the Rotor-Stator Rub Based on Phase Characteristic." Abstract and Applied Analysis 2014 (2014): 1–7. http://dx.doi.org/10.1155/2014/495747.

Full text
Abstract:
An impulsive control method is proposed to eliminate the rotor-stator rubbing based on the phase characteristic. The relation between the vibration energy and the phase difference suggests the starting point for controlling the rotor-stator rubbing by implementing impulse. When the contact between the rotor and the stator occurs, the impulse is implemented inx-direction andy-direction several times to avoid the rotor-stator rubbing. The practical feasibility of this approach is investigated by numerical simulations.
APA, Harvard, Vancouver, ISO, and other styles
11

Valkov, T. V., and C. S. Tan. "Effect of Upstream Rotor Vortical Disturbances on the Time-Averaged Performance of Axial Compressor Stators: Part 1—Framework of Technical Approach and Wake–Stator Blade Interactions." Journal of Turbomachinery 121, no. 3 (1999): 377–86. http://dx.doi.org/10.1115/1.2841330.

Full text
Abstract:
In a two-part paper, key computed results from a set of first-of-a-kind numerical simulations on the unsteady interaction of axial compressor stators with upstream rotor wakes and tip leakage vortices are employed to elucidate their impact on the time-averaged performance of the stator. Detailed interrogation of the computed flow field showed that for both wakes and tip leakage vortices, the impact of these mechanisms can be described on the same physical basis. Specifically, there are two generic mechanisms with significant influence on performance: reversible recovery of the energy in the wa
APA, Harvard, Vancouver, ISO, and other styles
12

Fernandez Oro, Jesús Manuel, Andrés Meana-Fernández, Monica Galdo Vega, Bruno Pereiras, and José González Pérez. "LES-based simulation of the time-resolved flow for rotor-stator interactions in axial fan stages." International Journal of Numerical Methods for Heat & Fluid Flow 29, no. 2 (2019): 657–81. http://dx.doi.org/10.1108/hff-10-2017-0421.

Full text
Abstract:
Purpose The purpose of this paper is the development of a CFD methodology based on LES computations to analyze the rotor–stator interaction in an axial fan stage. Design/methodology/approach A wall-modeled large eddy simulation (WMLES) has been performed for a spanwise 3D extrusion of the central section of the fan stage. Computations were performed for three different operating conditions, from nominal (Q_N) to off-design (85 per cent Q_N and 70 per cent Q_N) working points. Circumferential periodic conditions were introduced to reduce the extent of the computational domain. The post-processi
APA, Harvard, Vancouver, ISO, and other styles
13

Wellborn, S. R., and T. H. Okiishi. "The Influence of Shrouded Stator Cavity Flows on Multistage Compressor Performance." Journal of Turbomachinery 121, no. 3 (1999): 486–97. http://dx.doi.org/10.1115/1.2841341.

Full text
Abstract:
Experiments were performed on a low-speed multistage axial-flow compressor to assess the effects of shrouded stator cavity flows on aerodynamic performance. Five configurations, which involved systematic changes in seal-tooth leakage rates and/or elimination of the shrouded stator cavities, were tested. Rig data indicate increasing seal-tooth leakage substantially degraded compressor performance. For every 1 percent increase in seal-tooth clearance-to-span ratio, the decrease in pressure rise was 3 percent and the reduction in efficiency was 1 point. These observed performance penalties are co
APA, Harvard, Vancouver, ISO, and other styles
14

Andrada, Pere, Balduí Blanqué, Marcel Torrent, and Pol Kobeaga. "Segmented Stator Switched Reluctance Motor Drive for Light Electric Vehicle." International Journal of Electrical and Computer Engineering Research 3, no. 1 (2023): 18–23. http://dx.doi.org/10.53375/ijecer.2023.321.

Full text
Abstract:
The world market of electric light vehicles will significantly increase in the coming years. What will require the development of better high-performance drives with lowcost, and, if possible, free of permanent magnets. A segmented stator switched reluctance motor is presented to fulfill this objective because it has advantages over the conventional switched reluctance machines, such as segmented stator construction, stator shorter flux paths without flux reversal, and as a consequence, fewer iron losses. Simulations will demonstrate that the proposed segmented stator switched reluctance motor
APA, Harvard, Vancouver, ISO, and other styles
15

Ibrahim, Issah, Mohammad Hossain Mohammadi, Vahid Ghorbanian, and David Lowther. "Correlating structural complexity and acoustic noise performance of electric motors." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 41, no. 3 (2022): 925–37. http://dx.doi.org/10.1108/compel-03-2021-0094.

Full text
Abstract:
Purpose Acoustic noise is a crucial performance index in the design of electrical machines. Due to the challenges associated with modelling a complete motor, the stator is often used to estimate the sound power in the prototyping stage. While this approach greatly reduces lengthy simulations, the actual sound power of the motor may not be known. But, from the acoustic noise standpoint, not much is known about the correlation between the stator and complete motor. This paper, therefore, aims to use the sound pressure levels of the stator and the full motor to investigate the existence of correl
APA, Harvard, Vancouver, ISO, and other styles
16

Oumar, Aichetoune, Yarba Ahmed, and Mohamed Cherkaoui. "Operating of DSIM without Current and Speed Sensors Controlled by ADRC Control." Mathematical Problems in Engineering 2022 (August 1, 2022): 1–8. http://dx.doi.org/10.1155/2022/9033780.

Full text
Abstract:
This paper presents an operation of the double start induction machine (DSIM) without current and speed sensors controlled by active disturbance rejection control (ADRC). The operation of the machine, without current and speed sensors, is an economic and simple method. The main advantages of this method are the reconstruction of stator current phases and rotor speed using only one DC voltage. The method is very simple and effective. It is based on the information provided by a DC voltage and the switching states of the converters to reconstruct the stator voltages. After we use two voltages ob
APA, Harvard, Vancouver, ISO, and other styles
17

Haghgooei, Peyman, Ehsan Jamshidpour, Adrien Corne, et al. "A Parameter-Free Method for Estimating the Stator Resistance of a Wound Rotor Synchronous Machine." World Electric Vehicle Journal 14, no. 3 (2023): 65. http://dx.doi.org/10.3390/wevj14030065.

Full text
Abstract:
This paper presents a new online method based on low frequency signal injection to estimate the stator resistance of a Wound Rotor Synchronous Machine (WRSM). The proposed estimator provides a parameter-free method for estimating the stator resistance, in which there is no need to know the values of the parameters of the machine model, such as the stator and rotor inductances or the rotor flux linkage. In this method, a low frequency sinusoidal current is injected in the d axis of the stator current to produce a sinusoidal flux in the stator. In this paper, it is shown that the phase differenc
APA, Harvard, Vancouver, ISO, and other styles
18

Ghimire, Saugat, and Mark Turner. "Detailed Simulations of a Three-Stage Supercritical Carbon Dioxide Axial Compressor with a Focus on the Shrouded Stator Cavities Flow." Processes 11, no. 5 (2023): 1358. http://dx.doi.org/10.3390/pr11051358.

Full text
Abstract:
This paper describes the findings of detailed simulations performed to investigate the impact of seal teeth cavity leakage flow on the aerodynamic and thermal performance of a three-stage supercritical CO2 axial compressor. The study compares a shrouded stator configuration (with cavities) to a cantilevered stator configuration (without cavities) to highlight their differences. High-fidelity computational fluid dynamics simulations were performed using non-linear harmonic (NLH) and mixing plane assumptions, considering various possible rotor/stator interface configurations for mixing plane cal
APA, Harvard, Vancouver, ISO, and other styles
19

Ayas, Mehmet, Jan Skocilas, and Tomas Jirout. "Analysis of Power Input of an In-Line Rotor-Stator Mixer for Viscoplastic Fluids." Processes 8, no. 8 (2020): 916. http://dx.doi.org/10.3390/pr8080916.

Full text
Abstract:
In this work, the power draw and shear profile of a novel in-line rotor-stator mixer were studied experimentally and the laminar flow regime was simulated. The power draw of the rotor-stator mixer was investigated experimentally using viscoplastic shear-thinning fluid and the results of the obtained power consumptions were verified through simulations. The power draw constant and Otto-Metzner coefficient were determined from the result of experimental data and through simulations. A new method is suggested for the determination of the Otto-Metzner coefficient for the Herschel–Bulkley model and
APA, Harvard, Vancouver, ISO, and other styles
20

Pasha, Hasan, Gil Jun Lee, Henry Zhang, Steve Hale, and Santosh Kottalgi. "Automated Material Parameter Calibration for an Electric Motor Stator." INTER-NOISE and NOISE-CON Congress and Conference Proceedings 263, no. 3 (2021): 3454–58. http://dx.doi.org/10.3397/in-2021-2409.

Full text
Abstract:
For accurate prediction of E-motor noise and vibration performance at the design stage, it is important to model the E-Motor stator structural behavior with high fidelity. Orthotropic material properties have been widely used in practice to simulate laminated steel in the stator. In these models, material constants are calibrated to match natural frequencies of critical modes such as oval/triangle/square modes. Typically, identifying accurate material properties is a manual, time-consuming process, involving lots of trial and error. This study presents an automated workflow to calibrate the ma
APA, Harvard, Vancouver, ISO, and other styles
21

Ahriche, Aimad. "An Approach of Position and Torque Estimation for Induction Motor based Sensor-less Drive." International Journal of Circuits, Systems and Signal Processing 17 (March 6, 2023): 44–49. http://dx.doi.org/10.46300/9106.2023.17.5.

Full text
Abstract:
This paper presents a new approach with stability analysis, simulation and experimental investigation of a sliding mode based estimator for rotor-position and torque-load calculation in high performance speed-sensor-less AC motor drive. The proposed algorithm is built based on the induction motor (IM) fluxes equations for two rotationg referential frames. The First equation calculates the stator flux vector while the second gives the rotor flux vector. Moreover, the stator flux equation is linked to a stator-flux rotating referential frame and the rotor flux equation is linked to a rotor-flux
APA, Harvard, Vancouver, ISO, and other styles
22

Jannati, Mohammad, Tole Sutikno, Nik Rumzi Nik Idris, and Mohd Junaidi Abdul Aziz. "Modeling of Balanced and Unbalanced Three-Phase Induction Motor under Balanced and Unbalanced Supply Based on Winding Function Method." International Journal of Electrical and Computer Engineering (IJECE) 5, no. 4 (2015): 644. http://dx.doi.org/10.11591/ijece.v5i4.pp644-655.

Full text
Abstract:
<p>An accurate model of balanced and unbalanced three-phase Induction Motor (IM) under balanced and unbalanced supply conditions based on Winding Function Method (WFM) is presented in this work. In this paper, the unbalanced condition in three-phase IM is limited to stator winding open-phase fault. The analysis of presented models is shown in details which allow predicting the performance of 3-phase IM under different conditions. Computer simulations were obtained using the MATLAB software for a three-phase squirrel cage IM. MATLAB simulation results show that the oscillation of the spee
APA, Harvard, Vancouver, ISO, and other styles
23

Brandão, André, Aline Souza de Paula, Marcelo Amorim Savi, and Fabrice Thouverez. "Nonlinear Dynamics and Chaos of a Nonsmooth Rotor-Stator System." Mathematical Problems in Engineering 2017 (2017): 1–10. http://dx.doi.org/10.1155/2017/8478951.

Full text
Abstract:
Rotor systems have wide applications in industries, including aero engines, turbo generators, and gas turbines. Critical behaviors promoted by the system unbalance and the contact between rotor and stator lead to important nonlinearities on system dynamics. This paper investigates the complex behavior presented by a rotor-stator system’s dynamics due to intermittent contact. A four-degree-of-freedom Jeffcott nonsmooth rotor/stator system is used to describe the rotor behavior, while a viscoelastic suspended rigid cylinder represents the stator. Numerical simulations are carried out showing ric
APA, Harvard, Vancouver, ISO, and other styles
24

Sun, Peng, Wenguang Fu, Hong Wang, and Jingjun Zhong. "Numerical research on inlet total pressure distortion in a transonic compressor with non-axisymmetric stator." Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering 233, no. 2 (2017): 667–78. http://dx.doi.org/10.1177/0954410017740385.

Full text
Abstract:
The adverse impacts of non-uniform inlet flow have been the focus for several decades with the increase of the operating range of engines. A deep understanding of the flow mechanism of distortion passing through a compressor is needed urgently and the improvement of the compressor performance becomes more and more important. In this paper, a non-axisymmetric stator is presented with significant non-axisymmetric characteristics in a transonic compressor to investigate compressor performance and flow field effects. A time-dependent three-dimensional Reynolds-averaged Navier-Stokes equation compo
APA, Harvard, Vancouver, ISO, and other styles
25

Ding, Wei, Yulong Jin, Xijin Wu, Yufeng Yang, and Yongjiang Jiang. "High-Resistance Connection Diagnosis of Doubly Fed Induction Generators." Energies 16, no. 22 (2023): 7516. http://dx.doi.org/10.3390/en16227516.

Full text
Abstract:
The high resistance connection fault of the stator is a common fault in doubly fed induction generators, which causes a three-phase imbalance in the stator circuit. Since the stator winding is directly connected to the power grid, interference from the asymmetric power grid must be eliminated in order to achieve the accurate diagnosis of stator resistance imbalance faults. Therefore, a new diagnosis method based on filter shunt capacitor banks is proposed in this paper. By introducing shunt capacitor banks, an artificial neutral point is constructed to replace the neutral point of the power gr
APA, Harvard, Vancouver, ISO, and other styles
26

Chen, Chien-Hsu, Hsiu-Ming Wu, and Yue-Feng Lin. "Stator flux oriented multiple sliding-mode speed control design of induction motor drives." Advances in Mechanical Engineering 13, no. 5 (2021): 168781402110217. http://dx.doi.org/10.1177/16878140211021734.

Full text
Abstract:
Due to superior robustness characteristic of sliding-mode control techniques, this study proposes a multiple sliding-mode control (MSMC) strategy based on the stator flux oriented vector scheme for speed control of three-phase AC induction motor (IM) drives in the presence of an external disturbance and uncertainties. At first, the dynamic model of a three-phase IM drive is transformed into two-axe orthogonal model (i.e. d and q axes) in the synchronously rotating frame so that vector control can be applied. Then, based on the stator flux oriented scheme (i.e. zero stator flux at q-axis and co
APA, Harvard, Vancouver, ISO, and other styles
27

Benbouzid, Mohamed, Abdelkrim Benchaib, Gang Yao, Brice Beltran, and Olivier Chocron. "A Metric Observer for Induction Motors Control." Journal of Control Science and Engineering 2016 (2016): 1–9. http://dx.doi.org/10.1155/2016/3631254.

Full text
Abstract:
This paper deals with metric observer application for induction motors. Firstly, assuming that stator currents and speed are measured, a metric observer is designed to estimate the rotor fluxes. Secondly, assuming that only stator currents are measured, another metric observer is derived to estimate rotor fluxes and speed. The proposed observer validity is checked throughout simulations on a 4 kW induction motor drive.
APA, Harvard, Vancouver, ISO, and other styles
28

Laín-Beatove, Santiago, Manuel J. García.Ruiz, Brian Quintero-Arboleda, and Santiago Orrego-Bustamante. "CFD Numerical simulations of Francis turbines." Revista Facultad de Ingeniería Universidad de Antioquia, no. 51 (March 20, 2013): 31–40. http://dx.doi.org/10.17533/udea.redin.14917.

Full text
Abstract:
In this paper the description of the internal flow in a Francis turbine is addressed from a numerical point of view. The simulation methodology depends on the objectives. On the one hand, steady simulations are able to provide the hill chart of the turbine and energetic losses in its components. On the other hand, unsteady simulations are required to investigate the fluctuating pressure dynamics and the rotor-stator interaction. Both strategies are applied in this paper to a working Francis turbine in Colombia. The employed CFD package is ANSYS-CFX v. 11. The obtained results are in good agree
APA, Harvard, Vancouver, ISO, and other styles
29

Jun, Bum-Su, Joon Park, Jun-Hyuk Choi, Ki-Doek Lee, and Chung-Yuen Won. "Temperature Estimation of Stator Winding in Permanent Magnet Synchronous Motors Using d-Axis Current Injection." Energies 11, no. 8 (2018): 2033. http://dx.doi.org/10.3390/en11082033.

Full text
Abstract:
This paper presents a stator winding temperature detection method for permanent magnet synchronous motors (PMSMs) using a motor parameter estimation method. PMSM performance is highly dependent on the motor parameters. However, the motor parameters vary with temperature. It is difficult to measure motor parameters using a voltage equation without additional sensors. Herein, a stator winding temperature estimation method based on a d-axis current injection method is proposed. The proposed estimation method can be used to obtain stator temperatures and to achieve reliable operation. The validity
APA, Harvard, Vancouver, ISO, and other styles
30

Gaetani, Paolo, and Giacomo Persico. "Influence of the Rotor-Driven Perturbation on the Stator-Exit Flow within a High-Pressure Gas Turbine Stage." International Journal of Turbomachinery, Propulsion and Power 6, no. 3 (2021): 28. http://dx.doi.org/10.3390/ijtpp6030028.

Full text
Abstract:
In stator–rotor interaction studies on axial turbines, the attention is commonly focused on the unsteady rotor aerodynamics resulting from the periodic perturbations induced by the stator flow structures. Conversely, less interest has been historically attracted regarding the influence of the rotor on the flow released by the stator, correlated to propagation of the blade potential field upstream of the rotor leading edge. In this paper, experiments in the research high-pressure turbine of the Laboratory of Fluid-Machines of the Politecnico di Milano, performed by applying a fast-response aero
APA, Harvard, Vancouver, ISO, and other styles
31

Guo, Chen. "A Spherical Planning Based Electrifying Strategy of Permanent Magnet Spherical Motor." Applied Mechanics and Materials 741 (March 2015): 629–45. http://dx.doi.org/10.4028/www.scientific.net/amm.741.629.

Full text
Abstract:
Permanent Magnet SpherIcal Motor (PMSM) can be applIed on offshore O&M vessels for offshore wInd farms. An electrIfyIng strategy of PMSM Is proposed accordIng to the structure of PMSM wIth 3 layers of stator coIls. A statIc torque model of PMSM Is buIlt In thIs paper. In order to classIfy the statuses of rotor posItIon, spherIcal plannIng on stator spherIcal surface Is made and 4 classes of 72 sub-regIons are dIVIded accordIng to the dIstrIbutIon of stator coIls. Then stator coIls In each sub-regIon are marked wIth numbers and electrIfyIng rules of stator coIls In dIfferent statuses are de
APA, Harvard, Vancouver, ISO, and other styles
32

Taha Hussein, Hussein, Mohamed Ammar, and Mohamed Moustafa Hassan. "Induction Motors Stator Fault Analysis based on Artificial Intelligence." Indonesian Journal of Electrical Engineering and Computer Science 2, no. 1 (2016): 69. http://dx.doi.org/10.11591/ijeecs.v2.i1.pp69-78.

Full text
Abstract:
This article presents a method for fault detection and diagnosis of stator inter-turn short circuit in three phase induction machines. The technique is based on the stator current and modelling in the dq frame using an Adaptive Neuro-Fuzzy artificial intelligence approach. The developed fault analysis method is illustrated using MATLAB simulations. The obtained results are promising based on the new fault detection approach.
APA, Harvard, Vancouver, ISO, and other styles
33

Tannous, Mikhael, Patrice Cartraud, Mohamed Torkhani, and David Dureisseix. "Assessment of 3D modeling for rotor–stator contact simulations." Journal of Sound and Vibration 353 (September 2015): 327–43. http://dx.doi.org/10.1016/j.jsv.2015.05.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Montiel, Miguel, and Roque Corral. "Time-Inclined Method for High-Fidelity Rotor/Stator Simulations." Aerospace 10, no. 5 (2023): 475. http://dx.doi.org/10.3390/aerospace10050475.

Full text
Abstract:
The application of the time-inclined method in a fourth-order unstructured flux-reconstruction code for turbomachinery is demonstrated. Inviscid and viscous unsteady results due to the interaction of an incoming gust of total pressure with a linear cascade of flat plates and a linear cascade of T106A low-pressure turbine airfoils are reported. The agreement between the time-inclined method and the equivalent full-annulus multipassage solution is very high for both cases. Viscous solutions at Reynolds numbers of 104 and 105 were conducted. A high degree of matching was obtained between the time
APA, Harvard, Vancouver, ISO, and other styles
35

Setty Allampalli, Ravikumar, PurnaPrajna R. Mangsuli, and Kishore Chatterjee. "Novel Compensation Method to Reduce Rotor Position Estimation Error and Torque Reduction in Signal Injection Based PMSM Drives." International Journal of Power Electronics and Drive Systems (IJPEDS) 8, no. 2 (2017): 548. http://dx.doi.org/10.11591/ijpeds.v8.i2.pp548-557.

Full text
Abstract:
High frequency signal injection techniques are widely used to extract rotor position information from low speed to stand still. Accuracy of estimated rotor position is decreased when stator winding resistance is neglected. Position estimation error also results in output Torque reduction. Parasitic resistance of stator winding causes significant position estimation error <br /> and Torque reduction, if not compensated. Signal injection techniques developed in the literature does not provide detailed analysis and compensation methods to improve rotor position estimation of PMS Motors, whe
APA, Harvard, Vancouver, ISO, and other styles
36

Krishtop, Ihor, Victor German, Alexander Gusak, Svitlana Lugova, and Alexey Kochevsky. "Numerical Approach for Simulation of Fluid Flow in Torque Flow Pumps." Applied Mechanics and Materials 630 (September 2014): 43–51. http://dx.doi.org/10.4028/www.scientific.net/amm.630.43.

Full text
Abstract:
Torque flow pumps are widely used for pumping of fluids with high content of solid and fibrous inclusions and gas bubbles, in particular, for pumping of sewage and wastes. Fluid flow in these pumps is featured with strong vortex patterns, making it difficult to predict reliably their performance curves numerically. The paper is devoted to selection of a numerical approach for simulation of fluid flow in a torque flow pump of “Turo” type and its influence on simulation results. In particular, influence of geometrical configuration of the rotor-stator interface as well as numerical grid fineness
APA, Harvard, Vancouver, ISO, and other styles
37

Shin, Jae-Gak, Hong-Jae Jang, Tae-Su Kim, and Ki-Chan Kim. "Study on the Electromagnetic Characteristics of a Twin Inverter System EV Traction Motor Under Various Operating Conditions." Energies 18, no. 13 (2025): 3415. https://doi.org/10.3390/en18133415.

Full text
Abstract:
This paper analyzes the electromagnetic characteristics of an interior permanent magnet synchronous motor (IPMSM) for electric vehicle traction under various control imbalance conditions in a twin inverter system, assuming that one of the inverters fails to operate properly. The imbalance conditions are first investigated through dynamometer experiments and then applied to finite element method (FEM) simulations to evaluate their electromagnetic effects. Since the focus is on scenarios where a single inverter malfunctions, a stator winding configuration is first redefined to ensure stable oper
APA, Harvard, Vancouver, ISO, and other styles
38

Jiang, Jun. "The Analytical Solution and The Existence Condition of Dry Friction Backward Whirl in Rotor-to-Stator Contact Systems." Journal of Vibration and Acoustics 129, no. 2 (2006): 260–64. http://dx.doi.org/10.1115/1.2345677.

Full text
Abstract:
Dry friction backward whirl is a self-excited vibration state in rotor-to-stator contact systems, by which the rotor is in continuous contact with the stator, slipping continuously on the contact surface and whirling backward at a supersynchronous frequency. To correctly cope the response of dry friction backward whirl, the effect of dry friction must be taken into account in rotor/stator models. From the knowledge on the characteristics of dry friction backward whirl, the whirl frequency, the existence condition and the solution of this response are derived analytically in this paper. The ana
APA, Harvard, Vancouver, ISO, and other styles
39

Kruchinina, Irina Yu, Yuvenaliy Khozikov, Alexandr Liubimtsev, and Valentina Paltceva. "Harmonic losses in high-speed PM synchronous machines." COMPEL - The international journal for computation and mathematics in electrical and electronic engineering 36, no. 3 (2017): 683–91. http://dx.doi.org/10.1108/compel-09-2016-0401.

Full text
Abstract:
Purpose The purpose of this paper is the development of a new numerical method for the calculation of the air-gap magnetic flux harmonics in synchronous machines with permanent magnet (PM) excitation. The harmonic analysis results are used as input data for the eddy-current loss calculation and for the rotor heating evaluation. Design/methodology/approach The method is based on the finite element analysis (FEA). The model takes into account toothed stator design, rotor asymmetrical magnetic reluctance and saturation. At first, a series of static DC magnetic (magnetostatic) simulations is run.
APA, Harvard, Vancouver, ISO, and other styles
40

Nguyen, Dung Quang, Quang Thanh Nguyen, Trung Van Nguyen, Tai Huu Le, Hau Huu Vo, and Pavel Brandstetter. "Simplified Control Structure of Fuzzy Logic and Kalman Filter for Induction Motor Drive." Journal of Advanced Engineering and Computation 5, no. 3 (2021): 189. http://dx.doi.org/10.55579/jaec.202153.334.

Full text
Abstract:
The paper deals with the utilization of Kalman filter and fuzzy logic control in induction motor drive with direct torque control (DTC). In order to lower ripple of stator current vector in DTC drive, pulse width modulation technique with high switching frequency is applied. However, the performance of the DTC also depends on the accuracy of both stator resistance and stator current vector. In the paper, the stator resistance and stator current components are assumed to be distorted by Gaussian noises. In order to reduce the effect of noises especially at low speed and very low speed regions,
APA, Harvard, Vancouver, ISO, and other styles
41

Hösgen, Thomas, Matthias Meinke, and Wolfgang Schröder. "Large-Eddy Simulations of Rim Seal Flow in a One-Stage Axial Turbine." Journal of the Global Power and Propulsion Society 4 (December 23, 2020): 309–21. http://dx.doi.org/10.33737/jgpps/129704.

Full text
Abstract:
The flow field in a one-stage axial flow turbine with 30 stator and 62 rotor blades including the wheel space is investigated by large-eddy simulation (LES). The Navier-Stokes equations are solved using a massively parallel finite-volume solver based on a Cartesian mesh with immersed boundaries. The strict conservation of mass, momentum, and energy is ensured by an efficient cut-cell/level-set ansatz, where a separate level-set solver describes the motion of the rotor. Both solvers use individual subsets of a shared Cartesian mesh, which they can adapt independently. The focus of the analysis
APA, Harvard, Vancouver, ISO, and other styles
42

Childs, Dara W., and Avijit Bhattacharya. "Prediction of Dry-Friction Whirl and Whip Between a Rotor and a Stator." Journal of Vibration and Acoustics 129, no. 3 (2007): 355–62. http://dx.doi.org/10.1115/1.2731412.

Full text
Abstract:
This paper addresses recent test results for dry-friction whip and whirl. Authors of these publications suggest that predictions from Black’s 1968 paper (J. Mech. Eng. Sci., 10(1), pp. 1–12) are deficient in predicting their observed transition speeds from whirl to whip and the associated precession frequencies of whirl and whip motion. Predictions from Black’s simple Jeffcott-rotor/point-mass stator are cited. This model is extended here to a multimode rotor and stator model with an arbitrary axial location for rotor-stator rubbing. Predictions obtained from this new model are quite close to
APA, Harvard, Vancouver, ISO, and other styles
43

Chaluvadi, V. S. P., A. I. Kalfas, and H. P. Hodson. "Vortex Transport and Blade Interactions in High Pressure Turbines." Journal of Turbomachinery 126, no. 3 (2004): 395–405. http://dx.doi.org/10.1115/1.1773849.

Full text
Abstract:
This paper presents a study of the three-dimensional flow field within the blade rows of a high-pressure axial flow steam turbine stage. Half-delta wings were fixed to a rotating hub to simulate an upstream rotor passage vortex. The flow field is investigated in a low-speed research turbine using pneumatic and hot-wire probes downstream of the blade row. The paper examines the impact of the delta wing vortex transport on the performance of the downstream blade row. Steady and unsteady numerical simulations were performed using structured three-dimensional Navier-Stokes solver to further unders
APA, Harvard, Vancouver, ISO, and other styles
44

Papagiannis, Ilias, Asad Raheem, Altug Basol, et al. "Unsteady flow mechanisms in the last stage of a transonic low pressure steam turbine—multistage effects and tip leakage flows." Journal of the Global Power and Propulsion Society 1 (July 20, 2017): F4IW8S. http://dx.doi.org/10.22261/f4iw8s.

Full text
Abstract:
Abstract In this paper, an unsteady investigation of the last two stages of a low-pressure steam turbine with supersonic airfoils near the tip of the last stage’s rotor blade is presented. Goal is the investigation of multistage effects and tip leakage flow in the last stage of the turbine and to provide insight on the stator-rotor flow interaction in the presence of a bow-shock wave. This study is unique in a sense of combining experimental data for code validation and comparison with a numerical simulation of the last two stages of a real steam turbine, including tip-cavity paths and seals,
APA, Harvard, Vancouver, ISO, and other styles
45

Huang, Yi, and Clemens Gühmann. "Wireless Sensor Network for Temperatures Estimation in an Asynchronous Machine Using a Kalman Filter." ACTA IMEKO 7, no. 1 (2018): 5. http://dx.doi.org/10.21014/acta_imeko.v7i1.509.

Full text
Abstract:
<p class="Abstract">A 4<sup>th</sup>-order Kalman filter (KF) algorithm is developed based on the thermal model of an asynchronous machine. The thermal parameters are identified and KF is implemented in a wireless sensor network (WSN) to estimate the temperatures of the stator windings, the rotor cage, and the stator core of an asynchronous machine. The rotor speed, coolant air temperature, and the effective current and voltage are acquired by a WTIM (wireless transducer interface module) separately and transmitted to a NCAP (network capable application processor) where the K
APA, Harvard, Vancouver, ISO, and other styles
46

Lugaresi, Marco, Diego Villa, and Stefano Gaggero. "Design by Optimization on the Nozzle and the Stator Blades of a Rim-Driven Pumpjet." Journal of Marine Science and Engineering 12, no. 11 (2024): 2090. http://dx.doi.org/10.3390/jmse12112090.

Full text
Abstract:
The design of the stator and nozzle of a rim-driven pumpjet thruster (RDPJ) is addressed through a simulation-based design optimization approach built on a parametric description of the main geometrical characteristics of the system, a RANS solver with actuator disk model, and a genetic algorithm. As the propeller blades’ geometry is fixed, the rotor/stator (RDPJ-R/S) configuration is considered for the optimal design from a multi-objective optimization process aimed at minimizing the resistance keeping the cavitation inception index at the lowest possible value. Steady-state (moving reference
APA, Harvard, Vancouver, ISO, and other styles
47

Goldman, P., and A. Muszynska. "Chaotic Behavior of Rotor/Stator Systems With Rubs." Journal of Engineering for Gas Turbines and Power 116, no. 3 (1994): 692–701. http://dx.doi.org/10.1115/1.2906875.

Full text
Abstract:
This paper outlines the dynamic behavior of externally excited rotor/stator systems with occasional, partial rubbing conditions. The observed phenomena have one major source of a strong nonlinearity: transition from no contact to contact state between mechanical elements, one of which is rotating, resulting in variable stiffness and damping, impacting, and intermittent involvement of friction. A new model for such a transition (impact) is developed. In case of the contact between rotating and stationary elements, it correlates the local radial and tangential (“super ball”) effects with global
APA, Harvard, Vancouver, ISO, and other styles
48

Chen, Junlei, Shuo Chen, Xiang Wu, Guojun Tan, and Jianqi Hao. "A Super-Twisting Sliding-Mode Stator Flux Observer for Sensorless Direct Torque and Flux Control of IPMSM." Energies 12, no. 13 (2019): 2564. http://dx.doi.org/10.3390/en12132564.

Full text
Abstract:
The scheme based on direct torque and flux control (DTFC) as well as active flux is a good choice for the interior permanent magnet synchronous motor (IPMSM) sensorless control. The precision of the stator flux observation is essential for this scheme. However, the performance of traditional observers like pure integrator and the low-pass filter (LPF) is severely deteriorated by disturbances, especially dc offset. Recently, a sliding-mode stator flux observer (SMFO) was proposed to reduce the dc offset in the estimated stator flux. However, it cannot eliminate the dc offset totally and will ca
APA, Harvard, Vancouver, ISO, and other styles
49

Perin, Deniz, Aslan Deniz Karaoglan, and Kemal Yilmaz. "Rotor design optimization of a 4000 rpm permanent magnet synchronous generator using moth flame optimization algorithm." An International Journal of Optimization and Control: Theories & Applications (IJOCTA) 14, no. 2 (2024): 123–33. http://dx.doi.org/10.11121/ijocta.1407.

Full text
Abstract:
The goal of this paper is to optimize the rotor design parameters of 4000 rpm permanent magnet synchronous generator. The factors namely embrace, offset, outer diameter, and magnet thickness are selected as the design parameters those will be optimized in order to hold the magnetic flux density (MFD) distribution and the flux density on stator teeth and stator yoke within a desirable range while maximizing efficiency. The numerical simulations are carried out in the Maxwell environment for this purpose. The mathematical relationships between the responses and the factors are then derived using
APA, Harvard, Vancouver, ISO, and other styles
50

Gorrell, Steven E., Theodore H. Okiishi, and William W. Copenhaver. "Stator-Rotor Interactions in a Transonic Compressor—Part 2: Description of a Loss-Producing Mechanism." Journal of Turbomachinery 125, no. 2 (2003): 336–45. http://dx.doi.org/10.1115/1.1540120.

Full text
Abstract:
A previously unidentified loss producing mechanism resulting from the interaction of a transonic rotor blade row with an upstream stator blade row is described. This additional loss occurs only when the two blade rows are spaced closer together axially. Time-accurate simulations of the flow and high-response static pressure measurements acquired on the stator blade surface reveal important aspects of the fluid dynamics of the production of this additional loss. At close spacing the rotor bow shock is chopped by the stator trailing edge. The chopped bow shock becomes a pressure wave on the uppe
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!