Academic literature on the topic 'Steam boiler natural gas design calculation thesis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Steam boiler natural gas design calculation thesis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Steam boiler natural gas design calculation thesis"

1

Aguilar Vizcarra, Duilio, Doris Esenarro, and Ciro Rodriguez. "Three Steps Mixed (Fire Tube–Water Tube) Vertical Boiler to Optimize Thermal Performance." Fluids 6, no. 3 (February 25, 2021): 93. http://dx.doi.org/10.3390/fluids6030093.

Full text
Abstract:
The research aims to design and construct a new mixed vertical boiler (fire tube – water tube) with three gas passes. The strength of this technological innovation is in the best use of the thermic transmission receiving fluid (hot water, steam, thermal oil), this due to its multipurpose function of three steps using alternative fuels (Diesel, Liquid Petroleum Gas LPG, natural gas), by improving the thermal efficiency of the boiler its temperature is reduced with gases at low temperatures, which in turn also reduce environmental pollution. The methodology focuses on calculating the transfer area with the calculation method that will allow dimensioning the boiler, considering the calculation of losses and the fluid speed, with two defined procedures, the first for fire tube and water tube boilers. And another alternative. The results obtained allowed optimizing the thermal efficiency level, achieving very significant thermal efficiency results: With LPG 92.4% for hot water and 92.42% to generate steam in the same way with natural gas 90.25% for hot water and 90.24% to generate steam as well with Diesel 2; 89.21% for hot water and 89.31% to generate steam.
APA, Harvard, Vancouver, ISO, and other styles
2

KUDINOV, Anatoly A., and Yulia E. DEMINA. "CALCULATION OF THE DRAINAGE SYSTEM OF LEAVING FLUE GASES FROM THE TURBINE THROUGH THE COOLING TOWER." Urban construction and architecture 8, no. 1 (March 15, 2018): 135–38. http://dx.doi.org/10.17673/vestnik.2018.01.23.

Full text
Abstract:
The article presents result of a research a system of the venting of exhaust gases of the recovery boiler the gas turbine plant through the natural draft cooling tower in the environment. The use of this scheme allows the fl ue gases to lower the temperature of the circulating water at the outlet of the cooling tower to provide a deeper vacuum in the condenser steam turbine combined cycle power plant with simultaneous reduction of capital to build chimneys. As a result of the application of this scheme, an increase in the absolute electric effi ciency of turbines is achieved. As stated in Article method of calculating the removal of exhaust fl ue gas systems with a perforated distributor ring allows to determine the level of engineering design and volume requirements of these systems.
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Steam boiler natural gas design calculation thesis"

1

Žaloudek, Martin. "Plynový kotel na zemní plyn 170t/h." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2012. http://www.nusl.cz/ntk/nusl-230167.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Steam boiler natural gas design calculation thesis"

1

Reid, Thomas, James Malloy, Matthew Scoffone, Stephen Reid, and Andreas Fabricius. "The Change in Boiler and Steam Turbine Failure Modes With Minimum Load Operation: Using Modeling to Predict Susceptibility With Validation Through Plant Testing." In ASME 2020 Power Conference collocated with the 2020 International Conference on Nuclear Engineering. American Society of Mechanical Engineers, 2020. http://dx.doi.org/10.1115/power2020-16905.

Full text
Abstract:
Abstract Reducing the minimum load at which a unit can reliably operate is one method to manage changes in market demands and avoid inherent concerns over frequent on and off cycling. For this reason, it is now becoming common practice for plants to develop new lower minimum load levels that are well below conventional targets provided when the unit was first commissioned. For many plants, the criteria for successful operation were not based on optimizing minimum load levels. In fact, most conventional steam plants were commissioned during an era when full base load operation was expected throughout the life of the plant. Base load availability was the key driver not parameters that promoted unit flexibility. As a result, there are opportunities for plants to lower minimum load levels, but it is important for owners to understand the trade-offs and risks that come with such operation. TG Advisers (Turbine - Generator) and Tetra Engineering (Boiler) partnered on an analytical assessment and process simulation for a US site with four vintage boilers and steam turbines, the boilers having been converted from coal to gas-firing some years earlier. The boilers were modeled at different load points using boiler and power plant process simulation software. Key issues analyzed were superheat steam temperature, stability of natural circulation, and maintenance of minimum flow velocities. Secondary factors included cold end condensation and the potential for accumulation of dissolved solids in the circuit. Utilizing the results of Tetra’s boiler model, TGA completed off-design modeling and calculations for the steam turbine and balance of plant equipment. Examples of primary interest was the impact of the predicted steam conditions and superheat, resulting thermal transient cycles, and LP blading concerns influenced by moisture content and back pressure control. Finally, balance of plant equipment was reviewed to ensure acceptable operating points for key equipment such as boiler feed pumps, feedwater heaters, and hood spray systems. Following computer simulations, a plant testing plan was developed, and plant testing was completed. The paper will review analytical predictions and actual plant testing as well as overall lessons learned from the project. Through these analytical and testing efforts the minimum load was reduced from the current practice of 65 MW to 31 MW.
APA, Harvard, Vancouver, ISO, and other styles
2

Kim, SooYong, Valeri P. Kovalevsky, and Dae-Seung Kim. "Investigation of Gas Properties for Combustion Products of Organic Fuels." In ASME 2006 2nd Joint U.S.-European Fluids Engineering Summer Meeting Collocated With the 14th International Conference on Nuclear Engineering. ASMEDC, 2006. http://dx.doi.org/10.1115/fedsm2006-98546.

Full text
Abstract:
In making cycle performance calculation, it is first necessary to establish data relating to the properties of the working fluid of turbo-machinery. Because the composition of natural gas combustion products varies, along with the fuel chemistry, unique formulae for their gas properties do not exist, hence the calculation becomes more complex. Thermodynamic properties depend not only on composition of gases but also on assumptions concerning the change of composition during each process in which temperature, pressure or some other thermodynamic state functions may be shifting. In the present study, a calculation method of gas constants, heat capacity, enthalpy of dry, humid air and combustion products of organic fuel are studied. A theoretical base of thermodynamic properties of gas mixtures constructed on a model of ideal gas is formulated. The composition products are represented by the mixture of ideal gases, humid air and steam directly participating in the burning process and the products of stoichiometric combustion of any organic fuel. The developed calculation procedure is validated through comparison with tabulated data in open literatures and it presented satisfactory results. Recommendation for the application of the suggested method with restriction in relation to range of temperature for static and dynamic calculation is also given. It is supposed that the present method and its result can be used in the preliminary design stage of heat exchangers, high temperature gas turbine units and boilers.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography