Journal articles on the topic 'Steel bridges, the fatigue crack propagation'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Steel bridges, the fatigue crack propagation.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Zhou, Tai Quan, and Tommy Hung Tin Chan. "Fatigue Damage Accumulation of Welded Bridge Member during Crack Growth Propagation with Initial Crack." Key Engineering Materials 353-358 (September 2007): 24–27. http://dx.doi.org/10.4028/www.scientific.net/kem.353-358.24.
Full textRAPOSO, Patrícia, José CORREIA, Grzegorz LESIUK, Isabel VALENTE, Abílio DE JESUS, and Rui CALÇADA. "MECHANICAL CHARACTERIZATION OF ANCIENT PORTUGUESE RIVETED BRIDGES STEELS." Engineering Structures and Technologies 9, no. 4 (December 21, 2017): 214–25. http://dx.doi.org/10.3846/2029882x.2017.1414637.
Full textLiao, Ping, Yongbao Wang, Xiucheng Zhang, Renda Zhao, Yi Jia, and Haifeng Zhu. "Fatigue Life Assessment and Reliability Analysis of Cope-Hole Details in Steel Bridges." Baltic Journal of Road and Bridge Engineering 15, no. 1 (March 17, 2020): 26–46. http://dx.doi.org/10.7250/bjrbe.2020-15.460.
Full textSeitl, Stanislav, Petr Miarka, Jan Klusák, Stanislava Fintová, and Ludvík Kunz. "Comparison of the Fatigue Crack Propagation Rates in S355 J0 and S355 J2 Steel Grades." Key Engineering Materials 784 (October 2018): 91–96. http://dx.doi.org/10.4028/www.scientific.net/kem.784.91.
Full textZhang, Yu, Kaifeng Zheng, Junlin Heng, and Jin Zhu. "Corrosion-Fatigue Evaluation of Uncoated Weathering Steel Bridges." Applied Sciences 9, no. 17 (August 22, 2019): 3461. http://dx.doi.org/10.3390/app9173461.
Full textSeitl, Stanislav, Pavel Pokorný, Petr Miarka, Jan Klusák, Zdeněk Kala, and Ludvík Kunz. "Comparison of fatigue crack propagation behaviour in two steel grades S235, S355 and a steel from old crane way." MATEC Web of Conferences 310 (2020): 00034. http://dx.doi.org/10.1051/matecconf/202031000034.
Full textSeitl, Stanislav, Petr Miarka, Lucie Malíková, and Martin Krejsa. "Comparison of Calibration Functions for Short Edge Cracks under Selected Loads." Key Engineering Materials 754 (September 2017): 353–56. http://dx.doi.org/10.4028/www.scientific.net/kem.754.353.
Full textJu, Xiao Chen, and Tateishi Kazuo. "Experimental Study on Fatigue Crack Propagation of through-Thickness Crack under Out-of-Plane Bending." Applied Mechanics and Materials 166-169 (May 2012): 1277–83. http://dx.doi.org/10.4028/www.scientific.net/amm.166-169.1277.
Full textChoi, Dong Ho, Hang Yong Choi, Sang Hwan Chung, and Hoon Yoo. "Mixed-Mode Fatigue Crack Growth in Orthotropic Steel Decks." Key Engineering Materials 321-323 (October 2006): 733–38. http://dx.doi.org/10.4028/www.scientific.net/kem.321-323.733.
Full textWang, Ying, Wenhui Zhang, Xu Pan, and Yuqian Zheng. "Experimental Study on Fatigue Crack Propagation of High-Strength Steel Wire with Initial Defects for Bridge Cables." Applied Sciences 10, no. 12 (June 12, 2020): 4065. http://dx.doi.org/10.3390/app10124065.
Full textLi, Huile, and Gang Wu. "Fatigue Evaluation of Steel Bridge Details Integrating Multi-Scale Dynamic Analysis of Coupled Train-Track-Bridge System and Fracture Mechanics." Applied Sciences 10, no. 9 (May 7, 2020): 3261. http://dx.doi.org/10.3390/app10093261.
Full textJu, Xiaochen, and Kazuo Tateishi. "Fatigue Crack Behavior at Rib-To-Deck Weld Bead in Orthotropic Steel Deck." Advances in Structural Engineering 17, no. 10 (November 2014): 1459–68. http://dx.doi.org/10.1260/1369-4332.17.10.1459.
Full textFeier, Anamaria. "Effect of Corrosion and Cracks at the Historical Steel Bridges." Advanced Materials Research 1111 (July 2015): 181–86. http://dx.doi.org/10.4028/www.scientific.net/amr.1111.181.
Full textWang, Ying, Zhen Wang, and Yuqian Zheng. "Analysis of Fatigue Crack Propagation of an Orthotropic Bridge Deck Based on the Extended Finite Element Method." Advances in Civil Engineering 2019 (July 25, 2019): 1–14. http://dx.doi.org/10.1155/2019/6319821.
Full textDeshpande, Aditya S., and J. M. Chandra Kishen. "Fatigue crack propagation in rocker and roller–rocker bearings of railway steel bridges." Engineering Fracture Mechanics 77, no. 9 (June 2010): 1454–66. http://dx.doi.org/10.1016/j.engfracmech.2010.04.003.
Full textLesiuk, Grzegorz, José A. F. O. Correia, Michał Smolnicki, Abílio M. P. De Jesus, Monika Duda, Pedro A. Montenegro, and Rui A. B. Calcada. "Fatigue Crack Growth Rate of the Long Term Operated Puddle Iron from the Eiffel Bridge." Metals 9, no. 1 (January 8, 2019): 53. http://dx.doi.org/10.3390/met9010053.
Full textXu, Jun, Huahuai Sun, Weizhen Chen, and Xuan Guo. "Experiment-Based Fatigue Behaviors and Damage Detection Study of Headed Shear Studs in Steel–Concrete Composite Beams." Applied Sciences 11, no. 18 (September 7, 2021): 8297. http://dx.doi.org/10.3390/app11188297.
Full textMohammadi, Alireza, and Walid S. Najjar. "Analytical Study of Fatigue Cracking in Coped Stringers of Steel Bridges." Transportation Research Record: Journal of the Transportation Research Board 2673, no. 10 (May 16, 2019): 239–46. http://dx.doi.org/10.1177/0361198119849065.
Full textMaes, M. A., X. Wei, and W. H. Dilger. "Fatigue reliability of deteriorating prestressed concrete bridges due to stress corrosion cracking." Canadian Journal of Civil Engineering 28, no. 4 (August 1, 2001): 673–83. http://dx.doi.org/10.1139/l01-031.
Full textHe, Shiqin, Zeyang Cao, Jiajun Ma, Shuai Zeng, Pengfei Li, and Hui Wang. "Influence of Corrosion and Fatigue on the Bending Performances of Damaged Concrete Beams." Advances in Civil Engineering 2021 (May 24, 2021): 1–14. http://dx.doi.org/10.1155/2021/6693224.
Full textWang, Ying, Zheng Yan, and Zhen Wang. "Fatigue Crack Propagation Analysis of Orthotropic Steel Bridge with Crack Tip Elastoplastic Consideration." Computer Modeling in Engineering & Sciences 127, no. 2 (2021): 549–74. http://dx.doi.org/10.32604/cmes.2021.014727.
Full textLukácsa, János, and Haidar Mobarkb. "Mismatch effect on fatigue crack propagation limit curves of S690QL, S960QL and S960TM type base materials and their gas metal arc welded joints." Zavarivanje i zavarene konstrukcije 65, no. 2 (2020): 75–86. http://dx.doi.org/10.5937/zzk2002075l.
Full textSakagami, Takahide, Yoshiaki Mizokami, Daiki Shiozawa, Yui Izumi, and Akira Moriyama. "TSA based evaluation of fatigue crack propagation in steel bridge members." Procedia Structural Integrity 5 (2017): 1370–76. http://dx.doi.org/10.1016/j.prostr.2017.07.200.
Full textWang, Chun Sheng, Lan Duan, and Jing Yu Hu. "Fatigue Crack Growth Rates of HPS 485W in China." Key Engineering Materials 452-453 (November 2010): 157–60. http://dx.doi.org/10.4028/www.scientific.net/kem.452-453.157.
Full textDuchaczek, Artur, and Zbigniew Mańko. "The influence of a cracking mode on fatigue crack propagation in steel girders in military bridges." European Journal of Environmental and Civil Engineering 20, no. 1 (July 7, 2015): 1–18. http://dx.doi.org/10.1080/19648189.2014.992550.
Full textYang, Liu, Di Tang, Hui Bin Wu, Hong Wei Zheng, and Jin Xing Jiang. "Study on High-Cycle Fatigue Property of Q500q Bridge Steel." Applied Mechanics and Materials 290 (February 2013): 9–14. http://dx.doi.org/10.4028/www.scientific.net/amm.290.9.
Full textMiranda, Roberto M. C., Carlos Albuquerque, Valentin Richter-Trummer, Miguel A. V. de Figueiredo, Rui Calçada, and Paulo M. S. T. de Castro. "Fatigue Crack Propagation Behavior of the Welded Steel of a Railway Bridge." Materials Science Forum 730-732 (November 2012): 787–92. http://dx.doi.org/10.4028/www.scientific.net/msf.730-732.787.
Full textSeitl, Stanislav, Petr Miarka, Pavel Pokorný, Stanislava Fintová, and Jan Klusák. "Influence of Micro-Structure on the Fatigue Crack Propagation in Bridge Steel." Proceedings 2, no. 8 (June 19, 2018): 470. http://dx.doi.org/10.3390/icem18-05373.
Full textZheng, X. L., X. Xie, X. Z. Li, and Z. Z. Tang. "Fatigue crack propagation characteristics of high-tensile steel wires for bridge cables." Fatigue & Fracture of Engineering Materials & Structures 42, no. 1 (August 2, 2018): 256–66. http://dx.doi.org/10.1111/ffe.12901.
Full textKong, Xiangxiong, Jian Li, Caroline Bennett, William Collins, Simon Laflamme, and Hongki Jo. "Thin-Film Sensor for Fatigue Crack Sensing and Monitoring in Steel Bridges under Varying Crack Propagation Rates and Random Traffic Loads." Journal of Aerospace Engineering 32, no. 1 (January 2019): 04018116. http://dx.doi.org/10.1061/(asce)as.1943-5525.0000940.
Full textKamruzzaman, Mohamed, Mohd Zamin Jumaat, N. H. Ramli Sulong, and A. B. M. Saiful Islam. "A Review on Strengthening Steel Beams Using FRP under Fatigue." Scientific World Journal 2014 (2014): 1–21. http://dx.doi.org/10.1155/2014/702537.
Full textCao, Baoya, Youliang Ding, Zhao Fang, Fangfang Geng, and Yongsheng Song. "Influence of Weld Parameters on the Fatigue Life of Deck-Rib Welding Details in Orthotropic Steel Decks Based on the Improved Stress Integration Approach." Applied Sciences 9, no. 18 (September 18, 2019): 3917. http://dx.doi.org/10.3390/app9183917.
Full textLesiuk, G., and M. Szata. "Aspects of structural degradation in steels of old bridges by means of fatigue crack propagation." Materials Science 47, no. 1 (July 2011): 82–88. http://dx.doi.org/10.1007/s11003-011-9371-z.
Full textvan den Berg, Niels, Haohui Xin, and Milan Veljkovic. "Effects of residual stresses on fatigue crack propagation of an orthotropic steel bridge deck." Materials & Design 198 (January 2021): 109294. http://dx.doi.org/10.1016/j.matdes.2020.109294.
Full textLiao, X. W., Y. Q. Wang, X. D. Qian, and Y. J. Shi. "Fatigue crack propagation for Q345qD bridge steel and its butt welds at low temperatures." Fatigue & Fracture of Engineering Materials & Structures 41, no. 3 (October 13, 2017): 675–87. http://dx.doi.org/10.1111/ffe.12727.
Full textHan, Weiwei, Shuyin Wu, Xue Gao, Xinyao Zong, and Jingsong Shan. "Experimental and Numerical Study on Fracture Characteristics of Interface between In Situ Engineered Cementitious Composites and Steel Deck." Advances in Materials Science and Engineering 2021 (February 6, 2021): 1–12. http://dx.doi.org/10.1155/2021/6653516.
Full textYan, Banfu, Qiqi Zou, You Dong, and Xudong Shao. "Application of PZT Technology and Clustering Algorithm for Debonding Detection of Steel-UHPC Composite Slabs." Sensors 18, no. 9 (September 5, 2018): 2953. http://dx.doi.org/10.3390/s18092953.
Full textXu, Wei, Xiaoshu Wei, Jintao Wei, and Zhengxiong Chen. "Experimental Evaluation of the Influence of Aggregate Strength on the Flexural Cracking Behavior of Epoxy Asphalt Mixtures." Materials 13, no. 8 (April 16, 2020): 1876. http://dx.doi.org/10.3390/ma13081876.
Full textJiang, Jinlong, Yang Zou, Jun Yang, Jianting Zhou, Zhongya Zhang, and Zulin Huang. "Study on Bending Performance of Epoxy Adhesive Prefabricated UHPC-Steel Composite Bridge Deck." Advances in Civil Engineering 2021 (March 15, 2021): 1–16. http://dx.doi.org/10.1155/2021/6658451.
Full textSu, Sanqing, Yiyi Yang, Wei Wang, and Xiaoping Ma. "Crack propagation characterization and statistical evaluation of fatigue life for locally corroded bridge steel based on metal magnetic memory method." Journal of Magnetism and Magnetic Materials 536 (October 2021): 168136. http://dx.doi.org/10.1016/j.jmmm.2021.168136.
Full textYang, Yabin, and Guangyu Shi. "Crack Propagation-Based Fatigue Evaluation of Rib-to-Deck Welded Joints of Orthotropic Steel Bridge Deck by Using Schwartz-Neuman Alternating Method." International Conference on Computational & Experimental Engineering and Sciences 21, no. 2 (2019): 35. http://dx.doi.org/10.32604/icces.2019.05623.
Full textZhao, Yanjing, Jiwang Jiang, Fujian Ni, and Lan Zhou. "Fatigue Cracking Resistance of Engineered Cementitious Composites (ECC) under Working Condition of Orthotropic Steel Bridge Decks Pavement." Applied Sciences 9, no. 17 (September 1, 2019): 3577. http://dx.doi.org/10.3390/app9173577.
Full textRowiński, Sławomir, Wojciech Lorenc, and Maciej Kożuch. "Study on Fatigue Cracks in Steel – Concrete Shear Connectors Composite Dowels MCL." Key Engineering Materials 598 (January 2014): 207–12. http://dx.doi.org/10.4028/www.scientific.net/kem.598.207.
Full textChow, C. L., C. W. Woo, and K. T. Chung. "Fatigue crack propagation in mild steel." Engineering Fracture Mechanics 24, no. 2 (January 1986): 233–41. http://dx.doi.org/10.1016/0013-7944(86)90054-8.
Full textToribio, J., B. González, and J. C. Matos. "Fatigue crack propagation in cold drawn steel." Materials Science and Engineering: A 468-470 (November 2007): 267–72. http://dx.doi.org/10.1016/j.msea.2006.07.172.
Full textWang, Lei, Xiaochao Su, Yafei Ma, Ming Deng, Jianren Zhang, and CS Cai. "Strengthening of steel decks for cable-stayed bridge using ultra-high performance concrete: A case study." Advances in Structural Engineering 23, no. 16 (July 9, 2020): 3373–84. http://dx.doi.org/10.1177/1369433220939210.
Full textMori, Takeshi, and Kazuki Komon. "Fatigue Crack Propagation Rates of Stainless Clad Steel." Doboku Gakkai Ronbunshu, no. 598 (1998): 439–44. http://dx.doi.org/10.2208/jscej.1998.598_439.
Full textAlbuquerque, C. M. C., R. M. C. Miranda, V. Richter‐Trummer, M. A. V. de Figueiredo, R. Calçada, and P. M. S. T. de Castro. "Fatigue crack propagation behaviour in thick steel weldments." International Journal of Structural Integrity 3, no. 2 (May 25, 2012): 184–203. http://dx.doi.org/10.1108/17579861211235192.
Full textSarwar, M., and R. Priestner. "Fatigue Crack Propagation Behavior in Dual-Phase Steel." Journal of Materials Engineering and Performance 8, no. 2 (April 1, 1999): 245–51. http://dx.doi.org/10.1361/105994999770347106.
Full textAverbach, B. L., Bingzhe Lou, P. K. Pearson, R. E. Fairchild, and E. N. Bamberger. "Fatigue crack propagation in carburized X-2M steel." Metallurgical Transactions A 16, no. 7 (July 1985): 1267–71. http://dx.doi.org/10.1007/bf02670331.
Full text