Journal articles on the topic 'Steel P91'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Steel P91.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Koo, Ja Min, Sung Yong Kim, Kee Sam Shin, Yeon Gil Jung, and Sung Kang Hur. "Embrittlement Behavior of Isothermally Heat-Treated T/P92 Steel at 350°C." Key Engineering Materials 345-346 (August 2007): 465–68. http://dx.doi.org/10.4028/www.scientific.net/kem.345-346.465.
Full textMurata, Yoshinori, Yoshihiro Saoto, Yuhki Tsukada, Toshiyuki Koyama, Masahiko Morinaga, Yasutoshi Sasaki, and Yasushi Hasegawa. "Stress Dependence of Microstructural Evolution in Heat Resistant Steels." Materials Science Forum 654-656 (June 2010): 190–93. http://dx.doi.org/10.4028/www.scientific.net/msf.654-656.190.
Full textQadr, Hiwa Mohammad, and Ari Maghdid Hamad. "Mechanical Properties of Ferritic Martenstic Steels: A Review." Scientific Bulletin of Valahia University - Materials and Mechanics 17, no. 16 (May 1, 2019): 18–27. http://dx.doi.org/10.2478/bsmm-2019-0003.
Full textVelkavrh, Igor, Joël Voyer, Fevzi Kafexhiu, and Bojan Podgornik. "Creep Rate, Friction, and Wear of Two Heat-Affected Zone Regions of 9–12 wt.% Cr Steels." Metals 11, no. 4 (March 29, 2021): 558. http://dx.doi.org/10.3390/met11040558.
Full textPandey, Chandan, Manas Mohan Mahapatra, and Pradeep Kumar. "Characterisation of dissimilar P91 and P92 steel welds joint." Materials at High Temperatures 36, no. 4 (October 24, 2018): 275–84. http://dx.doi.org/10.1080/09603409.2018.1537168.
Full textPrunier, V., U. Gampe, K. Nikbin, and I. A. Shibli. "HIDA activity on P91 steel." Materials at High Temperatures 15, no. 3-4 (January 1998): 159–66. http://dx.doi.org/10.1080/09603409.1998.11689595.
Full textDucháček, Petr, and Jiří Janovec. "Heterogeneous Welded Joints (T23-T92; 15CH1M1F-P91)." Key Engineering Materials 647 (May 2015): 147–52. http://dx.doi.org/10.4028/www.scientific.net/kem.647.147.
Full textMilička, Karel, and Ferdinand Dobeš. "Small punch testing of P91 steel." International Journal of Pressure Vessels and Piping 83, no. 9 (September 2006): 625–34. http://dx.doi.org/10.1016/j.ijpvp.2006.07.009.
Full textZieliński, A., M. Miczka, and G. Golański. "Forecasting the distribution of precipitate diameters in the presence of changes in the structure of the material." Archives of Metallurgy and Materials 62, no. 1 (March 1, 2017): 273–80. http://dx.doi.org/10.1515/amm-2017-0041.
Full textRhode, Michael, Tim Richter, Tobias Mente, Peter Mayr, and Alexander Nitsche. "Thickness and microstructure effect on hydrogen diffusion in creep-resistant 9% Cr P92 steel and P91 weld metal." Welding in the World 66, no. 2 (December 9, 2021): 325–40. http://dx.doi.org/10.1007/s40194-021-01218-9.
Full textKusmoko, Alain, and Hui Jun Li. "Surface Morphology and Wear Analysis of Stellite 6 Deposited on 9Cr-1Mo Steel Substrate by Laser Cladding." Advanced Materials Research 1119 (July 2015): 640–44. http://dx.doi.org/10.4028/www.scientific.net/amr.1119.640.
Full textEgner, Władysław, Piotr Sulich, Stanisław Mroziński, and Halina Egner. "Temperature-Dependent Fatigue Characteristics of P91 Steel." Acta Mechanica et Automatica 14, no. 2 (June 1, 2020): 69–78. http://dx.doi.org/10.2478/ama-2020-0010.
Full textIsaac Samuel, E., and B. K. Choudhary. "Tensile work hardening behaviour of P91 steel." Materials Science and Engineering: A 528, no. 25-26 (September 2011): 7827–30. http://dx.doi.org/10.1016/j.msea.2011.06.058.
Full textShi, L., SA Alexandratos, and NP O’Dowd. "Combined finite element and phase field method for simulation of austenite grain growth in the heat-affected zone of a martensitic steel weld." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 233, no. 1 (January 17, 2018): 13–27. http://dx.doi.org/10.1177/1464420717750999.
Full textYaghi, A. H., T. H. Hyde, A. A. Becker, and W. Sun. "Numerical simulation of P91 pipe welding including the effects of solid-state phase transformation on residual stresses." Proceedings of the Institution of Mechanical Engineers, Part L: Journal of Materials: Design and Applications 221, no. 4 (October 1, 2007): 213–24. http://dx.doi.org/10.1243/14644207jmda152.
Full textXu, Jiang Xiao, Dong Fang Ma, and Yong Feng Zhao. "Analysis of the Causes of the Massive Ferrite in P91 Steel." Advanced Materials Research 512-515 (May 2012): 1854–57. http://dx.doi.org/10.4028/www.scientific.net/amr.512-515.1854.
Full textVlasák, Tomás, Jan Hakl, Pavel Novák, Jiří Sochor, and Jan Čech. "Creep of Cast Steel P91 with Weld Joint." Materials Science Forum 782 (April 2014): 331–34. http://dx.doi.org/10.4028/www.scientific.net/msf.782.331.
Full textYan, Xiu Ping, Zhang Jian, and Xu Ma. "Study on Austenitic Grain Growth for Heat Resisting Steel P91." Advanced Materials Research 602-604 (December 2012): 318–22. http://dx.doi.org/10.4028/www.scientific.net/amr.602-604.318.
Full textVolák, Josef, and Zbynek Bunda. "Three Ways of Sampling and Fatigue Test Results of Steel P92." Advanced Materials Research 891-892 (March 2014): 273–77. http://dx.doi.org/10.4028/www.scientific.net/amr.891-892.273.
Full textElarbi, Y., and Béla Palotás. "Microstructural Changes due to Secondary Precipitation Hardening of Martensitic Creep Resistant Steel X20CrMoWV 12 1 (AISI 422)." Materials Science Forum 589 (June 2008): 197–202. http://dx.doi.org/10.4028/www.scientific.net/msf.589.197.
Full textXu, Xue Xia, Jie Ouyang, Xiao Guang Niu, Yan Ting Feng, and Wen Peng Li. "Study on Relationship of Abnormal Heat Treatment, Microstructure and Properties of P91 Steel." Advanced Materials Research 311-313 (August 2011): 830–34. http://dx.doi.org/10.4028/www.scientific.net/amr.311-313.830.
Full textGrzywna, P., and D. Kukla. "Evaluation of Strain Distribution for the P91 Steel under Static Load Using Espi System." Advances in Materials Science 14, no. 4 (December 1, 2014): 28–39. http://dx.doi.org/10.2478/adms-2014-0019.
Full textSilva, Francisco José Gomes, António Pedro Pinho, António Bastos Pereira, and Olga Coutinho Paiva. "Evaluation of Welded Joints in P91 Steel under Different Heat-Treatment Conditions." Metals 10, no. 1 (January 8, 2020): 99. http://dx.doi.org/10.3390/met10010099.
Full textZhao, Peng Shuo, Jun Jie Shen, and Hui Zhang. "Short-Term Creep Behavior in P91 Heat-Resistant Steel at Low Stress." Materials Science Forum 850 (March 2016): 922–26. http://dx.doi.org/10.4028/www.scientific.net/msf.850.922.
Full textSwei, Mohamed, Aleksandar Sedmak, Blagoj Petrovski, Zorana Golubovic, Simon Sedmak, Marko Katinic, and Khaled Azzabi. "Creep crack growth behavior of P91 steel weldments." Thermal Science 23, no. 2 Part B (2019): 1203–9. http://dx.doi.org/10.2298/tsci170729240s.
Full textZhang, Xuehua, Yanping Zeng, Wenhe Cai, Zhichun Wang, and Weili Li. "Study on the softening mechanism of P91 steel." Materials Science and Engineering: A 728 (June 2018): 63–71. http://dx.doi.org/10.1016/j.msea.2018.04.082.
Full textSopoušek, J., R. Foret, and V. Jan. "Simulation of dissimilar weld joints of steel P91." Science and Technology of Welding and Joining 9, no. 1 (February 2004): 59–64. http://dx.doi.org/10.1179/136217104225017161.
Full textKundu, A., P. J. Bouchard, S. Kumar, K. A. Venkata, J. A. Francis, A. Paradowska, G. K. Dey, and C. E. Truman. "Residual stresses in P91 steel electron beam welds." Science and Technology of Welding and Joining 18, no. 1 (January 2013): 70–75. http://dx.doi.org/10.1179/1362171812y.0000000076.
Full textEgner, Władysław, Piotr Sulich, Stanisław Mroziński, and Halina Egner. "Modelling thermo-mechanical cyclic behavior of P91 steel." International Journal of Plasticity 135 (December 2020): 102820. http://dx.doi.org/10.1016/j.ijplas.2020.102820.
Full textKalvala, Prasad Rao, Javed Akram, Mano Misra, Damodaram Ramachandran, and Janaki Ram Gabbita. "Low temperature friction stir welding of P91 steel." Defence Technology 12, no. 4 (August 2016): 285–89. http://dx.doi.org/10.1016/j.dt.2015.11.003.
Full textPandey, Chandan, Manas Mohan Mahapatra, Pradeep Kumar, and Nitin Saini. "Some studies on P91 steel and their weldments." Journal of Alloys and Compounds 743 (April 2018): 332–64. http://dx.doi.org/10.1016/j.jallcom.2018.01.120.
Full textSklenička, Vàclav, Květa Kuchařová, Jiří Dvořák, Marie Kvapilová, and Petr Král. "Creep Damage Tolerance Factor λ of Selected Creep-Resistant Steels." Key Engineering Materials 754 (September 2017): 47–50. http://dx.doi.org/10.4028/www.scientific.net/kem.754.47.
Full textOskay, Ceyhun, Tobias M. Meißner, Carmen Dobler, Benjamin Grégoire, and Mathias C. Galetz. "Scale Formation and Degradation of Diffusion Coatings Deposited on 9% Cr Steel in Molten Solar Salt." Coatings 9, no. 10 (October 22, 2019): 687. http://dx.doi.org/10.3390/coatings9100687.
Full textJi, Dong Mei. "Research on Application of Supported Vector Machine to Creep-Fatigue Lifetime Prediction of P91 Steel." Advanced Materials Research 616-618 (December 2012): 1787–96. http://dx.doi.org/10.4028/www.scientific.net/amr.616-618.1787.
Full textSingh, Vikramjit, Khushdeep Goyal, and Rakesh Goyal. "Improving the hot corrosion resistance of boiler tube steels by detonation gun sprayed coatings in actual boiler of thermal power plant." Anti-Corrosion Methods and Materials 66, no. 4 (July 1, 2019): 394–402. http://dx.doi.org/10.1108/acmm-10-2018-2009.
Full textChao, Feng, Xie Yi, Wang Jun, Long Yi, Chen Wei, and Xia Dahai. "The corrosion behavior of T/P91 steel under the atmosphere environment in Hunan province." MATEC Web of Conferences 175 (2018): 01002. http://dx.doi.org/10.1051/matecconf/201817501002.
Full textNiu, Yu Jing, Hong Sheng Cai, Jin Feng Geng, Dong Fang Ma, Guo Dong Ma, Yong Feng Zhao, and Xu Yang. "Creep Properties and Life Estimation of P91 Steel with Low Hardness." Advanced Materials Research 842 (November 2013): 201–4. http://dx.doi.org/10.4028/www.scientific.net/amr.842.201.
Full textJandová, Dagmar, and Josef Kasl. "Microstructural changes in creep exposed P91 steel weld joint." Materials at High Temperatures 28, no. 2 (June 2011): 137–46. http://dx.doi.org/10.3184/096034011x13061610296777.
Full textVenugopal, S., G. Sasikala, and Yatindra Kumar. "Creep Crack Growth Behavior of a P91 Steel Weld." Procedia Engineering 86 (2014): 662–68. http://dx.doi.org/10.1016/j.proeng.2014.11.067.
Full textAbd El-Azim, M. E., O. E. El-Desoky, H. Ruoff, F. Kauffmann, and E. Roos. "Creep fracture mechanism in welded joints of P91 steel." Materials Science and Technology 29, no. 9 (September 2013): 1027–33. http://dx.doi.org/10.1179/1743284713y.0000000233.
Full textForet, R., B. Million, M. Svoboda, and K. Stránský. "Structural stability of dissimilar weld joints of steel P91." Science and Technology of Welding and Joining 6, no. 6 (December 2001): 405–11. http://dx.doi.org/10.1179/stw.2001.6.6.405.
Full textPandey, Chandan, M. M. Mahapatra, Pradeep Kumar, N. Saini, J. G. Thakre, and Prakash Kumar. "Grain Refinement of P91 Steel Using Double Austenitization Treatment." Materials Performance and Characterization 7, no. 1 (January 1, 2018): 20180094. http://dx.doi.org/10.1520/mpc20180094.
Full textPandey, Chandan, Manas Mohan Mahapatra, Pradeep Kumar, F. Daniel, and B. Adhithan. "Softening mechanism of P91 steel weldments using heat treatments." Archives of Civil and Mechanical Engineering 19, no. 2 (March 2019): 297–310. http://dx.doi.org/10.1016/j.acme.2018.10.005.
Full textZieliński, A., J. Dobrzański, H. Purzyńska, and G. Golański. "Changes In Properties and Microstructure of High-Chromium 9-12%Cr Steels Due to Long-Term Exposure at Elevated Temperature." Archives of Metallurgy and Materials 61, no. 2 (June 1, 2016): 957–64. http://dx.doi.org/10.1515/amm-2016-0163.
Full textGOLAŃSKI, Grzegorz. "MECHANICAL PROPERTIES OF P91 AND PB2 STEEL AFTER LONG-TERM AGEING AT 620°C." Journal of Metallic Materials 73, no. 3 (March 21, 2022): 2–6. http://dx.doi.org/10.32730/imz.2657-747.21.3.1.
Full textStřílková, Lucie, Jan Holešinský, Anastasia Maslova, Zdeněk Kuboň, and Vlastimil Vodárek. "Microstructural Stability of P23/P91 Dissimilar Welds during Creep at 500°C." Materials Science Forum 782 (April 2014): 319–24. http://dx.doi.org/10.4028/www.scientific.net/msf.782.319.
Full textBrozda, J., M. Lomozik, and M. Zeman. "Welding of P91 steel to other grades of steel for elevated temperature service." Welding International 12, no. 7 (January 1998): 509–18. http://dx.doi.org/10.1080/09507119809448525.
Full textOmar, Haidar, Nikolaos Michailidis, Stefanos Skolianos, Azarias Mavropoulos, Sofia Tsipas, and Nikiforos Maragoudakis. "Determination of Mechanical and Corrosion Properties of Boride Coating on P91 Steel." Key Engineering Materials 438 (May 2010): 89–96. http://dx.doi.org/10.4028/www.scientific.net/kem.438.89.
Full textMilička, Karel, and Ferdinand Dobeš. "Relation between Uniaxial and Equi-Biaxial Creep and Creep Fracture Behaviour in P91 Steel." Materials Science Forum 482 (April 2005): 407–0. http://dx.doi.org/10.4028/www.scientific.net/msf.482.407.
Full textSaini, Nitin, Chandan Pandey, Manas Mohan Mahapatra, H. K. Narang, R. S. Mulik, and Pradeep Kumar. "A comparative study of ductile-brittle transition behavior and fractography of P91 and P92 steel." Engineering Failure Analysis 81 (November 2017): 245–53. http://dx.doi.org/10.1016/j.engfailanal.2017.06.044.
Full text