Academic literature on the topic 'Steel Slag'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Steel Slag.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Steel Slag"
Zhang, Kaitian, Jianhua Liu, and Heng Cui. "Investigation on the Slag-Steel Reaction of Mold Fluxes Used for Casting Al-TRIP Steel." Metals 9, no. 4 (April 1, 2019): 398. http://dx.doi.org/10.3390/met9040398.
Full textZhao, Shuo, Zushu Li, Renze Xu, Darbaz Khasraw, Gaoyang Song, and Dong Xu. "Dissolution Behavior of Different Inclusions in High Al Steel Reacted with Refining Slags." Metals 11, no. 11 (November 9, 2021): 1801. http://dx.doi.org/10.3390/met11111801.
Full textLiu, Chengsong, Xiaoqin Liu, Xiaoliu Yang, Hua Zhang, and Ming Zhong. "Kinetics of MgO Reduction in CaO-Al2O3-MgO Slag by Al in Liquid Fe." Metals 9, no. 9 (September 10, 2019): 998. http://dx.doi.org/10.3390/met9090998.
Full textLiao, Jie Long, Zhao Hui Zhang, Jian Tao Ju, and Fu Cai Zhao. "Comparative Analysis of Steel Slag Characteristics and Treatment Process." Advanced Materials Research 834-836 (October 2013): 378–84. http://dx.doi.org/10.4028/www.scientific.net/amr.834-836.378.
Full textZhao, Qiang, Lang Pang, and Dengquan Wang. "Adverse Effects of Using Metallurgical Slags as Supplementary Cementitious Materials and Aggregate: A Review." Materials 15, no. 11 (May 26, 2022): 3803. http://dx.doi.org/10.3390/ma15113803.
Full textXu, Haiqin, Shaopeng Wu, Hechuan Li, Yuechao Zhao, and Yang Lv. "Study on Recycling of Steel Slags Used as Coarse and Fine Aggregates in Induction Healing Asphalt Concretes." Materials 13, no. 4 (February 17, 2020): 889. http://dx.doi.org/10.3390/ma13040889.
Full textMichelic, S. K., and C. Bernhard. "Experimental Study on the Behavior of TiN and Ti2O3 Inclusions in Contact with CaO‐Al2O3‐SiO2‐MgO Slags." Scanning 2017 (2017): 1–14. http://dx.doi.org/10.1155/2017/2326750.
Full textLiu, Yu, Zhao Zhang, Guangqiang Li, Yang Wu, Xijie Wang, and Baokuan Li. "Effect of SiO2 containing slag for electroslag remelting on inclusion modification of 42CrMo steel." Metallurgical Research & Technology 116, no. 6 (2019): 627. http://dx.doi.org/10.1051/metal/2019063.
Full textRen, Zhengyi, and Dongsheng Li. "Application of Steel Slag as an Aggregate in Concrete Production: A Review." Materials 16, no. 17 (August 25, 2023): 5841. http://dx.doi.org/10.3390/ma16175841.
Full textSocha, L., K. Michalek, J. Bažan, K. Gryc, P. Machovčák, A. Opler, and P. Styrnal. "Evaluation of Influence of Briquetted Synthetic Slags on Slag Regime and Process of Steel Desulphurization." Archives of Metallurgy and Materials 59, no. 2 (June 1, 2014): 809–13. http://dx.doi.org/10.2478/amm-2014-0138.
Full textDissertations / Theses on the topic "Steel Slag"
Berryman, Eleanor. "Carbonation of steel slag." Thesis, McGill University, 2012. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=110434.
Full textL'industrie du fer et de l'acier est en pleine croissance et sa production mondiale a augmenté de 65% au cours des dix dernières années (World Steel Association, 2012). Malheureusement, elle est également responsable d'un quart des émissions industrielles de CO2 ce qui en fait la plus importante source industrielle de CO2 atmosphérique (International Energy Agency (IEA), 2007).La carbonatation minérale fournit une méthode robuste pour la séquestration permanente du CO2 sous une forme écologiquement inerte. La larnite (Ca2SiO4), constituant principal des scories d'acier, réagit aisément avec le CO2 aqueux (Santos et al., 2009). Par conséquent, sa carbonatation offre une importante occasion de réduire à la source les émissions de CO2. Un avantage potentiel supplémentaire de ce traitement est de rendre les scories d'acier convenables pour le recyclage. Cette étude examine l'impact de la température, le flux molaire surfacique du fluide carbonaté, et d'un gradient de réaction sur la dissolution et la carbonatation des scories d'acier. Elle s'inscrit dans une étude plus large visant à déterminer les conditions optimisant la conversion de la larnite, et d'autres silicates de calcium, à la calcite.Des expériences ont été menées sur des grains de scories d'acier d'un diamètre de 2 à 3 mm fournis par Tata Steel RD&T. Un mélange de CO2-H2O a été pompé à travers un réacteur continu contenant ces grains et maintenu à une température entre 120°C et 200°C, une pression de 250 bar et à des flux molaires surfaciques de 0.8 à 6 mmol/cm2min. Chaque expérience a duré de 3 à 7 jours. Le fluide CO2-H2O a réagi avec les grains de scories d'acier et a formé des minéraux de carbonate de calcium contenant du phosphore. À flux molaire surfacique élevé, soit 6 mL/cm2min, ces phases sont dissoutes aux bords des grains, laissant place à une bordure poreuse d'oxydes d'aluminum et de fer. Une augmentation de la température a augmenté la vitesse de cette réaction. A valeur intermédaire de flux molaire surfacique, 0.8 mL/cm2min, le degré de carbonatation a augmenté. Au lieu laisser des bordures poreuses d'oxydes, les minéraux de calcium primaires en marge des grains ont plutôt été remplacés par des phases de calcium carbonate contenant du phosphore. En plus, l'usage d'un réacteur plus long a créé un gradient de réaction et maintenu la supersaturation du fluide relative au carbonate de calcium qui a enrobé les grains. Les scories d'acier exposées au fluide dans un réacteur discontinu (sans flux de fluide) ont été moins carbonatées; la dissolution non-congruente de la scorie a pris place suivie par l'enrobage des grains de scories par le carbonate, et ce dernier a réduit la surface de réaction de la scorie avec le fluide.Les résultats de cette étude démontrent que la carbonatation par le CO2 aqueux des scories d'acier à granulométrie relativement grossière est possible et qu'elle peut être optimisée en variant le flux molaire surfacique du fluide. Les expériences de ce type contribueront à la réduction éventuelle des émissions industrielles globales de CO2.
Kombathula, Sushanth. "Sequestration of carbon dioxide in steel slag." Thesis, KTH, Materialvetenskap, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-280716.
Full textÄven om järn- och stålindustrin är avgörande för samhällets utveckling, är industrin ansvarigför en stor del av koldioxidutsläppen. Industrin producerar också biprodukter som metallurgisk slagg i order på miljoner ton. Slaggen är alkalisk till sin natur och rik på Ca- och Mg-oxider. Vid användning interagerar oxiden med atmosfärisk CO2 och bildar karbonater, vilket gör dem instabila. Att lagra koldioxid i slaggen skulle göra den mer stabil, förbättra livscykeln och främja ytterligare användning i olika applikationer. CO2-bindning kan göras genom kolsyrning av stålslagg. Kolsyrning av slagg kan uppnås genom direkt och indirekt karbonatisering. Direkt karbonatisering utförs antingen i ett gasformigt eller vattenhaltigt tillstånd i ett enda steg. Indirekt kolsyrning involverar flera steg eftersom den aktiverar Ca/Mg-jonerna i slaggen innan de interagerar med CO2. För en industriell process skulle den direkta vägen vara mer livskraftig eftersom den innebär mindre steg, lättare att skala upp. Eftersom det inte finns några lösningsmedel för att aktivera Ca/Mg är kostnaden också mindre. Denna avhandling fokuserar på att utveckla en industriell process för att binda koldioxid i metallurgisk slagg. Sekvestrering genom en kombination av gasformig och vattenhaltig har försökt under undersökning av effekten av kolsyratid, kolsyratemperatur och form av den använda slaggen. Kolsyringen av slaggen utförs med CO2 och ånga. Resultaten visar att karbonatiseringsutbytet ökar med kolsyratiden och minskar med temperaturökningen. Effekten av formen på slagg som användes för karbonatisering studerades genom att utföra karbonatiseringstest i en slaggpellet. Diffusion spelar en viktig roll i karbonatiseringsprocessen. Pulveriserad slagg visade högre karbonatiseringsutbyte jämfört med pelleten. CO2-upptag så högt som 53 g CO2/kg slagg vid 200 oC under 6 timmar har uppnåtts. Resultaten indikerar möjligheten för en industriell karbonatiseringsprocess.
Skagerkvist, Mio. "Adsorption of anionic elements to steel slag." Thesis, Örebro universitet, Institutionen för naturvetenskap och teknik, 2018. http://urn.kb.se/resolve?urn=urn:nbn:se:oru:diva-71048.
Full textJansson, Sune. "A study on molten steel/slag/refractory reactions during ladle steel refining." Licentiate thesis, Stockholm, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-312.
Full textKjellqvist, Lina. "Studies of Steel/Slag Equilibria using Computational Thermodynamics." Licentiate thesis, Stockholm Stockholm : Materialvetenskap, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-3914.
Full textHolloway, Mark. "Corrosion of steel reinforcement in slag-based concrete." Thesis, University of Oxford, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.365811.
Full textEkengård, Johan. "Slag/Metal Metallurgy in Iron and Steel Melts." Doctoral thesis, KTH, Tillämpad processmetallurgi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-187228.
Full textQC 20160518
Patel, Jigar P. "Broader Use of Steel Slag Aggregates in Concrete." Cleveland State University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=csu1229627352.
Full textOty, Uchenna Victor. "Steel slag leachates : environmental risks and metal recovery opportunities." Thesis, University of Hull, 2015. http://hydra.hull.ac.uk/resources/hull:13632.
Full textWang, George Chenggong. "Properties and utilization of steel slag in engineering applications." Online version, 1992. http://bibpurl.oclc.org/web/23804.
Full textBooks on the topic "Steel Slag"
United States. Bureau of Mines and Generic Mineral Technology Center for Pyrometallurgy (U.S.), eds. Kinetics of metal/slag/gas reactions. [Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1991.
Find full textJiang, Min, and Xinhua Wang. Slag-Steel Reaction and Control of Inclusions in Al Deoxidized Special Steel. Singapore: Springer Nature Singapore, 2023. http://dx.doi.org/10.1007/978-981-19-3463-6.
Full textIppolitovich, Baptizmanskiĭ Vadim, and Isaev E. I, eds. Razlivka stali sverkhu s primeneniem shlakovykh smeseĭ. Kiev: "Tekhnika", 1987.
Find full textWalker, David I. Ultrasonic detection of slag carryover during steel transfer operations. Ottawa: National Library of Canada, 1990.
Find full textHunt, Liz. Steel slag in hot mix asphalt concrete: Final report. Salem, Or: Research Group, Oregon Dept. of Transportation, 2000.
Find full textMcIntosh, Synthia N. Recovery of manganese from steel plant slag by carbamate leaching. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1992.
Find full textMcIntosh, Synthia N. Recovery of manganese from steel plant slag by carbamate leaching. Washington, D.C: U.S. Dept. of the Interior, Bureau of Mines, 1992.
Find full textOntario. Ministry of the Environment. Slag disposal site investigation at Algoma Steel Corporation: volume 1. Toronto: Queen's Printer for Ontario, 1992.
Find full textW, Elger G., ed. Utilization of scrap preheating and substitute slag conditioners for electric arc furnace steelmaking. Pittsburgh, Pa: U.S. Dept. of the Interior, Bureau of Mines, 1987.
Find full textLovejoy, Steven C. A fitness-for-purpose evaluation of electro-slag flange butt welds: Final report. Salem, OR: Oregon Dept. of Transportation, Research Group, 2002.
Find full textBook chapters on the topic "Steel Slag"
He, Mingsheng, Bowen Li, Wangzhi Zhou, Huasheng Chen, Meng Liu, and Long Zou. "Preparation and Characteristics of Steel Slag Ceramics from Converter Slag." In The Minerals, Metals & Materials Series, 13–20. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-72484-3_2.
Full textKumar, Ankit, Sumon Saha, and Rana Chattaraj. "Soft Clay Stabilization with Steel Slag." In Recent Developments in Sustainable Infrastructure, 141–49. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-4577-1_11.
Full textHan, Fenglan, and Laner Wu. "Comprehensive Utilization Technology of Steel Slag." In Industrial Solid Waste Recycling in Western China, 305–56. Singapore: Springer Singapore, 2019. http://dx.doi.org/10.1007/978-981-13-8086-0_6.
Full textEremenko, Yu I., and D. A. Poleshchenko. "Slag Cut-off During Steel Casting." In Lecture Notes in Mechanical Engineering, 983–91. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-22041-9_104.
Full textParron, Maria Eugenia, Maria Dolores Rubio Cintas, Miguel José Oliveira, Elisa M. J. Silva, Francisca Pérez García, and Jose Manuel Garcia-Manrique. "Steel Waste Valorisation - Steel Slag Waste Effect on Concrete Shrinkage." In INCREaSE 2019, 826–35. Cham: Springer International Publishing, 2019. http://dx.doi.org/10.1007/978-3-030-30938-1_64.
Full textHang, Nguyen Thi Thuy, Nguyen Xuan Khanh, and Tran Van Tieng. "Discrete Element Modeling of Steel Slag Concrete." In Advances in Engineering Research and Application, 284–90. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-030-04792-4_38.
Full textDubey, Anant Aishwarya, K. Ravi, Rituraj Devrani, Sudhanshu Rathore, and Annesh Borthakur. "Characterization of Steel Slag as Geo-material." In Lecture Notes in Civil Engineering, 113–22. Singapore: Springer Singapore, 2020. http://dx.doi.org/10.1007/978-981-15-6086-6_9.
Full textLiu, Li, Qianwen Liu, Yongfeng Deng, and Yu Zhao. "NaCl Activation of Steel Slag upon Component Adjustment." In Springer Series in Geomechanics and Geoengineering, 1282–86. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-97115-5_86.
Full textNeto, João B. Ferreira, Catia Fredericci, João O. G. Faria, Fabiano F. Chotoli, Tiago R. Ribeiro, Antônio Malynowskyj, Andre N. L. Silva, Valdecir A. Quarcioni, and Andre A. Lotto. "Treatment of Molten Steel Slag for Cement Application." In REWAS 2016, 157–64. Cham: Springer International Publishing, 2016. http://dx.doi.org/10.1007/978-3-319-48768-7_23.
Full textFerreira Neto, João B., Catia Fredericci, João O. G. Faria, Fabiano F. Chotoli, Tiago R. Ribeiro, Antônio Malynowskyj, Andre N. L. Silva, Valdecir A. Quarcioni, and Andre A. Lotto. "Treatment Of Molten Steel Slag for Cement Application." In Rewas 2016: Towards Materials Resource Sustainability, 157–64. Hoboken, NJ, USA: John Wiley & Sons, Inc., 2016. http://dx.doi.org/10.1002/9781119275039.ch23.
Full textConference papers on the topic "Steel Slag"
Sun, Xiaowei, Wanyang Niu, and Jingbo Zhao. "Performance Research on Slag-Steel Slag Based Composite Portland Cement." In 2015 International Conference on Advanced Engineering Materials and Technology. Paris, France: Atlantis Press, 2015. http://dx.doi.org/10.2991/icaemt-15.2015.142.
Full textDunster, A. "The use of blastfurnace slag and steel slag as aggregates." In Proceedings of the Fourth European Symposium on Performance of Bituminous and Hydraulic Materials in Pavements, Bitmat 4. Taylor & Francis Group, 6000 Broken Sound Parkway NW, Suite 300, Boca Raton, FL 33487-2742: CRC Press, 2017. http://dx.doi.org/10.4324/9780203743928-38.
Full textZanelli, U., and E. Sedano. "Safe Slag and Liquid Steel Handling." In AISTech 2020. AIST, 2020. http://dx.doi.org/10.33313/380/065.
Full textYildirim, Irem Zeynep, and Monica Prezzi. "Steel Slag: Chemistry, Mineralogy, and Morphology." In IFCEE 2015. Reston, VA: American Society of Civil Engineers, 2015. http://dx.doi.org/10.1061/9780784479087.263.
Full text"Corrosion of Steel in Slag Concrete." In "SP-199: Seventh CANMET/ACI International Conference on Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete". American Concrete Institute, 2001. http://dx.doi.org/10.14359/10532.
Full textYanzhao, L., J. Chenxi, W. Leichuan, S. Wei, C. Yang, and T. Zhihong. "Double Slag Modification Method for Reducing Slag Oxidation of IF Steel." In MS&T17. MS&T17, 2017. http://dx.doi.org/10.7449/2017/mst_2017_622_627.
Full textYanzhao, L., J. Chenxi, W. Leichuan, S. Wei, C. Yang, and T. Zhihong. "Double Slag Modification Method for Reducing Slag Oxidation of IF Steel." In MS&T17. MS&T17, 2017. http://dx.doi.org/10.7449/2017mst/2017/mst_2017_622_627.
Full textWang, Chang-long, Yan-ming Qi, and Jin-yun He. "Experimental Study on Steel Slag and Slag Replacing Sand in Concrete." In 2008 International Workshop on Modelling, Simulation and Optimization. IEEE, 2008. http://dx.doi.org/10.1109/wmso.2008.13.
Full textMartinez Rehlaender, E. "Selective Slag Systems for Steel Inclusion Cleanliness." In AISTech 2022 Proceedings of the Iron and Steel Technology Conference. AIST, 2022. http://dx.doi.org/10.33313/386/118.
Full textHarabinova, Slavka. "PROPERTIES OF AGGREGATES OF STEEL-MAKING SLAG." In 14th SGEM GeoConference on ENERGY AND CLEAN TECHNOLOGIES. Stef92 Technology, 2014. http://dx.doi.org/10.5593/sgem2014/b42/s18.026.
Full textReports on the topic "Steel Slag"
Yildirim, Irem, and Monica Prezzi. Use of Steel Slag in Subgrade Applications. West Lafayette, Indiana: Purdue University, 2011. http://dx.doi.org/10.5703/1288284314275.
Full textYildirim, Irem, Monica Prezzi, Meera Vasudevan, and Helen Santoso. Use of Soil-Steel Slag-Class-C Fly Ash Mixtures in Subgrade Applications. Purdue University, October 2013. http://dx.doi.org/10.5703/1288284315188.
Full textCohen, A., and M. Blander. Removal of copper from carbon-saturated steel with an aluminum sulfide/iron sulfide slag. Office of Scientific and Technical Information (OSTI), December 1995. http://dx.doi.org/10.2172/510297.
Full textFUHRMANN, M. SCHOONEN,M. LEACHING OF SLAG FROM STEEL RECYCLING: RADIONUCLIDES AND STABLE ELEMENTS. DATA REPORT, JAN.15, 1997, REVISED SEPT.9, 1997. Office of Scientific and Technical Information (OSTI), July 2003. http://dx.doi.org/10.2172/15006588.
Full textS. Street, K.S. Coley, and G.A. Iron. AISI/DOE Technology Roadmap Program: Removal of Residual Elements in The Steel Ladle by a Combination of Top Slag and Deep Injection Practice. Office of Scientific and Technical Information (OSTI), August 2001. http://dx.doi.org/10.2172/799244.
Full textGroeneveld. L51676 Evaluation of Modern X70 and X80 Line Pipe Steels. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), April 1992. http://dx.doi.org/10.55274/r0010158.
Full textBrent S. Isaacson, Mike Slepian, and Thomas Richter. Project B: Improved Liquid Steel Feed For Slab Casters. Office of Scientific and Technical Information (OSTI), October 1998. http://dx.doi.org/10.2172/795014.
Full textWilliams, D., and W. Maxey. NR198506 Evaluation of an X70 Low-Carbon Bainitic-Steel Pipe. Chantilly, Virginia: Pipeline Research Council International, Inc. (PRCI), October 1985. http://dx.doi.org/10.55274/r0011411.
Full textPAL, UDAY B. Electroslag Remelting (ESR) Slags for Removal of Radioactive Oxide Contaminants from Stainless Steel, Annual Report (1998-1999). Office of Scientific and Technical Information (OSTI), August 1999. http://dx.doi.org/10.2172/12659.
Full textBrent Isaacson, Mike Slepian, and Thomas Richter. AISI/DOE Advanced Process Control Program Vol. 3 of 6: Improved Liquid Steel Feeding for Slab Casters. Office of Scientific and Technical Information (OSTI), June 1999. http://dx.doi.org/10.2172/795001.
Full text