Academic literature on the topic 'Stéganalyse'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stéganalyse.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Dissertations / Theses on the topic "Stéganalyse"

1

Barbier, Johann. "Analyse de canaux de communication dans un contexte non coopératif : application aux codes correcteurs d'erreurs et à la stéganalyse." Phd thesis, Palaiseau, Ecole polytechnique, 2007. http://www.theses.fr/2007EPXX0039.

Full text
Abstract:
Dans cette thèse, nous étudions les canaux de communication dans un contexte non coopératif sous l'angle des codes correcteurs d 'erreurs, d'une part, et de la stéganographie, d'autre part. Nous prenons la place d'un observateur non légitime qui veut avoir accès à l'information échangée entre deux protagonistes. Nos travaux sur les algorithmes de reconstruction de codes correcteurs nous ont amenés à proposer un formalisme commun pour l'étude des codes linéaires, des codes convolutifs et des turbo-codes. Nous analysons tout d'abord finement l'algorithme de Sicot-Houcke, puis l'employons ensuite comme brique de base pour concevoir une technique de reconstruction des codes convolutifs totalement automatique et de complexité meilleure que les techniques existantes. Enfin, nous utilisons ces résultats pour retrouver les paramètres des turbo-codeurs. Dans le cadre de l'analyse stéganographique, nous proposons tout d'abord deux nouveaux modèles de sécurité qui mettent en oeuvre des jeux avec des attaquants réels. Nous adaptons ensuite l'analyse RS en un schéma de détection pour l'algorithme Multi Bit Plane Image steganography pour le domaine spatial proposé par Nguyen et al. à IWDW'06. Enfin, nous développons une approche nouvelle pour analyser les images JPEG. En étudiant les statistiques des coefficients DCT compressés, nous mettons en évidence des détecteurs possédant des performances élevées et indépendantes en pratique de la quantité d'information dissimulée. Nous illustrons ces résultats par un schéma de stéganalyse universelle d'une part, et un schéma de stéganalyse spécifique pour Outguess, F5 et JPHide and JPSeek, d'autre part.
APA, Harvard, Vancouver, ISO, and other styles
2

Fadil, Yousra Ahmed. "Security analysis of steganalyzers." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCD015/document.

Full text
Abstract:
De nos jours, le développement de la stéganalyse et de la stéganographie est incontournable, et peut être utilisé à des fins légales comme illégales, comme dans toute autre application. Le travail présenté dans cette thèse, se concentrant sur ces questions, est divisée en trois parties. La première partie concerne les paramètres permettant d’accroître le niveau de sécurité de la stéganographie afin de faire face aux techniques de stéganalyse. La contribution apportée dans cette première partie concerne l’étude de l’effet de la charge utile, l’extraction des caractéristiques, ainsi que le groupe d’images utilisées dans la phase d’apprentissage et la phase de test. Les résultats des simulations montrent que les techniques de stéganalyse de l’ état de l’art échouent dans la détection des messages secrets intégrés dans les images quand les paramètres changent entre l’apprentissage et le test. Dans la deuxième partie, nous étudions l’impact de la combinaison de plusieurs méthodes stéganographiques sur la détection des messages secrets. Ce travail prend en considération qu’il n’existe pas une procédure idéale, mais que le stéganographieur pourra utiliser n’importe quel schéma ainsi que n’importe quel taux d’embarquement. Dans la troisième et dernière partie, on propose une méthode qui calcule une carte de distorsion précise, en fonction de la dérivée seconde de l’image. La dérivée seconde est utilisée afin de calculer les courbes de niveau, ensuite le message va être caché dans l’image en écartant les courbes de niveaux inférieurs à un certain seuil. Les résultats expérimentaux démontrent que le niveau de sécurité est acceptable comparé aux méthodes stéganographiques de l’état de l’art<br>In the recent time, the field of image steganalysis and steganography became more important due to the development in the Internet domain. It is important to keep in mind that the whole process of steganography and steganalysis can be used for legal or illegal operations like any other applications. The work in this thesis can be divided inthree parts. The first one concentrates on parameters that increase the security of steganography methods against steganalysis techniques. In this contribution the effect of the payload, feature extractions, and group of images that are used in the learning stage and testing stage for the steganalysis system are studied. From simulation, we note that the state of the art steganalyzer fails to detect the presence of a secret message when some parameters are changed. In the second part, we study how the presence of many steganography methods may influence the detection of a secret message. The work takes into consideration that there is no ideal situation to embed a secret message when the steganographier can use any scheme with any payloads. In the third part, we propose a method to compute an accurate distortion map depending on a second order derivative of the image. The second order derivative is used to compute the level curve and to embed the message on pixels outside clean level curves. The results of embedding a secret message with our method demonstrate that the result is acceptable according to state of the art steganography
APA, Harvard, Vancouver, ISO, and other styles
3

Bodin, Nicolas. "Analyse et conception de techniques opérationnelles de stéganographie." Phd thesis, Ecole Polytechnique X, 2013. http://pastel.archives-ouvertes.fr/pastel-00943663.

Full text
Abstract:
La stéganographie est la science de l'écriture cachée. Dans ce contexte, un individu tente de communiquer avec une entité sans éveiller les soupçons sur le fondement même de la communication. Cette science vient en complément de la cryptographie (sécurisation de la communication -- COMSEC) lorsqu'un besoin d'invisibilité de la communication se fait sentir. Cette thèse, réalisée sous la tutelle et au profit de l'État Major des Armées, traite donc des différentes techniques permettant l'élaboration d'un schéma de stéganographie (sécurisation de la transmission -- TRANSEC), techniquement opérationnel et assez solide, visant à insérer un message d'une dizaine de kilo-octets dans une image JPEG de dimensions raisonnables, et capable de résister aux différentes attaques données par l'état de l'art. Afin de rendre ce schéma le plus sûr possible, les formats de données les plus courants sont étudiés (JPEG, BMP, MP3), avant de définir un premier algorithme d'insertion. Ce dernier, fondé sur les travaux de Hopper, reste conceptuel mais permet de définir les fondements de notre algorithme (nommé IMEI). Ce dernier maximise l'efficacité d'insertion, et donc minimise le nombre de modifications apportées au cover-médium. Une analyse de l'algorithme HUGO présenté dans le contexte du challenge BOSS va nous permettre de définir un protocole de stéganalyse, ainsi qu'une deuxième brique importante pour l'IMEI. La dernière partie de ce manuscrit regroupe la partie stéganalyse, avec l'évaluation de l'IMEI et une stéganalyse réellement opérationnelle dans laquelle nous pouvons retrouver une étude de l'utilisation concrète de la stéganographie et de son évaluation.
APA, Harvard, Vancouver, ISO, and other styles
4

Barbier, Johann. "Analyse de canaux de communication dans un contexte non coopératif." Phd thesis, Ecole Polytechnique X, 2007. http://pastel.archives-ouvertes.fr/pastel-00003711.

Full text
Abstract:
Dans cette thèse, nous étudions les canaux de communication dans un contexte non coopératif sous l'angle des codes correcteurs d'erreurs, d'une part, et de la stéganographie, d'autre part. Nous prenons la place d'un observateur non légitime qui veut avoir accès à l'information échangée entre deux protagonistes. Nos travaux sur les algorithmes de reconstruction de codes correcteurs, nous ont amenés à proposer un formalisme commun pour l'étude des codes linéaires, des codes convolutifs et des turbo-codes. Nous analysons tout d'abord finement l'algorithme de Sicot-Houcke, puis l'employons ensuite comme brique de base pour concevoir une technique de reconstruction des codes convolutifs totalement automatique et de complexité meilleure que les techniques existantes. Enfin, nous utilisons ces résultats pour retrouver les paramètres des turbo-codeurs. Dans le cadre de l'analyse stéganographique, nous proposons tout d'abord deux nouveaux modèles de sécurité qui mettent en oeuvre des jeux avec des attaquants réels. Nous adaptons ensuite l'analyse RS en un schéma de détection pour l'algorithme Multi Bit Plane Image steganography pour le domaine spatial, proposé par Nguyen et al. à IWDW'06. Enfin, nous développons une approche nouvelle pour analyser les images JPEG. En étudiant les statistiques des coefficients DCT compressés, nous mettons en évidence des détecteurs possédant des performances élevées et indépendantes en pratique de la quantité d'information dissimulée. Nous illustrons ces résultats par un schéma de stéganalyse universelle d'une part, et un schéma de stéganalyse spécifique pour Outguess, F5 et JPHide and JPSeek, d'autre part.
APA, Harvard, Vancouver, ISO, and other styles
5

Guettari, Nadjib. "Évaluation du contenu d'une image couleur par mesure basée pixel et classification par la théorie des fonctions de croyance." Thesis, Poitiers, 2017. http://www.theses.fr/2017POIT2275/document.

Full text
Abstract:
De nos jours, il est devenu de plus en plus simple pour qui que ce soit de prendre des photos avec des appareils photo numériques, de télécharger ces images sur l'ordinateur et d'utiliser différents logiciels de traitement d'image pour appliquer des modification sur ces images (compression, débruitage, transmission, etc.). Cependant, ces traitements entraînent des dégradations qui influent sur la qualité visuelle de l'image. De plus, avec la généralisation de l'internet et la croissance de la messagerie électronique, des logiciels sophistiqués de retouche d'images se sont démocratisés permettant de falsifier des images à des fins légitimes ou malveillantes pour des communications confidentielles ou secrètes. Dans ce contexte, la stéganographie constitue une méthode de choix pour dissimuler et transmettre de l'information.Dans ce manuscrit, nous avons abordé deux problèmes : l'évaluation de la qualité d'image et la détection d'une modification ou la présence d'informations cachées dans une image. L'objectif dans un premier temps est de développer une mesure sans référence permettant d'évaluer de manière automatique la qualité d'une image en corrélation avec l'appréciation visuelle humaine. Ensuite proposer un outil de stéganalyse permettant de détecter, avec la meilleure fiabilité possible, la présence d'informations cachées dans des images naturelles. Dans le cadre de cette thèse, l'enjeu est de prendre en compte l'imperfection des données manipulées provenant de différentes sources d'information avec différents degrés de précision. Dans ce contexte, afin de profiter entièrement de l'ensemble de ces informations, nous proposons d'utiliser la théorie des fonctions de croyance. Cette théorie permet de représenter les connaissances d'une manière relativement naturelle sous la forme d'une structure de croyances. Nous avons proposé une nouvelle mesure sans référence d'évaluation de la qualité d'image capable d'estimer la qualité des images dégradées avec de multiple types de distorsion. Cette approche appelée wms-EVreg2 est basée sur la fusion de différentes caractéristiques statistiques, extraites de l'image, en fonction de la fiabilité de chaque ensemble de caractéristiques estimée à travers la matrice de confusion. À partir des différentes expérimentations, nous avons constaté que wms-EVreg2 présente une bonne corrélation avec les scores de qualité subjectifs et fournit des performances de prédiction de qualité compétitives par rapport aux mesures avec référence.Pour le deuxième problème abordé, nous avons proposé un schéma de stéganalyse basé sur la théorie des fonctions de croyance construit sur des sous-espaces aléatoires des caractéristiques. La performance de la méthode proposée a été évaluée sur différents algorithmes de dissimulation dans le domaine de transformé JPEG ainsi que dans le domaine spatial. Ces tests expérimentaux ont montré l'efficacité de la méthode proposée dans certains cadres d'applications. Cependant, il reste de nombreuses configurations qui résident indétectables<br>Nowadays it has become increasingly simpler for anyone to take pictures with digital cameras, to download these images to the computer and to use different image processing software to apply modifications on these images (Compression, denoising, transmission, etc.). However, these treatments lead to degradations which affect the visual quality of the image. In addition, with the widespread use of the Internet and the growth of electronic mail, sophisticated image-editing software has been democratised allowing to falsify images for legitimate or malicious purposes for confidential or secret communications. In this context, steganography is a method of choice for embedding and transmitting information.In this manuscript we discussed two issues : the image quality assessment and the detection of modification or the presence of hidden information in an image. The first objective is to develop a No-Reference measure allowing to automatically evaluate the quality of an image in correlation with the human visual appreciation. Then we propose a steganalysis scheme to detect, with the best possible reliability, the presence of information embedded in natural images. In this thesis, the challenge is to take into account the imperfection of the manipulated data coming from different sources of information with different degrees of precision. In this context, in order to take full advantage of all this information, we propose to use the theory of belief functions. This theory makes it possible to represent knowledge in a relatively natural way in the form of a belief structure.We proposed a No-reference image quality assessment measure, which is able to estimate the quality of the degraded images with multiple types of distortion. This approach, called wms-EVreg2, is based on the fusion of different statistical features, extracted from the image, depending on the reliability of each set of features estimated through the confusion matrix. From the various experiments, we found that wms-EVreg2 has a good correlation with subjective quality scores and provides competitive quality prediction performance compared to Full-reference image quality measures.For the second problem addressed, we proposed a steganalysis scheme based on the theory of belief functions constructed on random subspaces of the features. The performance of the proposed method was evaluated on different steganography algorithms in the JPEG transform domain as well as in the spatial domain. These experimental tests have shown the performance of the proposed method in some application frameworks. However, there are many configurations that reside undetectable
APA, Harvard, Vancouver, ISO, and other styles
6

Kouider, Sarra. "Insertion adaptative en stéganographie : application aux images numériques dans le domaine spatial." Phd thesis, Université Montpellier II - Sciences et Techniques du Languedoc, 2013. http://tel.archives-ouvertes.fr/tel-01020745.

Full text
Abstract:
La stéganographie est l'art de la communication secrète. L'objectif est de dissimuler un message secret dans un médium anodin de sorte qu'il soit indétectable. De nos jours, avec la généralisation d'Internet et l'apparition des supports numériques (fichiers audio, vidéos ou images), plusieurs philosophies de conception de schéma stéganographique ont été proposées. Parmi les méthodes actuelles appliquées aux images numériques naturelles, nous trouvons les méthodes d'insertion adaptative, dont le principe repose sur la modification du médium de couverture avec une garantie d'avoir un certain niveau de sécurité. Ces méthodes représentent une véritable avancée en stéganographie.Dans ce manuscrit, après avoir rappelé les concepts récents de stéganographie adaptative, nous présentons une procédure automatique et complète pour l'insertion adaptative de données secrètes dans des images numériques naturelles. L'approche proposée est une " méta-méthode " basée " oracle ", appelée ASO (Adaptive Steganography by Oracle), qui permet de préserver à la fois la distribution de l'image de couverture et la distribution de la base d'images utilisée par l'émetteur. Notre approche permet d'obtenir des résultats nettement supérieurs aux méthodes actuelles de l'état de l'art, et est donc l'une, si ce n'est la meilleure approche du moment. Par ailleurs, nous définissons également un nouveau paradigme en stéganographie qui est la stéganographie par base, ainsi qu'une nouvelle mesure de sélection pour les images stéganographiées, permettant d'améliorer encore plus les performances de notre schéma d'insertion. Les différentes expérimentations, que nous avons effectuées sur des images réelles, ont confirmé la pertinence de cette nouvelle approche.
APA, Harvard, Vancouver, ISO, and other styles
7

Abdulrahman, Hasan. "Oriented filters for feature extraction in digital Images : Application to corners detection, Contours evaluation and color Steganalysis." Thesis, Montpellier, 2017. http://www.theses.fr/2017MONTS077/document.

Full text
Abstract:
L’interprétation du contenu de l’image est un objectif très important dans le traitement de l’image et la vision par ordinateur. Par conséquent, plusieurs chercheurs y sont intéressés. Une image contient des informations multiples qui peuvent être étudiés, telles que la couleur, les formes, les arêtes, les angles, la taille et l’orientation. En outre, les contours contiennent les structures les plus importantes de l’image. Afin d’extraire les caractéristiques du contour d’un objet, nous devons détecter les bords de cet objet. La détection de bords est un point clé dans plusieurs applications, telles que :la restauration, l’amélioration de l’image, la stéganographie, le filigrane, la récupération, la reconnaissance et la compression de l’image, etc. Toutefois, l’évaluation de la performance de la méthode de détection de bords reste un grand défi. Les images numériques sont parfois modifiées par une procédure légale ou illégale afin d’envoyer des données secrètes ou spéciales. Afin d’être moins visibles, la plupart des méthodes stéganographiques modifient les valeurs de pixels dans les bords/textures de parties de l’image. Par conséquent, il est important de détecter la présence de données cachées dans les images numériques. Cette thèse est divisée principalement en deux parties.La première partie discute l’évaluation des méthodes de détection des bords du filtrage, des contours et des angles. En effet, cinq contributions sont présentées dans cette partie : d’abord, nous avons proposé un nouveau plan de surveillance normalisée de mesure de la qualité. En second lieu, nous avons proposé une nouvelle technique pour évaluer les méthodes de détection des bords de filtrage impliquant le score minimal des mesures considérées. En plus, nous avons construit une nouvelle vérité terrain de la carte de bords étiquetée d’une manière semi-automatique pour des images réelles.En troisième lieu, nous avons proposé une nouvelle mesure prenant en compte les distances de faux points positifs pour évaluer un détecteur de bords d’une manière objective. Enfin, nous avons proposé une nouvelle approche de détection de bords qui combine la dérivée directionnelle et l’homogénéité des grains. Notre approche proposée est plus stable et robuste au bruit que dix autres méthodes célèbres de détection. La seconde partie discute la stéganalyse de l’image en couleurs, basée sur l’apprentissage automatique (machine learning). En effet, trois contributions sont présentées dans cette partie : d’abord, nous avons proposé une nouvelle méthode de stéganalyse de l’image en couleurs, basée sur l’extraction de caractéristiques de couleurs à partir de corrélations entre les gradients de canaux rouge, vert et bleu. En fait, ces caractéristiques donnent le cosinus des angles entre les gradients. En second lieu, nous avons proposé une nouvelle méthode de stéganalyse de l’image en couleurs, basée sur des mesures géométriques obtenues par le sinus et le cosinus des angles de gradients entre tous les canaux de couleurs. Enfin, nous avons proposé une nouvelle méthode de stéganalyse de l’image en couleurs, basée sur une banque de filtres gaussiens orientables. Toutes les trois méthodes proposées présentent des résultats intéressants et prometteur en devançant l’état de l’art de la stéganalyse en couleurs<br>Interpretation of image contents is very important objective in image processing and computer vision. Wherefore, it has received much attention of researchers. An image contains a lot of information which can be studied such as color, shapes, edges, corners, size, and orientation. Moreover, contours include the most important structures in the image. In order to extract features contour of an object, we must detect the edges of that object. Edge detection results, remains a key point and very important step in wide range of applications such as: image restoration, enhancement, steganography, watermarking, image retrieval, recognition, compression, and etc. An efficient boundary detection method should create a contour image containing edges at their correct locations with a minimum of misclassified pixels. However, the performance evaluationof the edge detection results is still a challenging problem. The digital images are sometimes modify by a legal or illegal data in order to send special or secret data. These changes modify slight coefficient values of the image. In order to be less visible, most of the steganography methods modify the pixel values in the edge/texture image areas. Therefore, it is important to detect the presence of hidden data in digital images. This thesis is divided mainly into two main parts. The first part, deals with filtering edge detection, contours evaluation and corners detection methods. More deeply, there are five contributions are presented in this part: first, proposed a new normalized supervised edge map quality measure. The strategy to normalize the evaluation enables to consider a score close to 0 as a good edge map, whereas a score 1 translates a poor segmentation. Second, proposed a new technique to evaluate filtering edge detection methods involving the minimum score of the considerate measures. Moreover, build a new ground truth edge map labelled in semi-automatic way in real images. Third, proposed a new measure takes into account the distances of false positive points to evaluate an edge detector in an objective way. Finally, proposed a new approach for corner detection based on the combination of directional derivative and homogeneity kernels. The proposed approach remains more stable and robust to noise than ten famous corner detection methods. The second part, deals with color image steganalysis, based on a machine learning classification. More deeply, there are three contributionsare presented in this part: first, proposed a new color image steganalysis method based on extract color features from correlations between the gradients of red, green and blue channels. Since these features give the cosine of angles between gradients. Second, proposed a new color steganalysis method based on geometric measures obtained by the sine and cosine of gradient angles between all the color channels. Finally, proposed a new approach for color image steganalysisbased on steerable Gaussian filters Bank.All the three proposed methods in this part, provide interesting and promising results by outperforming the state-of-art color image steganalysis
APA, Harvard, Vancouver, ISO, and other styles
8

Zakaria, Ahmad. "Batch steganography and pooled steganalysis in JPEG images." Thesis, Montpellier, 2020. http://www.theses.fr/2020MONTS079.

Full text
Abstract:
RÉSUMÉ :La stéganographie par lot consiste à dissimuler un message en le répartissant dans un ensemble d’images, tandis que la stéganalyse groupée consiste à analyser un ensemble d’images pour conclure à la présence ou non d’un message caché. Il existe de nombreuses stratégies d’étalement d’un message et on peut raisonnablement penser que le stéganalyste ne connaît pas celle qui est utilisée, mais il peut supposer que le stéganographe utilise le même algorithme d’insertion pour toutes les images. Dans ce cas, on peut montrer que la solution la plus appropriée pour la stéganalyse groupée est d’utiliser un unique détecteur quantitatif (c'est-à-dire qui prédit la taille du message caché), d’évaluer pour chaque image la taille du message caché (qui peut être nulle s'il n'y en a pas) et de faire la moyenne des tailles (qui sont finalement considérées comme des scores) obtenues sur l'ensemble des images.Quelle serait la solution optimale si maintenant, le stéganalyste pouvait discriminer la stratégie d’étalement parmi un ensemble de stratégies connues. Le stéganalyste pourrait-il utiliser un algorithme de stéganalyse groupé meilleur que la moyenne des scores ? Le stéganalyste pourrait-il obtenir des résultats proches du scénario dit "clairvoyant" où l’on suppose qu’il connaît exactement la stratégie d’étalement ?Dans cette thèse, nous essayons de répondre à ces questions en proposant une architecture de stéganalyse groupée fondé sur un détecteur quantitatif d’images et une fonction de groupement optimisée des scores. La première contribution est une étude des algorithmes de stéganalyse quantitatifs afin de décider lequel est le mieux adapté à la stéganalyse groupée. Pour cela, nous proposons d’étendre cette comparaison aux algorithmes de stéganalyse binaires et nous proposons une méthodologie pour passer des résultats de la stéganalyse binaire en stéganalyse quantitative et réciproquement.Le cœur de la thèse se situe dans la deuxième contribution. Nous étudions le scénario où le stéganalyste ne connaît pas la stratégie d’étalement. Nous proposons alors une fonction de groupement optimisée des résultats fondés sur un ensemble de stratégies d’étalement ce qui permet d’améliorer la précision de la stéganalyse groupée par rapport à une simple moyenne. Cette fonction de groupement est calculée en utilisant des techniques d’apprentissage supervisé. Les résultats expérimentaux obtenus avec six stratégies d’étalement différentes et un détecteur quantitatif de l’état de l’art confirment notre hypothèse. Notre fonction de groupement obtient des résultats proches d’un stéganalyste clairvoyant qui est censé connaître la stratégie d’étalement.Mots clés : Sécurité multimédia, Stéganographie par lot, Stéganalyse groupée, Apprentissage machine<br>ABSTRACT:Batch steganography consists of hiding a message by spreading it out in a set of images, while pooled steganalysis consists of analyzing a set of images to conclude whether or not a hidden message is present. There are many strategies for spreading a message and it is reasonable to assume that the steganalyst does not know which one is being used, but it can be assumed that the steganographer uses the same embedding algorithm for all images. In this case, it can be shown that the most appropriate solution for pooled steganalysis is to use a single quantitative detector (i.e. one that predicts the size of the hidden message), to evaluate for each image the size, the hidden message (which can be zero if there is none), and to average the sizes (which are finally considered as scores) obtained over all the images.What would be the optimal solution if now the steganalyst could discriminate the spreading strategy among a set of known strategies. Could the steganalyst use a pooled steganalysis algorithm that is better than averaging the scores? Could the steganalyst obtain results close to the so-called "clairvoyant" scenario where it is assumed that the steganalyst knows exactly the spreading strategy?In this thesis, we try to answer these questions by proposing a pooled steganalysis architecture based on a quantitative image detector and an optimized score pooling function. The first contribution is a study of quantitative steganalysis algorithms in order to decide which one is best suited for pooled steganalysis. For this purpose, we propose to extend this comparison to binary steganalysis algorithms and we propose a methodology to switch from binary steganalysis results to quantitative steganalysis and vice versa.The core of the thesis lies in the second contribution. We study the scenario where the steganalyst does not know the spreading strategy. We then propose an optimized pooling function of the results based on a set of spreading strategies which improves the accuracy of the pooled steganalysis compared to a simple average. This pooling function is computed using supervised learning techniques. Experimental results obtained with six different spreading strategies and a state-of-the-art quantitative detector confirm our hypothesis. Our pooling function gives results close to a clairvoyant steganalyst who is supposed to know the spreading strategy.Keywords: Multimedia Security, Batch Steganography, Pooled Steganalysis, Machine Learning
APA, Harvard, Vancouver, ISO, and other styles
9

Yedroudj, Mehdi. "Steganalysis and steganography by deep learning." Thesis, Montpellier, 2019. http://www.theses.fr/2019MONTS095.

Full text
Abstract:
La stéganographie d'image est l'art de la communication secrète dans le but d'échanger un message de manière furtive. La stéganalyse d'image a elle pour objectif de détecter la présence d'un message caché en recherchant les artefacts présent dans l'image. Pendant une dizaine d'années, l'approche classique en stéganalyse a été d'utiliser un ensemble classifieur alimenté par des caractéristiques extraites "à la main". Au cours des dernières années, plusieurs études ont montré que les réseaux de neurones convolutionnels peuvent atteindre des performances supérieures à celles des approches conventionnelles d'apprentissage machine.Le sujet de cette thèse traite des techniques d'apprentissage profond utilisées pour la stéganographie d'images et la stéganalyse dans le domaine spatial.La première contribution est un réseau de neurones convolutionnel rapide et efficace pour la stéganalyse, nommé Yedroudj-Net. Comparé aux méthodes modernes de steganalyse basées sur l'apprentissage profond, Yedroudj-Net permet d'obtenir des résultats de détection performants, mais prend également moins de temps à converger, ce qui permet l'utilisation des bases d'apprentissage de grandes dimensions. De plus, Yedroudj-Net peut facilement être amélioré en ajoutant des compléments ou des modules bien connus. Parmi les amélioration possibles, nous avons évalué l'augmentation de la base de données d'entraînement, et l'utilisation d'un ensemble de CNN. Les deux modules complémentaires permettent d'améliorer les performances de notre réseau.La deuxième contribution est l'application des techniques d'apprentissage profond à des fins stéganographiques i.e pour l'insertion. Parmi les techniques existantes, nous nous concentrons sur l'approche du "jeu-à-3-joueurs". Nous proposons un algorithme d'insertion qui apprend automatiquement à insérer un message secrètement. Le système de stéganographie que nous proposons est basé sur l'utilisation de réseaux adverses génératifs. L'entraînement de ce système stéganographique se fait à l'aide de trois réseaux de neurones qui se font concurrence : le stéganographeur, l'extracteur et le stéganalyseur. Pour le stéganalyseur nous utilisons Yedroudj-Net, pour sa petite taille, et le faite que son entraînement ne nécessite pas l'utilisation d'astuces qui pourrait augmenter le temps de calcul.Cette deuxième contribution donne des premiers éléments de réflexion tout en donnant des résultats prometteurs, et pose ainsi les bases pour de futurs recherches<br>Image steganography is the art of secret communication in order to exchange a secret message. In the other hand, image steganalysis attempts to detect the presence of a hidden message by searching artefacts within an image. For about ten years, the classic approach for steganalysis was to use an Ensemble Classifier fed by hand-crafted features. In recent years, studies have shown that well-designed convolutional neural networks (CNNs) can achieve superior performance compared to conventional machine-learning approaches.The subject of this thesis deals with the use of deep learning techniques for image steganography and steganalysis in the spatialdomain.The first contribution is a fast and very effective convolutional neural network for steganalysis, named Yedroudj-Net. Compared tomodern deep learning based steganalysis methods, Yedroudj-Net can achieve state-of-the-art detection results, but also takes less time to converge, allowing the use of a large training set. Moreover,Yedroudj-Net can easily be improved by using well known add-ons. Among these add-ons, we have evaluated the data augmentation, and the the use of an ensemble of CNN; Both increase our CNN performances.The second contribution is the application of deep learning techniques for steganography i.e the embedding. Among the existing techniques, we focus on the 3-player game approach.We propose an embedding algorithm that automatically learns how to hide a message secretly. Our proposed steganography system is based on the use of generative adversarial networks. The training of this steganographic system is conducted using three neural networks that compete against each other: the embedder, the extractor, and the steganalyzer. For the steganalyzer we use Yedroudj-Net, this for its affordable size, and for the fact that its training does not require the use of any tricks that could increase the computational time.This second contribution defines a research direction, by giving first reflection elements while giving promising first results
APA, Harvard, Vancouver, ISO, and other styles
10

Rekik, Siwar. "Sécurisation de la communication parlée par une techhnique stéganographique." Thesis, Brest, 2012. http://www.theses.fr/2012BRES0061.

Full text
Abstract:
Une des préoccupations dans le domaine des communications sécurisées est le concept de sécurité de l'information. Aujourd’hui, la réalité a encore prouvé que la communication entre deux parties sur de longues distances a toujours été sujet au risque d'interception. Devant ces contraintes, de nombreux défis et opportunités s’ouvrent pour l'innovation. Afin de pouvoir fournir une communication sécurisée, cela a conduit les chercheurs à développer plusieurs schémas de stéganographie. La stéganographie est l’art de dissimuler un message de manière secrète dans un support anodin. L’objectif de base de la stéganographie est de permettre une communication secrète sans que personne ne puisse soupçonner son existence, le message secret est dissimulé dans un autre appelé medium de couverture qui peut être image, video, texte, audio,…. Cette propriété a motivé les chercheurs à travailler sur ce nouveau champ d’étude dans le but d’élaborer des systèmes de communication secrète résistante à tout type d’attaques. Cependant, de nombreuses techniques ont été développées pour dissimuler un message secret dans le but d’assurer une communication sécurisée. Les contributions majeures de cette thèse sont en premier lieu, de présenter une nouvelle méthode de stéganographie permettant la dissimulation d’un message secret dans un signal de parole. La dissimulation c’est le processus de cacher l’information secrète de façon à la rendre imperceptible pour une partie tierce, sans même pas soupçonner son existence. Cependant, certaines approches ont été étudiées pour aboutir à une méthode de stéganogaraphie robuste. En partant de ce contexte, on s’est intéressé à développer un système de stéganographie capable d’une part de dissimuler la quantité la plus élevée de paramètre tout en gardant la perceptibilité du signal de la parole. D’autre part nous avons opté pour la conception d’un algorithme de stéganographie assez complexe afin d’assurer l’impossibilité d’extraction de l’information secrète dans le cas ou son existence été détecter. En effet, on peut également garantir la robustesse de notre technique de stéganographie à l’aptitude de préservation du message secret face aux tentatives de détection des systèmes de stéganalyse. Notre technique de dissimulation tire son efficacité de l’utilisation de caractéristiques spécifiques aux signaux de parole et àl’imperfection du système auditif humain. Des évaluations comparatives sur des critères objectifs et subjectifs de qualité sont présentées pour plusieurs types de signaux de parole. Les résultats ont révélé l'efficacité du système développé puisque la technique de dissimulation proposée garantit l’imperceptibilité du message secret voire le soupçon de son existence. Dans la suite expérimentale et dans le même cadre de ce travail, la principale application visée par la thèse concerne la transmission de parole sécurisée par un algorithme de stéganographie. Dans ce but il s’est avéré primordial d’utiliser une des techniques de codage afin de tester la robustesse de notre algorithme stéganographique face au processus de codage et de décodage. Les résultats obtenus montrent la possibilité de reconstruction du signal original (contenant des informations secrètes) après codage. Enfin une évaluation de la robustesse de notre technique de stéganographie vis à vis des attaques est faite de façon à optimiser la technique afin d'augmenter le taux de sécurisation. Devant cette nécessité nous avons proposé une nouvelle technique de stéganalyse basée sur les réseaux de neurones AR-TDNN. La technique présentée ici ne permet pas d'extraire l'éventuel message caché, mais simplement de mettre en évidence sa présence<br>One of the concerns in the field of secure communication is the concept of information security. Today’s reality is still showing that communication between two parties over long distances has always been subject to interception. Providing secure communication has driven researchers to develop several cryptography schemes. Cryptography methods achieve security in order to make the information unintelligible to guarantee exclusive access for authenticated recipients. Cryptography consists of making the signal look garbled to unauthorized people. Thus, cryptography indicates the existence of a cryptographic communication in progress, which makes eavesdroppers suspect the existence of valuable data. They are thus incited to intercept the transmitted message and to attempt to decipher the secret information. This may be seen as weakness in cryptography schemes. In contrast to cryptography, steganography allows secret communication by camouflaging the secret signal in another signal (named the cover signal), to avoid suspicion. This quality motivated the researchers to work on this burning field to develop schemes ensuring better resistance to hostile attackers. The word steganography is derived from two Greek words: Stego (means cover) and graphy (means writing). The two combined words constitute steganography, which means covert writing, is the art of hiding written communications. Several steganography techniques were used to send message secretly during wars through the territories of enemies. The major contributions of this thesis are the following ones. We propose a new method to secure speech communication using the Discrete Wavelet Transforms (DWT) and the Fast Fourier Transform (FFT). Our method exploits first the high frequencies using a DWT, then exploits the low-pass spectral properties of the speech magnitude spectrum to hide another speech signal in the low-amplitude high-frequencies region of the cover speech signal. The proposed method allows hiding a large amount of secret information while rendering the steganalysis more complex. Comparative evaluation based on objective and subjective criteria is introduced for original speech signal, stego-signal and reconstructed secret speech signal after the hiding process. Experimental simulations on both female and male speakers revealed that our approach is capable of producing a stego speech that is indistinguishable from the cover speech. The receiver is still able to recover an intelligible copy of the secret speech message. We used an LPC10 coder to test the effect of the coding techniques on the stego-speech signals. Experimental results prove the efficiency of the used coding technique since intelligibility of the stego-speech is maintained after the encoding and decoding processes. We also advocate a new steganalysis technique to ensure the robustness of our steganography method. The proposed classifier is called Autoregressive time delay neural network (ARTDNN). The purpose of this steganalysis system is to identify the presence or not of embedded information, and does not actually attempt to extract or decode the hidden data. The low detecting rate prove the robustness of our hiding technique
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Stéganalyse"

1

COGRANNE, Rémi, Marc CHAUMONT, and Patrick BAS. "Stéganalyse : détection d’information cachée dans des contenus multimédias." In Sécurité multimédia 1. ISTE Group, 2021. http://dx.doi.org/10.51926/iste.9026.ch8.

Full text
Abstract:
Ce chapitre détaille comment analyser une image numérique en vue d’obtenir des informations sur les données cachées par une méthode de stéganographie. Après une présentation des objectifs, plusieurs stratégies de détection sont ensuite détaillées, notamment les méthodes statistiques utilisant le rapport de vraisemblance, les méthodes par apprentissage reposant soit sur l’extraction de caractéristiques, soit sur l’utilisation de réseaux de neurones profonds.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography