Academic literature on the topic 'Stem cells ; Drosophila ; Optic lobes'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stem cells ; Drosophila ; Optic lobes.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Stem cells ; Drosophila ; Optic lobes"
Baccino-Calace, Martin, Daniel Prieto, Rafael Cantera, and Boris Egger. "Compartment and cell-type specific hypoxia responses in the developing Drosophila brain." Biology Open 9, no. 8 (August 15, 2020): bio053629. http://dx.doi.org/10.1242/bio.053629.
Full textDatta, S. "Control of proliferation activation in quiescent neuroblasts of the Drosophila central nervous system." Development 121, no. 4 (April 1, 1995): 1173–82. http://dx.doi.org/10.1242/dev.121.4.1173.
Full textTruman, J. W., W. S. Talbot, S. E. Fahrbach, and D. S. Hogness. "Ecdysone receptor expression in the CNS correlates with stage-specific responses to ecdysteroids during Drosophila and Manduca development." Development 120, no. 1 (January 1, 1994): 219–34. http://dx.doi.org/10.1242/dev.120.1.219.
Full textTix, S., J. S. Minden, and G. M. Technau. "Pre-existing neuronal pathways in the developing optic lobes of Drosophila." Development 105, no. 4 (April 1, 1989): 739–46. http://dx.doi.org/10.1242/dev.105.4.739.
Full textPoeck, B., A. Hofbauer, and G. O. Pflugfelder. "Expression of the Drosophila optomotor-blind gene transcript in neuronal and glial cells of the developing nervous system." Development 117, no. 3 (March 1, 1993): 1017–29. http://dx.doi.org/10.1242/dev.117.3.1017.
Full textCampos, A. R., K. F. Fischbach, and H. Steller. "Survival of photoreceptor neurons in the compound eye of Drosophila depends on connections with the optic ganglia." Development 114, no. 2 (February 1, 1992): 355–66. http://dx.doi.org/10.1242/dev.114.2.355.
Full textHolmes, A. L., and J. S. Heilig. "Fasciclin II and Beaten path modulate intercellular adhesion in Drosophila larval visual organ development." Development 126, no. 2 (January 15, 1999): 261–72. http://dx.doi.org/10.1242/dev.126.2.261.
Full textWang, Wei, Wenke Liu, Yue Wang, Liya Zhou, Xiaofang Tang, and Hong Luo. "Notch signaling regulates neuroepithelial stem cell maintenance and neuroblast formation in Drosophila optic lobe development." Developmental Biology 350, no. 2 (February 2011): 414–28. http://dx.doi.org/10.1016/j.ydbio.2010.12.002.
Full textWang, Wei, Yonggang Li, Liya Zhou, Haitao Yue, and Hong Luo. "Role of JAK/STAT signaling in neuroepithelial stem cell maintenance and proliferation in the Drosophila optic lobe." Biochemical and Biophysical Research Communications 410, no. 4 (July 2011): 714–20. http://dx.doi.org/10.1016/j.bbrc.2011.05.119.
Full textSerikaku, M. A., and J. E. O'Tousa. "sine oculis is a homeobox gene required for Drosophila visual system development." Genetics 138, no. 4 (December 1, 1994): 1137–50. http://dx.doi.org/10.1093/genetics/138.4.1137.
Full textDissertations / Theses on the topic "Stem cells ; Drosophila ; Optic lobes"
Gold, Katrina Sarah. "Neural stem cell regulation in the Drosophila optic lobe." Thesis, University of Cambridge, 2012. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.610391.
Full textSen, Aditya [Verfasser]. "Optomotor-blind and the horizontal and vertical system cells of the Drosophila optic lobes : molecular and laser ablation studies / vorgelegt von Aditya Sen." 2006. http://d-nb.info/979007488/34.
Full textAlves, Carolina dos Santos. "Regenerative neurogenesis in Drosophila melanogaster: The influence of age and activity in the adult brain." Master's thesis, 2017. http://hdl.handle.net/10400.12/6406.
Full textSendo o Encéfalo um dos órgãos mais importantes do organismo, a descoberta de que o processo de neurogénese continuava presente durante a fase adulta do animal foi uma das grandes revelações científcas da última metade do século XX. Assim, uma das vantagens na investigação deste processo: Neurogénese Adulta, é a sua aplicação em diversos organismos, que posteriormente possibilitará uma compreensão mais completa e aprofundada do mesmo. A Drosophila melanogaster foi recentemente apresentada como um óptimo modelo de estudo devido à sua acessibilidade genética e grande capacidade neuroregenerativa após lesão, contribuindo para o acesso a aspectos até então inexplorados. O objectivo principal deste trabalho foi o estudo da regulação do processo de Neurogénese regenerativa com foco na acção de dois factores: a Idade e a Actividade. Tal foi possível através da aplicação de um sistema de sensível de “lineage tracing”, o qual permite a visualização e quantificação de neurónios recentemente produzidos após uma lesão. Nos resultados obtidos, destacou-se a evidência de que o envelhecimento não promove uma diminuição na capacidade regenerativa no cérebro adulto da mosca, e persiste num nível constante até às 6 semanas de idade, o é próximo da vida inteira. Diferentes protocolos foram realizados para estudar o efeito da actividade física na neurogénese regenerativa. As experiências optimizadas ainda estão a decorrer e não poderam ser concluídas, porém dados preliminares indicam, que as moscas que têm um maior espaço envolvente anteriormente à lesão podem regenerar mais facilmente comparado com moscas que estão confinadas num espaço reduzido. No futuro, será importante será importante investigar quais os genes que regulam a ativação de células progenitoras neurais adultas induzida através de lesão, e ainda quais os fatores que controlam a diferenciação neuronal para obter uma compreensão mais detalhada de como a idade e a atividade influenciam a regeneração no cérebro adulto.
Being the brain one of the most important organs, the discovery that neurogenesis was continuous even in the adult phases was one of the great scientific revelations of the last century. The research of adult neurogenesis in several model systems will allow a better and complete understanding of this process. Drosophila melanogaster has been proposed as a novel model due to its genetic accessibility and its ability to regenerate neurons after injury, thereby opening the way to unexplored aspects. The main goal of the present project was to study the regulation of regenerative neurogenesis with respect to Age and Activity. This was achieved by applying sensitive lineage tracing, which allowed the visualization and quantification of the newly generated neurons upon injury. The observed results demonstrate that the regenerative capacity in adult fly brains does not decrease with age and persists on a constant level up to 6 weeks of age, which is close to the entire life span. Different paradigms were tested to study the effect of physical activity on regenerative neurogenesis. Experiments with the optimized set-up are still ongoing and could not be concluded, but preliminary data indicates, that flies that could move in a large compartment before injury may regenerate more favorably compared to flies that were kept in a more confined space. In the future, it will be important to gain further insight into which genes regulate injury-induced activation of adult neural progenitor cells and which factors control neuronal differentiation to gain a more detailed understanding of how age and activity impinge on regeneration.
Book chapters on the topic "Stem cells ; Drosophila ; Optic lobes"
Perruchoud, Benjamin, and Boris Egger. "Immunofluorescent Labeling of Neural Stem Cells in the Drosophila Optic Lobe." In Methods in Molecular Biology, 71–78. Totowa, NJ: Humana Press, 2013. http://dx.doi.org/10.1007/978-1-62703-655-9_5.
Full text