Academic literature on the topic 'Stern-Gerlach effect'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stern-Gerlach effect.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Stern-Gerlach effect"
Cook, Richard J. "Optical Stern-Gerlach effect." Physical Review A 35, no. 9 (May 1, 1987): 3844–48. http://dx.doi.org/10.1103/physreva.35.3844.
Full textBatelaan, H., T. J. Gay, and J. J. Schwendiman. "Stern-Gerlach Effect for Electron Beams." Physical Review Letters 79, no. 23 (December 8, 1997): 4517–21. http://dx.doi.org/10.1103/physrevlett.79.4517.
Full textZimmer, O., J. Felber, and O. Schärpf. "Stern-Gerlach effect without magnetic-field gradient." Europhysics Letters (EPL) 53, no. 2 (January 2001): 183–89. http://dx.doi.org/10.1209/epl/i2001-00134-y.
Full textMargalit, Yair, Or Dobkowski, Zhifan Zhou, Omer Amit, Yonathan Japha, Samuel Moukouri, Daniel Rohrlich, et al. "Realization of a complete Stern-Gerlach interferometer: Toward a test of quantum gravity." Science Advances 7, no. 22 (May 2021): eabg2879. http://dx.doi.org/10.1126/sciadv.abg2879.
Full textPorter, J., R. F. Pettifer, and D. R. Leadley. "Direct demonstration of the transverse Stern–Gerlach effect." American Journal of Physics 71, no. 11 (November 2003): 1103–8. http://dx.doi.org/10.1119/1.1574321.
Full textDehmelt, H. "Continuous Stern-Gerlach effect: Principle and idealized apparatus." Proceedings of the National Academy of Sciences 83, no. 8 (April 1, 1986): 2291–94. http://dx.doi.org/10.1073/pnas.83.8.2291.
Full textFrança, H. M., T. W. Marshall, E. Santos, and E. J. Watson. "Possible interference effect in the Stern-Gerlach phenomenon." Physical Review A 46, no. 5 (September 1, 1992): 2265–70. http://dx.doi.org/10.1103/physreva.46.2265.
Full textRutherford, George H., and Rainer Grobe. "Comment on “Stern-Gerlach Effect for Electron Beams”." Physical Review Letters 81, no. 21 (November 23, 1998): 4772. http://dx.doi.org/10.1103/physrevlett.81.4772.
Full textRozmej, P., and R. Arvieu. "Spin - orbit pendulum: the microscopic Stern - Gerlach effect." Journal of Physics B: Atomic, Molecular and Optical Physics 29, no. 7 (April 14, 1996): 1339–49. http://dx.doi.org/10.1088/0953-4075/29/7/015.
Full textSleator, T., T. Pfau, V. Balykin, O. Carnal, and J. Mlynek. "Experimental demonstration of the optical Stern-Gerlach effect." Physical Review Letters 68, no. 13 (March 30, 1992): 1996–99. http://dx.doi.org/10.1103/physrevlett.68.1996.
Full textDissertations / Theses on the topic "Stern-Gerlach effect"
Stenson, Jared R. "Representations for Understanding the Stern-Gerlach Effect." Diss., CLICK HERE for online access, 2005. http://contentdm.lib.byu.edu/ETD/image/etd908.pdf.
Full textTrimeche, Azer. "Décélération Zeeman-Stern Gerlach d’un jet supersonique de particules paramagnétiques par une onde de champ magnétique progressive." Thesis, Paris 11, 2013. http://www.theses.fr/2013PA112330/document.
Full textThis work focuses on the study and implementation of a new technique of deceleration of a supersonic beam of paramagnetic particles using a co-moving progressive wave of magnetic field. This technique relies on a method of slowing based on Stern-Gerlach forces acting on a paramagnetic system in motion in the presence of a co-propagating magnetic field. This highly innovative approach has the advantage of being applicable to a wide range of species and opens up new opportunities. A suitable theoretical approach is followed, that allows for a direct link between theory, programming of experimental parameters, and experimental results in a systematic, rational and predictive manner.This thesis is composed of three parts. The first concerns the calculation of the various Stern Gerlach forces used in our experiments to decelerate the paramagnetic particles. Formulas established in this section are essential for the interpretation of experimental results. The second part is devoted to the experimental device: the creation of the cooled supersonic beam, interaction zone and detection. A separate chapter is devoted to the detailed description of the different setups of coils used to create the magnetic fields necessary to guide and to decelerate the particles of the beam.The third part is devoted to the experimental results and their direct interpretation using the equations of motion in Stern Gerlach forces. Simulations are presented to embody the interpretations. We present results about the deceleration of metastable argon and neon atoms. These results validate the significance of the addition of a uniform magnetic field defining a global adiabatic quantization axis for all the particles in the beam. This realizes the decoupling between the precession of the magnetic moments and Stern Gerlach forces. The results demonstrate the polarization effect of the beam that depends on the direction of the added uniform magnetic field relative to the progressive wave of the magnetic field.Finally, the understanding and control of the dynamics of trapping at a given speed, acceleration and deceleration require decoupling between the transverse and longitudinal effects of the wave. These effects are clearly visible when the added uniform magnetic field limits the transverse effects of the progressive wave of magnetic field. The outlooks for the new Zeeman Stern Gerlach decelerator are numerous. A first result of trapping di-nitrogen metastable at 560m/s is presented and the road is open to decelerate paramagnetic molecules in pulsed supersonic jet. Deceleration free radicals and neutrons are also possible
Hsu, Bailey. "Inhomogeneity-Induced Spin Current in Atomic and Condensed Matter Systems." BYU ScholarsArchive, 2010. https://scholarsarchive.byu.edu/etd/2172.
Full textViaris, de Lesegno Bruno. "Réalisation d'un interféromètre atomique Stern-Gerlach à partir d'un jet supersonique d'argon métastable polarisé et analysé par lasers." Phd thesis, Université Paris-Nord - Paris XIII, 2000. http://tel.archives-ouvertes.fr/tel-00004661.
Full textTrimeche, Azer. "Décélération Zeeman-Stern Gerlach d'un jet supersonique de particules paramagnétiques par une onde de champ magnétique progressive." Phd thesis, Université Paris Sud - Paris XI, 2013. http://tel.archives-ouvertes.fr/tel-00935655.
Full textCollot, Laurent. "Etude théorique et expérimentale des résonances de galerie de microsphères de silice: pièges à photons pour des expériences d'électrodynamique en cavité." Phd thesis, Université Pierre et Marie Curie - Paris VI, 1994. http://tel.archives-ouvertes.fr/tel-00011895.
Full textBook chapters on the topic "Stern-Gerlach effect"
Niinikoski, T. O. "Polarization of Stored Antiprotons by the Stern-Gerlach Effect." In Fundamental Symmetries, 333–37. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4684-5389-8_29.
Full textVogel, Manuel. "Application of the Continuous Stern Gerlach Effect: Magnetic Moments." In Particle Confinement in Penning Traps, 335–45. Cham: Springer International Publishing, 2018. http://dx.doi.org/10.1007/978-3-319-76264-7_22.
Full textKeil, Mark, Shimon Machluf, Yair Margalit, Zhifan Zhou, Omer Amit, Or Dobkowski, Yonathan Japha, et al. "Stern-Gerlach Interferometry with the Atom Chip." In Molecular Beams in Physics and Chemistry, 263–301. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63963-1_14.
Full textBlaum, Klaus, and Günter Werth. "Precision Physics in Penning Traps Using the Continuous Stern-Gerlach Effect." In Molecular Beams in Physics and Chemistry, 247–61. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63963-1_13.
Full textMathevet, R., K. Brodsky, F. Perales, M. Boustimi, B. Viaris de Lesegno, J. Reinhardt, J. Robert, and J. Baudon. "Some New Effects in Atom Stern-Gerlach Interferometry." In Atomic and Molecular Beams, 81–94. Berlin, Heidelberg: Springer Berlin Heidelberg, 2001. http://dx.doi.org/10.1007/978-3-642-56800-8_4.
Full textUlbricht, Hendrik. "Testing Fundamental Physics by Using Levitated Mechanical Systems." In Molecular Beams in Physics and Chemistry, 303–32. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63963-1_15.
Full textHuber, Josef Georg, Horst Schmidt-Böcking, and Bretislav Friedrich. "Walther Gerlach (1889–1979): Precision Physicist, Educator and Research Organizer, Historian of Science." In Molecular Beams in Physics and Chemistry, 119–61. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-63963-1_8.
Full textWerth, Günther, Hartmut Häffner, and Wolfgang Quint. "Continuous Stern–Gerlach Effect on Atomic Ions." In Advances In Atomic, Molecular, and Optical Physics, 191–217. Elsevier, 2002. http://dx.doi.org/10.1016/s1049-250x(02)80009-x.
Full textManton, Nicholas, and Nicholas Mee. "Quantum Mechanics in Three Dimensions." In The Physical World. Oxford University Press, 2017. http://dx.doi.org/10.1093/oso/9780198795933.003.0009.
Full textConference papers on the topic "Stern-Gerlach effect"
Karnieli, Aviv, and Ady Arie. "Stern-Gerlach Effect for Photons." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2018. http://dx.doi.org/10.1364/cleo_qels.2018.fth1h.2.
Full textDerbenev, Ya S. "The stimulated Stern-Gerlach effect in charged particle storage rings." In Polarized Collider Workshop. AIP, 1991. http://dx.doi.org/10.1063/1.40500.
Full textYesharim, Ofir, Aviv Karnieli, Giuseppe Di Domenico, Sivan Trajtenberg-Mills, and Ady Arie. "Experimental Observation of the Stern Gerlach Effect in Nonlinear Optics." In CLEO: QELS_Fundamental Science. Washington, D.C.: OSA, 2021. http://dx.doi.org/10.1364/cleo_qels.2021.fth1j.1.
Full textKarnieli, Aviv, and Ady Arie. "Spectral path entanglement of photons using the all-optical Stern-Gerlach effect." In Quantum Information and Measurement. Washington, D.C.: OSA, 2019. http://dx.doi.org/10.1364/qim.2019.f5a.31.
Full textReports on the topic "Stern-Gerlach effect"
Hsueh, S. Y. Repetitive Stern-Gerlach effect. Office of Scientific and Technical Information (OSTI), March 1990. http://dx.doi.org/10.2172/6988634.
Full textConte, M., R. Parodi, and W. W. MacKay. An overview on the longitudinal Stern-Gerlach effect. Office of Scientific and Technical Information (OSTI), November 1997. http://dx.doi.org/10.2172/573337.
Full text