Academic literature on the topic 'Steroid biosynthesis'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Steroid biosynthesis.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Steroid biosynthesis"

1

Batth, Rituraj, Clément Nicolle, Ilenuta Simina Cuciurean, and Henrik Toft Simonsen. "Biosynthesis and Industrial Production of Androsteroids." Plants 9, no. 9 (September 3, 2020): 1144. http://dx.doi.org/10.3390/plants9091144.

Full text
Abstract:
Steroids are a group of organic compounds that include sex hormones, adrenal cortical hormones, sterols, and phytosterols. In mammals, steroid biosynthesis starts from cholesterol via multiple steps to the final steroid and occurs in the gonads, adrenal glands, and placenta. This highly regulated pathway involves several cytochrome P450, as well as different dehydrogenases and reductases. Steroids in mammals have also been associated with drug production. Steroid pharmaceuticals such as testosterone and progesterone represent the second largest category of marketed medical products. There heterologous production through microbial transformation of phytosterols has gained interest in the last couple of decades. Phytosterols being the plants sterols serve as inexpensive substrates for the production of steroid derivatives. Various genes and biochemical pathways involved in phytosterol degradation have been identified in many Rhodococcus and Mycobacterium species. Apart from an early investigation in mammals, presence of steroids such as androsteroids and progesterone has also been demonstrated in plants. Their main role is linked with growth, development, and reproduction. Even though plants share some chemical features with mammals, the biosynthesis is different, with the first C22 hydroxylation as an example. This is performed by CYP11A1 in mammals and CYP90B1 in plants. Moreover, the entire plant steroid biosynthesis is not fully elucidated. Knowing this pathway could provide new processes for the industrial biotechnological production of steroid hormones in plants.
APA, Harvard, Vancouver, ISO, and other styles
2

Hoshino, Yosuke, and Eric A. Gaucher. "Evolution of bacterial steroid biosynthesis and its impact on eukaryogenesis." Proceedings of the National Academy of Sciences 118, no. 25 (June 15, 2021): e2101276118. http://dx.doi.org/10.1073/pnas.2101276118.

Full text
Abstract:
Steroids are components of the eukaryotic cellular membrane and have indispensable roles in the process of eukaryotic endocytosis by regulating membrane fluidity and permeability. In particular, steroids may have been a structural prerequisite for the acquisition of mitochondria via endocytosis during eukaryogenesis. While eukaryotes are inferred to have evolved from an archaeal lineage, there is little similarity between the eukaryotic and archaeal cellular membranes. As such, the evolution of eukaryotic cellular membranes has limited our understanding of eukaryogenesis. Despite evolving from archaea, the eukaryotic cellular membrane is essentially a fatty acid bacterial-type membrane, which implies a substantial bacterial contribution to the evolution of the eukaryotic cellular membrane. Here, we address the evolution of steroid biosynthesis in eukaryotes by combining ancestral sequence reconstruction and comprehensive phylogenetic analyses of steroid biosynthesis genes. Contrary to the traditional assumption that eukaryotic steroid biosynthesis evolved within eukaryotes, most steroid biosynthesis genes are inferred to be derived from bacteria. In particular, aerobic deltaproteobacteria (myxobacteria) seem to have mediated the transfer of key genes for steroid biosynthesis to eukaryotes. Analyses of resurrected steroid biosynthesis enzymes suggest that the steroid biosynthesis pathway in early eukaryotes may have been similar to the pathway seen in modern plants and algae. These resurrected proteins also experimentally demonstrate that molecular oxygen was required to establish the modern eukaryotic cellular membrane during eukaryogenesis. Our study provides unique insight into relationships between early eukaryotes and other bacteria in addition to the well-known endosymbiosis with alphaproteobacteria.
APA, Harvard, Vancouver, ISO, and other styles
3

Curnow, Kathleen M., Perrin C. White, and Leigh Pascoe. "Adrenal steroid biosynthesis." Current Opinion in Endocrinology and Diabetes 1, no. 1 (January 1994): 10–15. http://dx.doi.org/10.1097/00060793-199400010-00004.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

BLAIS, Catherine, Chantal DAUPHIN-VILLEMANT, Nikolay KOVGANKO, Jean-Pierre GIRAULT, Charles DESCOINS, and René LAFONT. "Evidence for the involvement of 3-oxo-Δ4 intermediates in ecdysteroid biosynthesis." Biochemical Journal 320, no. 2 (December 1, 1996): 413–19. http://dx.doi.org/10.1042/bj3200413.

Full text
Abstract:
Although the involvement of 3-oxo-Δ4 compounds as intermediates in arthropod ecdysteroid biosynthesis has been postulated for a long time, it has not yet been directly demonstrated. In the present study, 3-oxo-Δ4-steroids have been synthesized and incubated in vitro with dissociated moulting gland cells from the crab Carcinus maenas. The tritiated compounds were converted into 3-dehydroecdysone, ecdysone and/or 25-deoxyecdysone, i.e. final ecdysteroids. This means that the 3-oxo-Δ4 compounds had undergone a 5β-reduction, to give the 5β-conformation of ecdysteroids. Our results suggest that the 3-oxo-Δ4-steroid 4,7-cholestadien-14α-ol-3,6-dione may be an intermediate in the biosynthetic pathway. The 5β-reduction reaction involves a cytosolic enzyme which requires NADPH as electron donor and seems specific for 3-oxo-Δ4 substrates. This reaction was the most active in crab Y-organs, as compared with other tissues. The characteristics of the 5β-reductase (subcellular localization, substrate and cofactor requirements) appear similar to those of the vertebrate 3-oxo-Δ4-steroid 5β-reductase involved in steroid hormone catabolism and bile acid biosynthesis.
APA, Harvard, Vancouver, ISO, and other styles
5

Henriques, Rachael G., Theodore S. Widlanski, Tingsen Xu, and J. David Lambeth. "Inhibition of steroid biosynthesis by steroid sulfonates." Journal of the American Chemical Society 114, no. 18 (August 1992): 7311–13. http://dx.doi.org/10.1021/ja00044a062.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Stocco, Douglas M. "106 Randel Lecture: The history of the discovery of the Steroidogenic Acute Regulatory (StAR) Protein." Journal of Animal Science 97, Supplement_1 (July 2019): 39. http://dx.doi.org/10.1093/jas/skz053.088.

Full text
Abstract:
Abstract This two-part presentation regarding acute regulation of steroid biosynthesis documents discovery of the StAR protein and resolves controversy regarding mitochondrial cholesterol transport. The acute regulation of steroid biosynthesis was known to require de novo synthesis of a regulator protein to mediate the transfer of cholesterol, the substrate for steroids, from the outer to the inner mitochondrial membrane where it was converted to pregnenolone by the cytochrome P450 side chain cleavage enzyme. We discovered a novel protein that was tightly correlated with steroid biosynthesis and had the requisite characteristics for the putative acute regulator of cholesterol transfer for steroid synthesis. Further studies confirmed that StAR protein is an indispensable component in the process of mitochondrial uptake of the cholesterol substrate for steroidogenesis. The translocator protein (TSPO) is a mitochondrial outer membrane protein suggested to import cholesterol to the inner mitochondrial membrane. However, it was demonstrated in vivo in Leydig cell specific TSPO conditional knockout mice that TSPO was not required for testosterone production or fertility. Similarly, global TSPO knockout (TSPO/-) mice were viable and fertile with fecundity equivalent to TSPO floxed (TSPOfl/fl) controls. Adrenal and gonadal steroidogenesis did not differ between TSPOfl/ fl and TSPO-/- mice. In vitro use of different steroidogenic cell line models (MA-10, MLTC, Y-1, H295R and R2C) demonstrated that siRNA-knockdown of TSPO did not affect steroidogenesis. Also, CRISPR/ Cas9-mediated TSPO deletion did not affect MA-10 cell steroidogenesis. These results directly 1) refute the suggestion that TSPO is indispensable for viability and steroid hormone biosynthesis; and, 2) substantiate the primal role of the StAR protein as the rate limiting factor in steroid hormone biosynthesis.
APA, Harvard, Vancouver, ISO, and other styles
7

Sharifi, Nima, and Richard J. Auchus. "Steroid biosynthesis and prostate cancer." Steroids 77, no. 7 (June 2012): 719–26. http://dx.doi.org/10.1016/j.steroids.2012.03.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Li, Jiehan, Vassilios Papadopoulos, and Veera Vihma. "Steroid biosynthesis in adipose tissue." Steroids 103 (November 2015): 89–104. http://dx.doi.org/10.1016/j.steroids.2015.03.016.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bourne, Anthony R., and Paul Licht. "Steroid biosynthesis in turtle testes." Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 81, no. 3 (1985): 793–96. http://dx.doi.org/10.1016/0305-0491(85)90407-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Ivanchina, Natalia V., Vladimir I. Gorbach, Anatoly I. Kalinovsky, Alla A. Kicha, Timofey V. Malyarenko, Pavel S. Dmitrenok, and Valentin A. Stonik. "Synthesis of Deuterium-Labeled Steroid 3,6-Diols." Natural Product Communications 12, no. 9 (September 2017): 1934578X1701200. http://dx.doi.org/10.1177/1934578x1701200908.

Full text
Abstract:
A facile synthesis of a set of deuterium-labeled steroid 3,6-diols with different steroid A/B ring fusion, unsaturations, and configurations of hydroxyl groups at C-3 and C-6 is described. Reduction and deuteration, based on deuterium-exchange of the obtained the cholest-4-ene-3,6-dione from cholesterol using sodium borodeuteride and deuterium water, were used. The obtained steroid diols are intended to be used as precursors in the studies on biosynthesis of some marine polar steroids.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Steroid biosynthesis"

1

Boehm, Haydn M. "Tandem radical cascade cyclisation reactions in steroid synthesis." Thesis, University of Nottingham, 2001. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.364673.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Neunzig, Jens [Verfasser], and Rita [Akademischer Betreuer] Bernhardt. "The role of sulfonated steroids and parmaceutical compouds in steroid hormone biosynthesis / Jens Neunzig. Betreuer: Rita Bernhardt." Saarbrücken : Saarländische Universitäts- und Landesbibliothek, 2014. http://d-nb.info/1064305865/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Depledge, Nigel William. "Design of inhibitors for two oxygen-requiring metalloenzymes in steroid biosynthesis." Thesis, University of Southampton, 1997. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.242299.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Lucki, Natasha Chrystman. "Characterization of the role of acid ceramidase in adrenocortical steroid hormone biosynthesis." Diss., Georgia Institute of Technology, 2011. http://hdl.handle.net/1853/42804.

Full text
Abstract:
Sphingolipids modulate multiple cellular functions, including steroid hormone biosynthesis. Sphingosine is an antagonist ligand for the nuclear receptor steroidogenic factor 1 (SF-1), which is the primary transcriptional regulator of most steroidogenic genes. Furthermore, sphingosine-dependent repression of SF-1 function is dependent on the expression of acid ceramidase (ASAH1), an enzyme that forms sphingosine. Based on these data, I hypothesized that ACTH/cAMP signaling regulates ASAH1 function at both transcriptional and post-transcriptional levels. In addition, because SF-1 is predominantly a nuclear protein, I postulated that ASAH1 modulates SF-1 function and, therefore, steroidogenic gene expression by controlling the nuclear concentrations of SPH. To test these hypotheses, I first examined the effect of chronic ACTH/cAMP signaling on the transcription of the ASAH1 gene. Next, the functional significance of ASAH1 expression in adrenocortical cells was probed by generating an ASAH1-knockdown cell line. I subsequently characterized the role of ASAH1 as a transcriptional nuclear receptor coregulator. Finally, I defined the role of sphingosine-1-phosphate, a bi-product of ASAH1 activity, in the acute phase of cortisol biosynthesis. Using a variety of experimental approaches, I identified cAMP response element binding protein as an essential transcriptional activator of the ASAH1 gene. Analysis of adrenocortical cells lacking ASAH1 revealed that ASAH1 is a global regulator of steroidogenic capacity. Furthermore, I identified ASAH1 as a nuclear protein and defined the molecular determinants of the interaction between ASAH1 and SF-1. Collectively, this body of work establishes the integral role of ASAH1 in the regulation of ACTH-dependent adrenocortical cortisol biosynthesis.
APA, Harvard, Vancouver, ISO, and other styles
5

Boerboom, Derek. "Gene regulation of prostaglandin and steroid hormone biosynthesis in equine preovulatory follicles." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 2000. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape2/PQDD_0021/NQ55454.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rone, Malena Beth. "Role of protein-protein interactions in protein import, cholesterol transport and steroid biosynthesis." Connect to Electronic Thesis (CONTENTdm), 2010. http://worldcat.org/oclc/642829125/viewonline.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Heerdegen, Desirée [Verfasser], and Franz [Akademischer Betreuer] Bracher. "Synthesis of steroid-like analogues of cholesterol biosynthesis inhibitors / Desirée Heerdegen ; Betreuer: Franz Bracher." München : Universitätsbibliothek der Ludwig-Maximilians-Universität, 2020. http://d-nb.info/1219852112/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Liu, Hong. "Molecular isolation and characterization of Macaca fascicularis hydroxysteroid dehydrogenases involved in sex steroid biosynthesis and metabolism." Thesis, Université Laval, 2007. http://www.theses.ulaval.ca/2007/24499/24499.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Reitemeier, Susanne. "Morphologische und immunzytochemische Charakterisierung der Gonaden männlicher Papageienvögel." Doctoral thesis, Universitätsbibliothek Leipzig, 2014. http://nbn-resolving.de/urn:nbn:de:bsz:15-qucosa-133392.

Full text
Abstract:
Gefährdete Spezies in Menschenobhut zu reproduzieren und zu erhalten soll dem weltweiten Rückgang zahlreicher Papageienarten entgegenwirken. Der Erfolg solcher Zuchtprogramme wird unter anderem durch begrenzte Kenntnisse über physiologische und pathologische Vorgänge im Fortpflanzungssystem dieser Vogelordnung erschwert. Ziel der vorliegenden Arbeit war die Etablierung aussagekräftiger Parameter zur Einordnung des Reproduktionsstatus von männlichen Papageienvögeln. Dabei wurde ein Probenumfang fixierter, männlicher Reproduktionsorgane acht verschiedener Gattungen mit standardisierten histologischen und immunzytochemischen Methoden untersucht. Im Vordergrund stand die morphologische Beurteilung der untersuchten Gonaden im Bezug auf Fortpflanzungsaktivität und -status. Gleichzeitig sollten die immunzytochemischen Analysen Aufschluss über die beteiligten Hormone und Enzyme geben. Für die Etablierung vogel-spezifischer Marker wurde als Vertreter der Psittaciformes der Wellensittich (Melopsittacus undulatus, n=45) als Modellspezies ausgewählt. 15 verschiedene Antikörper aus der Gruppe der Steroidrezeptoren, steroidogenen Enzyme, Relaxinpeptide und Proliferationsmarker wurden an dieser Art getestet. Anschließend erfolgte der Transfer der erarbeiteten Methodik auf sieben weitere Papageiengattungen (Nymphicus, Eolophus, Cacatua, Psittacus, Amazona, Ara, Cyanopsitta). Anhand der Histologie konnten alle untersuchten Gonaden den drei verschiedenen Reproduktionsstadien aktiv, intermediär und inaktiv zugeordnet werden. Hierbei wurden Kriterien wie die Ausdehnung von Samenkanälchen und Interstitium, Morphologie des Keimepithels, Vorhandensein von Lipofuszin in den Samenkanälchen sowie die Teilungsaktivität von Keimzellen herangezogen. Aktive Hoden zeigen ausgedehnte Tubuli und ein schmales Interstitium, ein Keimepithel mit allen Keimzellstadien, wenig Lipofuszin und eine hohe Teilungsaktivität bei den Keimzellen. Inaktive Hoden hingegen besitzen schmale Tubuli und ein breites Interstitium, ein Keimepithel bestehend aus Sertoli-Zellen und Spermatogonien, Massen an Lipofuszin im Lumen der Samenkanälchen und eine geringe Proliferationsrate der Keimzellen. 14 der 15 getesteten Marker konnten mittels Immunzytochemie erfolgreich am Wellensittich etabliert werden. Hinsichtlich der Einordnung des Reproduktionsstatus war in erster Linie ein Absinken der steroidogenen Enzymaktivität von 3β-Hydroxysteroid-Dehydrogenase (HSD) und 17β-HSD-2 bei sexuell inaktiven gegenüber aktiven und intermediären Tieren zu verzeichnen. Auch der Androgenrezeptor (AR) wurde im Ruhestadium nicht mehr exprimiert. Die übrigen Steroidrezeptoren, steroidogenen Enzyme und Relaxinpeptide zeigten variable zelluläre Verteilungsmuster, die keine klare Aussage zum Fortpflanzungsstatus zuließen. Dennoch konnten anhand der Lokalisation dieser Faktoren in Keimzellen, somatischen Zellen des Hodens und Zellen des Nebenhodenepithels funktionelle Gesichtspunkte geklärt werden. Beispielsweise zeigte die Koexistenz des Östrogenrezeptors ERα und des steroidogenen Enzyms Aromatase in Hoden und Nebenhoden, dass nicht nur androgene Einflüsse in die Steuerung der Gonaden involviert sind. Auch der erstmalige Nachweis von Relaxin, Relaxin-like factor und ihren Rezeptoren in testikulären und epididymalen Zellen deutet darauf hin, dass diese die Funktion der beim Vogel nicht vorhandenen Prostata übernehmen. Zudem ist der Transfer der etablierten immunzytochemischen Methoden auf sieben weitere Papageiengattungen (Nymphicus, Eolophus, Cacatua, Psittacus, Amazona, Ara, Cyanopsitta) gelungen. Auch hier konnten 14 Marker in verschiedenen Zellen von Hoden und Nebenhoden sichtbar gemacht werden. Die teilweise heterogene Verteilung der Marker in verschiedenen Zelltypen war eindeutig spezies-abhängig. Dies hat gezeigt, dass die beim Wellensittich mittels Immunzytochemie erzielten Resultate nur eingeschränkt auf andere Papageienspezies übertragbar sind. Entscheidend für die Beurteilung des Reproduktionsstatus ist daher die individuelle Auswahl der Marker in Abhängigkeit von der untersuchten Spezies. Die Resultate dieser Studie liefern die Grundlage für weitere Forschungsansätze in der Reproduktionsdiagnostik von Papageienvögeln. Zum einen können die etablierten Marker in Analyse-Systemen zum Einsatz kommen, die nicht-invasiv gewonnene Medien (z. B. Faezes) untersuchen und vor allem in Zuchterhaltungsprogrammen bedrohter Arten hilfreich sind. Zum anderen ist die immunzytochemische Untersuchung von Hodenbioptaten pathologisch veränderter Hoden (z. B. Tumoren oder Entzündungen) als eine sinnvolle Ergänzung der Diagnostik von Infertilität bei männlichen Psittaziden anzusehen.
APA, Harvard, Vancouver, ISO, and other styles
10

Taton, Maryse. "Mecanisme et inhibition rationnelle d'enzymes de la biosynthese des phytosterols." Université Louis Pasteur (Strasbourg) (1971-2008), 1986. http://www.theses.fr/1986STR13224.

Full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Steroid biosynthesis"

1

Figueiredo, Carlos Amada, and Luiza Cação Garces. Steroids: Biosynthesis, functions, and health implications. New York: Nova biomedical/Nova Science Publishers, Inc., 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

Kato, T., W. Krämer, K. H. Kuck, D. M. Norris, and H. Scheinpflug, eds. Sterol Biosynthesis Inhibitors and Anti-Feeding Compounds. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-69790-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

I, Mason J., ed. Genetics of steroid biosynthesis and function. London: Taylor & Francis, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Mason, J. I. Genetics of Steroid Biosynthesis and Function (Moderngenetics). CRC, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rižner, Tea Lanišnik, Walter Jäger, and Csilla Özvegy-Laczka, eds. Relevance of Steroid Biosynthesis, Metabolism and Transport in Pathophysiology and Drug Discovery. Frontiers Media SA, 2019. http://dx.doi.org/10.3389/978-2-88945-887-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Patisaul, Heather B., and Scott M. Belcher. Receptor and Enzyme Mechanisms as Targets for Endocrine Disruptors. Oxford University Press, 2017. http://dx.doi.org/10.1093/acprof:oso/9780199935734.003.0005.

Full text
Abstract:
In this chapter, the current understanding of the mechanisms of endocrine disruption on the brain and nervous system are presented. Because the overwhelming majority of mechanistic studies on EDCs have focused on the actions mediated by nuclear hormone receptors, this mechanisms is described in detail. The chapter also discusses the classic transcriptional mechanisms of steroid action and the impact of EDCs on rapid signaling (non-genomic) mechanisms. It presents an overview of the enzymes and pathways involved in the biosynthesis of steroid hormones, which are critical to proper functioning of the HPA and HPG axis, and the neuroactive steroids synthesized and active in the mammalian brain. The potential for EDCs to alter metabolic enzymes, with a focus on possible targets in the metabolic blood-brain barrier, is presented as a potential, though largely unexplored, mode of EDC action in the brain.
APA, Harvard, Vancouver, ISO, and other styles
7

Sarphare, Geeta, Ryan Lee, and Elaine Tierney. Smith-Lemli-Opitz Syndrome and Role of Cholesterol in Autism. Oxford University Press, 2013. http://dx.doi.org/10.1093/med/9780199744312.003.0012.

Full text
Abstract:
Cholesterol is manufactured throughout the body, but predominantly in the liver, and is essential for many metabolic processes. Cholesterol plays a critical role in forming membranes and myelin sheaths and is a precursor molecule for the synthesis of steroid hormones, neuroactive steroids, oxysterols, and vitamin D. It is also essential in the production of bile acids, which in turn helps the body absorb cholesterol and fat-soluble vitamins. Cholesterol is essential in embryonic and fetal development and is also critical in regulating lipid raft processes such as signaling and trafficking (Korade & Kenworthy, 2008). Cholesterol biosynthesis begins with the formation of squalene and ends with the reduction of 7-dehydrocholesterol (7DHC) into cholesterol by the enzyme 7DHC reductase, and then its spontaneous isomer, 8-dehydrocholesterol (8DHC). Smith-Lemli-Opitz syndrome (SLOS, Mendelian Inheritance in Man #270400) is an autosomal recessive disorder due to an inborn error of cholesterol biosynthesis (Elias et al., 1993; Irons, Elias, Salen, Tint, & Batta, 1993; Tint et al., 1994). Smith-Lemli-Opitz syndrome has an estimated incidence among individuals of European ancestry in Canada and the United States of 1 in 15,000 to 1 in 60,000 births (Bzdúch, Behulova, & Skodova, 2000; Lowry & Yong, 1980; Opitz, 1999; Ryan, Bartlett, Clayton, Eaton, Mills, Donnai, & Burn, 1998) and a carrier frequency of 1 in 30 to 1 in 50 (Nowaczyk & Waye, 2001).
APA, Harvard, Vancouver, ISO, and other styles
8

1949-, Berg D., and Plempel M. 1930-, eds. Sterol biosynthesis inhibitors: Pharmaceutical and agrochemical aspects. Chichester, Eng: Ellis Horwood, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

1946-, Kato T., ed. Sterol biosynthesis inhibitors and anti-feeding compounds. Berlin: Springer-Verlag, 1986.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

(Editor), M. Plempel, ed. Sterol Biosynthesis Inhibitors: Pharmaceutical and Agrochemical Aspects (Ellis Harwood Series in Biomedicine). Vch Pub, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Steroid biosynthesis"

1

Bernhardt, Rita, and Michael R. Waterman. "Cytochrome P450 and Steroid Hormone Biosynthesis." In The Ubiquitous Roles of Cytochrome P450 Proteins, 361–96. Chichester, UK: John Wiley & Sons, Ltd, 2007. http://dx.doi.org/10.1002/9780470028155.ch12.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

McCague, R. "Inhibitors of steroid hormone biosynthesis and action." In The Chemistry of Antitumour Agents, 234–60. Dordrecht: Springer Netherlands, 1990. http://dx.doi.org/10.1007/978-94-009-0397-5_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Schütte, Horst-Robert. "Secondary Plant Substances Aspects of Steroid Biosynthesis." In Progress in Botany, 117–36. Berlin, Heidelberg: Springer Berlin Heidelberg, 1987. http://dx.doi.org/10.1007/978-3-642-73023-8_8.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Szego, Clara M. "Steroid Interaction in the in vitro Biosynthesis of Steroid-Protein Complexes." In Ciba Foundation Symposium - Hormones in Blood (Colloquia on Endocrinology, Vol. 11), 286–308. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470719046.ch17.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Armstrong, D. T., S. A. J. Daniel, and R. E. Gore-Langton. "Intra-Ovarian Actions of Steroids in Regulation of Follicular Steroid Biosynthesis." In Endocrinology and Physiology of Reproduction, 177–95. Boston, MA: Springer US, 1987. http://dx.doi.org/10.1007/978-1-4899-1971-7_15.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Parkinson, J. F. "Nitric Oxide Synthase Isoforms and Nitric Oxide Biosynthesis." In Nitric Oxide, Cytochromes P450, and Sexual Steroid Hormones, 1–25. Berlin, Heidelberg: Springer Berlin Heidelberg, 1997. http://dx.doi.org/10.1007/978-3-662-03503-0_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Dominguez, Oscar V., Leo T. Samuels, and Robert A. Huseby. "Steroid Biosynthesis in Induced Testicular Interstitial Cell Tumours of Mice." In Novartis Foundation Symposia, 231–38. Chichester, UK: John Wiley & Sons, Ltd., 2008. http://dx.doi.org/10.1002/9780470719084.ch18.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Fujiyama-Nakamura, Sally, Kaoru Yamagata, and Shigeaki Kato. "Hormonal Repression of miRNA Biosynthesis Through a Nuclear Steroid Hormone Receptor." In Advances in Experimental Medicine and Biology, 43–55. New York, NY: Springer US, 2010. http://dx.doi.org/10.1007/978-1-4419-7823-3_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Papadopoulos, Vassilios, A. Shane Brown, Branislav Vidic, Martine Garnier, Stephen O. Ogwuegbu, Hakima Amri, and Noureddine Boujrad. "Diazepam-Binding Inhibitor and Peripheral Benzodiazepine Receptors: Role in Steroid Biosynthesis." In Cellular and Molecular Regulation of Testicular Cells, 337–56. New York, NY: Springer New York, 1996. http://dx.doi.org/10.1007/978-1-4612-2374-0_22.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Mardanyan, Sona, and Yelizaveta Sargisova. "Studies on Protein Electron Carrier Complexes Adrenodoxin Reductase - Adrenodoxin Complex in Steroid Biosynthesis." In Frontiers of Multifunctional Nanosystems, 251–64. Dordrecht: Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-010-0341-4_18.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Steroid biosynthesis"

1

Bhattarai, Asmita, and Girish C. Shukla. "Abstract 776: Posttransriptional control of steroid biosynthesis pathway in prostate cancer." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.sabcs18-776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Bhattarai, Asmita, and Girish C. Shukla. "Abstract 776: Posttransriptional control of steroid biosynthesis pathway in prostate cancer." In Proceedings: AACR Annual Meeting 2019; March 29-April 3, 2019; Atlanta, GA. American Association for Cancer Research, 2019. http://dx.doi.org/10.1158/1538-7445.am2019-776.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Allen, Hannah, Li Rebekah Feng, and Leorey Saligan. "Abstract 28: Steroid Hormone Biosynthesis Metabolism Is Associated with Fatigue Related to Androgen Deprivation Therapy for Prostate Cancer." In Abstracts: 9th Annual Symposium on Global Cancer Research; Global Cancer Research and Control: Looking Back and Charting a Path Forward; March 10-11, 2021. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7755.asgcr21-28.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Karimaa, Mari, Henna Kettunen, Meri Ramela, Suvi Mansikka-Savolainen, Marcin Chrusciel, Outi Simola, Päivi Taavitsainen, et al. "Abstract 1250: ODM-208, a novel, small-molecule CYP11A1 inhibitor, demonstrates strong inhibition of steroid biosynthesis and antitumor activity in castration-resistant prostate cancer (CRPC) model." In Proceedings: AACR Annual Meeting 2021; April 10-15, 2021 and May 17-21, 2021; Philadelphia, PA. American Association for Cancer Research, 2021. http://dx.doi.org/10.1158/1538-7445.am2021-1250.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kuo, Cheng-Deng, En-Tung Tsai, Ming-Che Chang, Jin-Yi Wu, Hui-Fen Liao, and Yu-Jen Chen. "N-Farnesyl-norcantharimide Inhibits Progression of Human Leukemic Jurkat T Cells Through Up-regulation of Tumor Suppressor Gene and Down-regulation of Steroid Biosynthesis, Metabolic Pathways, and Fatty Acid Metabolism." In 2nd International Electronic Conference on Medicinal Chemistry. Basel, Switzerland: MDPI, 2016. http://dx.doi.org/10.3390/ecmc-2-a007.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Gabitova, Linara, Diana Restifo, Elizabeth Handorf, Kathy Q. Cai, and Igor A. Astsaturov. "Abstract 26: Sensitive step in cholesterol biosynthesis reveals role for sterol metabolites in regulating growth of EGFR/KRAS-dependent tumors." In Proceedings: AACR 107th Annual Meeting 2016; April 16-20, 2016; New Orleans, LA. American Association for Cancer Research, 2016. http://dx.doi.org/10.1158/1538-7445.am2016-26.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography