Dissertations / Theses on the topic 'Stick-slip'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Stick-slip.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Hack, Thorsten. "Stick-slip piezoelectric actuators." Thesis, University of Cambridge, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.624403.
Full textМанько, Наталія Миколаївна, Наталья Николаевна Манько, and Nataliia Mykolaivna Manko. "Stick-slip mode of boundary friction." Thesis, Сумський державний університет, 2013. http://essuir.sumdu.edu.ua/handle/123456789/33545.
Full textBreguet, Jean-Marc Breguet Jean-Marc. "Actionneurs "stick and slip" pour micro-manipulateurs /." [S.l.] : [s.n.], 1998. http://library.epfl.ch/theses/?display=detail&nr=1756.
Full textSmith, Jonathan Hurndall. "Stick-slip vibration and is constitutive laws." Thesis, University of Cambridge, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.304168.
Full textMak, Hong-man Herman, and 麥匡文. "Effective slip due to Stokes flow through channels with patterned stick-slip walls." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2011. http://hub.hku.hk/bib/B47153970.
Full textpublished_or_final_version
Mechanical Engineering
Master
Master of Philosophy
Grunewald, Natalie. "Mathematische Analyse einer Stick-Slip-Bewegung in zufälligem Medium." Bonn : Mathematisches Institut der Universität, 2004. http://catalog.hathitrust.org/api/volumes/oclc/62767423.html.
Full textDalbe, Marie-Julie. "Instabilité de Stick-Slip lors du pelage d’un adhésif." Thesis, Lyon 1, 2014. http://www.theses.fr/2014LYO10236.
Full textThis thesis presents a mainly experimental study of the stick-slip instability during the peeling of adhesive tape. We developed different experimental set-ups, allowing us to observe directly the jerky dynamics during peeling. The experiments are conducted at an imposed velocity and different geometries : the adhesive is peeled directly from a roller, or from a flat substrate at a fixed angle. On the one hand, we highlight the existence of strong dynamical effects, which cannot be understood with the existing theoretical models. On the other hand, we show the crucial effect of the peeling angle on the instability, which is strongly reduced at large angles (both its amplitude and range of existence decrease). Besides, a new theoretical approach, taking into account the ribbon inertia, can allow us to understand partially the experimental observations. Finally, we show that the stick-slip instability is multi-scale : a secondary instability can occur at spatial and temporal scales smaller than the usually observed stick-slip. While the main instability is due to variations of the stretching elastic energy, this secondary instability is driven by the release of the bending energy stored in the ribbon
Tariku, Fitsum. "Simulation of dynamic mechanical systems with stick-slip friction." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/tape17/PQDD_0011/MQ38415.pdf.
Full textVerwijs, Marinus Jacobus. "Stick-slip in powder flow a quest for coherence length /." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0013049.
Full textBaptist, Olu. "Powder cohesion and stick-slip failure in a shear cell." Thesis, University of Surrey, 2007. http://epubs.surrey.ac.uk/843467/.
Full textDarby, A. P. "Active control of flexible structures using inertial stick-slip actuators." Thesis, University of Cambridge, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.598276.
Full textAndersson, Jacob, Fredrik Danielsson, and Wilhelm Löwen. "Screaming screw tightenings." Thesis, KTH, Maskinkonstruktion (Inst.), 2017. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-209544.
Full textDenna rapport är ett kandidatexamensarbete i maskinkonstruktion där skrikande skruvdragningar undersöks. Undersökningen inleddes med en förstudie i skruvens mekanik och åtdragningsprocessen. Stick-slip-fenomenet har även undersökts i förstudien. Vidare har intervjuer gjorts med personer som har erfarenhet inom området på Scania och Atlas Copco. Dessa intervjuer stärker teorin om att skrikfenomenet orsakas av stick-slip. Egenfrekvenser för ett skruvförband med dimensionerna M8 x 60 mm för skruven och M8 M6M för muttern togs fram genom en FEM-analys i Ansys. Detta för att i framtida praktiska tester kunna jämföra dessa frekvenser med uppmätta skrik. Den ursprungliga hypotesen om att stick-slip orsakar skrik bedömdes rimlig då egenfrekvensen för skruvförbandets torsionssvängning faller inom det hörbara intervallet.
Arcieri, Michael Angel Santos. "Controle de vibrações mecânicas tipo "stick slip" em colunas de perfuração." Pós-Graduação em Engenharia Elétrica, 2013. https://ri.ufs.br/handle/riufs/5011.
Full textVibrações mecânicas são inevitáveis nas operações de perfuração. Vibrações torcionais stick-slip são vibrações que ocorrem em colunas de perfuração, as quais são produzidas pelas variações periódicas de torque e caracterizadas por grandes oscilações da velocidade da broca. Estas vibrações são prejudiciais, mais pela característica cíclica do fenômeno que pela amplitude da mesma, podendo originar fadiga da tubulação, falhas nos componentes da coluna de perfuração, deformações nas paredes do poço, desgaste excessivo da broca, baixa taxa de penetração e, inclusive, colapso do processo de perfuração. A frequência destas oscilações indesejadas pode ser reduzida pela aplicação de técnicas de controle automático. O objetivo deste trabalho é avaliar, mediante simulações numéricas, a aplicação de técnicas de controle convencional, como o controle proporcional-integral (PI), e não linear, como o controle por modos deslizantes (SMC) e o controle por linearização entrada-saída (IOLC) para eliminar a presença de oscilações stick-slip em colunas de perfuração. Os controladores são desenvolvidos principalmente para manter constante a velocidade do sistema de rotação, mediante a manipulação do torque do motor, para assim controlar inferencialmente a velocidade da broca, fornecendo desta maneira condições ótimas de operação, além de preservar a estabilidade do sistema. Resultados das simulações, usando modelos torcionais de uma coluna de perfuração de dois graus de liberdade (2-DOF) e de quatro graus de liberdade (4-DOF), mostram o desempenho dos sistemas de controle propostos, os quais são analisados e comparados qualitativamente.
Suetti, André Garcia Lima. "Estudo do fenômeno "stick-slip" aplicado às vibrações de freios automotivos." [s.n.], 2011. http://repositorio.unicamp.br/jspui/handle/REPOSIP/265209.
Full textDissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Mecânica
Made available in DSpace on 2018-08-19T13:48:38Z (GMT). No. of bitstreams: 1 Suetti_AndreGarciaLima_M.pdf: 20585864 bytes, checksum: 84c85d26b6df77562a52c8ca3aa2aedf (MD5) Previous issue date: 2011
Resumo: O interesse da indústria automobilística em projetar freios menos ruidosos vem incentivando pesquisas na área de acústica e vibração. A compreensão de um dos principais fenômenos de excitação de vibração em sistemas com atrito, o stick-slip, é de grande importância para o aprofundamento desses estudos, que muitas vezes não consideram uma fonte de excitação bem definida e realimentada, recorrendo a excitações impulsivas ou com frequências aleatórias. O stick-slip é uma vibração auto-excitada que pode ocorrer em um corpo fixo que se atrita com outro corpo que está em movimento, fundamentada na diferença entre o coeficiente de atrito estático e dinâmico. Tendo em vista a aplicação da excitação por stick-slip em vibrações em sistemas de freio, equacionamentos analíticos são propostos nesse trabalho tendo a dificuldade incrementada gradualmente. Um estudo dos efeitos do amortecimento em sistemas com stick-slip é também proposto, apresentando um comportamento que difere de sistemas mecânicos sem realimentação. Com o objetivo de se avaliar esses métodos, realizam-se simulações numéricas e um experimento, que se utiliza de materiais de atrito e disco empregados em freios. Os resultados demonstram a compatibilidade das simulações numéricas e os dados obtidos experimentalmente, o que comprova que os métodos podem ser usados na simulação do problema
Abstract: Interest of the automotive industry in designing quieter brakes has encouraged the researches in the fields of acoustics and vibration. Understanding one of the main phenomena of vibration excitation in systems with friction, stick-slip, is crucial to a deeper study. Many a time these studies do not consider a well-defined and fed back source, falling back on impulsive and random excitations. The stick -slip is a self-excited vibration that may occur when a static body rubs against a dynamic one. It is based on the difference between the static and dynamic friction coefficients. Considering the stick-slip excitation in the braking system vibration, analytical equations with continuous incremental difficulties are proposed herein. A study of the effects of damping in stick -slip systems is also proposed, presenting a kind of behavior that is different from that of mechanical systems without feedback. In order to evaluate these methods, an experimental or sometimes numerical simulation is conducted using friction material and discs used in braking systems. The results are in agreement with the experimental data, proving that the methods can be used in simulations of problems
Mestrado
Mecanica dos Sólidos e Projeto Mecanico
Mestre em Engenharia Mecânica
Manko, N. N., and I. A. Lyashenko. "Stochastic Oscillations at Stick-Slip Motion in the Boundary Friction Regime." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35148.
Full textDe, Zotti Vincent. "Instabilité de pelage d'un ruban adhésif : effet de l'inertie sur la dynamique multi-échelle du front de détachement." Thesis, Lyon, 2018. http://www.theses.fr/2018LYSEN012/document.
Full textThis thesis presents the study of the unstable dynamics of the detachment front of an adhesive tape peeled at constant velocity from a flat surface. We could specifically highlight the essential role of the ribbon inertia on this instability.On one hand, we have performed an experimental study of the different front dynamics at macroscopic scales, observed by fast imaging, as a function of the peeling velocity and peeling angle. We could find a novel dynamical regime with sinusoidal oscillations of the detachment front velocity at the transition between regular peeling and stick-slip motion. A theoretical model taking into account the ribbon inertia, and its numerical resolution allow to explain the different dynamics observed, and furthermore, the characteristics of those velocity oscillations.On the other hand, the recently discovered microscopic stick-slip instability has also been studied. We have characterized the amplitude of the corresponding slips as a function of the peeling velocity and peeling angle, but also, as a function of the ribbon properties (mass and bending modulus). We show that a dynamical model coupling bending and kinetic energy of the ribbon can explain its evolution with these different parameters
Fernandes, Raul de Sousa. "Modelagem e simulação do processo de aparafusamento/." reponame:Biblioteca Digital de Teses e Dissertações da FEI, 2018. https://doi.org/10.31414/EM.2018.D.130285.
Full textWu, Wendy Xiaohui. "The corrugation of railway track." Thesis, London South Bank University, 1997. https://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.245157.
Full textHeadings, Leon Mark. "Modeling, characterization, and design of smart material driven stick-slip actuation mechanisms." Connect to resource, 2005. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1141700440.
Full textHamilton, Tony. "An analogue model for the simulation of earthquake rupture and stick-slip." Thesis, University of Ulster, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.326325.
Full textLyashenko, I. A., Олексій Віталійович Хоменко, Алексей Витальевич Хоменко, Oleksii Vitaliiovych Khomenko, Антон Миколайович Заскока, Антон Николаевич Заскока, Anton Mykolaiovych Zaskoka, and K. S. Zhmaka. "Hysteresis Phenomena in the Stick-Slip Motion at the Boundary Friction Mode." Thesis, Sumy State University, 2013. http://essuir.sumdu.edu.ua/handle/123456789/35072.
Full textSchneck, Christian [Verfasser]. "Simulation von Stick-Slip-Effekten an einem elastischen Dichtringmodell im Mehrkörpersystem / Christian Schneck." Magdeburg : Universitätsbibliothek Otto-von-Guericke-Universität, 2018. http://d-nb.info/1220035165/34.
Full textHatipogullari, Metin. "Modelling of contact lines on heterogeneous substrates :stick-slip and contact angle hysteresis." Doctoral thesis, Universite Libre de Bruxelles, 2020. https://dipot.ulb.ac.be/dspace/bitstream/2013/304847/5/contratMH.pdf.
Full textDoctorat en Sciences de l'ingénieur et technologie
info:eu-repo/semantics/nonPublished
Wu-Bavouzet, Fangnien. "Friction sur surfaces à plots." Paris 6, 2008. http://www.theses.fr/2008PA066383.
Full textBoone, Jacob Dee. "Design, Construction and Evaluation of Universal Friction Tester." OpenSIUC, 2010. https://opensiuc.lib.siu.edu/theses/307.
Full textEdeler, Christoph [Verfasser]. "Modellierung und Validierung der Krafterzeugung mit Stick-Slip-Antrieben für nanorobotische Anwendungen / Christoph Edeler." München : Verlag Dr. Hut, 2011. http://d-nb.info/1018982469/34.
Full textAdjémian, Florence. "Stick-slip et transition de broutage dans les essais triaxiaux sur billes de verre." Châtenay-Malabry, Ecole centrale de Paris, 2003. http://www.theses.fr/2003ECAP0907.
Full textSilva, James Emanuel. "PNIPAM hydrogel micro/nanostructures for bulk fluid and droplet control." Thesis, Georgia Institute of Technology, 2014. http://hdl.handle.net/1853/54252.
Full textDeleau, Fabrice. "Comportement tribologique acoustique d'un contact élastomère / verre : Contribution à la compréhension de l'éssuyage : Application aux systèmes automobiles d'essuie glace." Ecully, Ecole centrale de Lyon, 2009. http://www.theses.fr/2009ECDL0003.
Full textThe wiping of a car windshield is carried out with the reciprocating motion of a rubber blade on glass which allows the water removal. This function is realized by a contact between rubber and glass of very small dimension (40 µm). The analysis of rubber lip sliding on a smooth surface requires a better understanding of both their frictional response and its stability. This work analyses the tribological behaviour of micrometer rubber spots sliding on a smooth surface (nanometer surface roughness) with a controlled amount of water. Our experiment proposes to simulate the rubber/glass contact with a complete instrumentation to analyse the sliding steady state behaviour within different conditions: dry, lubricated and tacky and the unstable one. The friction instabilities are characterised with dedicated sensors and a fast camera record system. These aspects have been investigated at the nanometer scale using the resources of a modified elasto hydrodynamic tribometer in order to measure the water film thickness at the interface by interferometric technique. Five tribological situations can be differentiated by the evolution of friction stress, the real contact area and the section strain. One is observed in dry condition and three in wet one according to the sliding velocity. The relative contribution of both dry and wet contact area on frictional response according to sliding velocity, normal load and slider’s material, is discussed. In a dry contact, the experiments give direct access to the solid contact area contribution to friction stress. In wet condition, the wiping performance is observed and the evolution of the friction stress versus the sliding speed is correlated to a reduction of the real contact area. The highest friction coefficient appears when the quantity of liquid is reduced to few nanoliters, this fifth regime is called “tacky”. Droplets are confined in the contact zone and this “lubricated zone” increases the friction stress
Johannessen, Morten Krøtøy, and Torgeir Myrvold. "Stick-Slip Prevention of Drill Strings Using Nonlinear Model Reduction and Nonlinear Model Predictive Control." Thesis, Norwegian University of Science and Technology, Department of Engineering Cybernetics, 2010. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-9112.
Full textThe main focus of this thesis is aspects in the development of a system for prevention of stick-slip oscillations in drill strings that are used for drilling oil wells. Stick-slip is mainly caused by elasticity of the drill string and changing frictional forces at the bit; static frictional forces are higher than the kinetic frictional forces which make the bit act in a manner where it sticks and then slips, called stick-slip. Stick-slip leads to excessive bit wear, premature tool failures and a poor rate of penetration. A model predictive controller (MPC) should be a suitable remedy for this problem; MPC has gained great success in constrained control problems where tight control is needed. Friction is a highly nonlinear phenomenon and for that reason is it obvious that a nonlinear model is preferred to be used in the MPC to get prime control. Obviously it is of great importance that the internal model used in the MPC is of a certain quality, and as National Oilwell Varco (NOV) has developed a nonlinear drill string model in Simulink, it will be useful to check over this model. This model was therefore verified with a code-to-code comparison and validated using logging data provided from NOV. As the model describing the dynamics of the drill string is somewhat large, a nonlinear model reduction is needed due to the computational complexity of solving a nonlinear model predictive control problem. This nonlinear model reduction is based on the technique of balancing the empirical Gramians, a method that has proven to be successful for a variety of systems. A nonlinear drill string model has been reduced and implemented to a nonlinear model predictive controller (NMPC) and simulated for different scenarios; all proven that NMPC is able to cope with the stick-slip problem. Comparisons have been made with a linear MPC and an existing stick-slip prevention system, SoftSpeed, developed by National Oilwell Varco.
Busse, Leif [Verfasser]. "Investigation, prediction and control of rubber friction and stick-slip : experiment, simulation, application / Leif Busse." Hannover : Technische Informationsbibliothek und Universitätsbibliothek Hannover (TIB), 2013. http://d-nb.info/1032719249/34.
Full textFranceschini, Joel. "Avaliação do fenômeno de Stick-Slip em materiais de fricção com utilização de um tribômetro." reponame:Biblioteca Digital de Teses e Dissertações da UFRGS, 2014. http://hdl.handle.net/10183/96294.
Full textIn automotive brake systems, the main component that determines their performance is the friction material, because good friction material must ensure stability in friction under different conditions of use, as well as corrosion resistance, long life, low wear rate, good relation between cost and performance, and low noise. Since the comfort of vehicles has become important factor to indicate its quality, eliminate or reduce the noise and vibration of its components has become a competitive advantage in the automotive market, and the problem of noise in brake systems has been a cause of customer complaints in recent years. The brake noise is most often the result of a self-excited vibration induced friction or dynamic instability of the brake system. The stick-slip phenomenon is a typical example of oscillation induced by friction observed at low sliding speeds and generally results in vibrations which generate noise. In order to check the feasibility of using vibration measurements during the occurrence of the stick-slip phenomenon in the characterization of friction materials using a tribometer, were prepared six friction materials produced by the company Fras-le, manufacturer of friction materials for automotive brake. The tests were performed in the Laboratory of Tribology (Latrib) of the School of Engineering at Federal University of Rio Grande do Sul (UFRGS). In tribometer used for testing an accelerometer was installed on the support of the pad of friction material to be tested. Several tests were conducted, each under constant normal force and speed of rotation of the disk. The test results showed that the tribometer shows excellent performance for characterization of friction materials, enabling the development of new materials from tests performed on this equipment. The evaluation of the response of vibration acceleration obtained in the tests demonstrated that the response of vibration is dependent on various measured parameters, such as displacement, velocity and torque variation, and to better predict the propensity of a material to present vibration stickslip must take into account both the variation of torque and the maximum torque of each cycle of stick-slip. Furthermore, the use of accelerometer for assessing stick-slip tests was viable and its use should be encouraged in future work.
Lu, Tianming. "Design and Realization of a Desktop Micro-Manipulation Cobotic Platform." Thesis, Paris 6, 2016. http://www.theses.fr/2016PA066009/document.
Full textMicrorobotics is a fast growing field of research and microsystems are in high demand from across a wide spectrum of our life. Nowadays, mass automation solutions are already available for large batch production of microsystems, while small batch production mainly relies on handmade processes due to the lack of flexible micro-manipulation system. Handmade processes have limited productivity and accuracy, which makes it more and more difficult for small and medium-sized enterprises to conquer their place on the international market. Under such circumstances, pioneer microrobotics company Percipio Robotics has proposed a desktop cobotic platform, Chronogrip, which aims to handle flexible micro-manipulation. However, the solution is not yet complete and there are three main challenges to resolve:• the dynamics of the piezoelectric stick-slip actuator is not fully understood, which delays the development of trajectory tracking strategies;• existing haptic interfaces have limited bandwidth due to their mechanical properties, consequently there is no available option that is able to render high dynamic haptic information from the microworld;• for tweezers-based micro-manipulation in watchmaking process, no existing haptic interface is able to provide intuitive and effective operation.The objective of thesis is to address these three issues. The first part of the thesis is dedicated to the development of nonlinear dynamic model of the piezoelectric stick-slip actuator. The result shows that it is the first dynamic model which can describe the actuator dynamics in time and frequency domain, for stepping and scanning mode, and for both forward and backward motion. The second part of the thesis is devoted to develop a method to extend the bandwidth of dual-stage haptic interface by using the signal crossover technique. The result shows that the bandwidth is uniformly extended to 1 kHz, which makes it possible to reproduce high dynamic phenomena from the microworld. The third part of the thesis aims to design an intuitive haptic interface for tweezers-based watchmaking operations. The design is also compatible with conventional tweezers-based usage. It is expected to integrate all of the three research results into the cobotic platform Chronogrip to enhance the productivity and effectiveness of micro-manipulation
Sayed, Baraa Al. "Comportement dynamique des ensembles tournants de turbomachines : Maîtrise des effets des dispositifs de liaisonnement amortisseurs." Thesis, Lyon, INSA, 2011. http://www.theses.fr/2011ISAL0022/document.
Full textFatigue with high number of cycles (HCF) is a current and dangerous mode of failure for the blades of turbo shaft engines. It is induced by the high dynamic stresses generated at resonance in the operating range of these machines. The rubbing devices based on use of dry friction, such as shrouds or under-platform dampers, make it possible to reduce the vibratory amplitudes, to even push back the resonance frequencies out of the operation zones. However the design of these devices remains still largely based on empiricism and they can be the source of a potentially harmful effect of mistuning. The goal is to develop adapted modelling for the treatment of blades vibration problem in the presence of dry friction, this in order to better control the concerned physical behaviours and thus, to better control their process of design. Several numerical modelling are tested and confronted with reference results. A comparison between procedures of time and frequency domains resolution is carried out and shows the effectiveness of frequential methods. The frequential method of the Harmonic Balance including several harmonics is adapted to the problem and is used within an energy study. This study leads to a better comprehension of the phenomena of peaks flattening and it shows that the alternation of the states of slipping and sticking contact is the real cause of this flattening and not energy dissipation like often advanced in the literature. Lastly, the method is exploited to describe the behaviour of mistuned bladed disks. The Monte Carlo method is used to obtain the statistical characteristics of the forced response for a lumped system, by taking account of the stochastic variations of parameters in the contact, specifically the normal load, the stiffness of the contact and the coefficient of friction. Results obtained make it possible to better include/understand the effects of the variable nature of these fundamental parameters on dynamics of nonlinear system
Gadenne, Leslie. "Processus de déformation et diagenèse dans les zones de subduction : impact sur les propriétés mécaniques des roches : Approche expérimentale." Thesis, Orléans, 2015. http://www.theses.fr/2015ORLE2001/document.
Full textThe shallow portion of subduction zones (0-10 km depth) has long been considered as unable to store and release seismic energy. However, the detection of very-low frequency earthquakes in this zone, as well as the propagation of the coseismic rupture to the trench during the Tohoku-Oki earthquake, question this hypothesis. The difficulty to assess the seismogenic potential of this shallow portion lies principally in the complexity of the processes that occur in this zone, combining deformation and diagenesis (especially the smectite-to-illite transition), and hence not easily reproducible in laboratory. In order to analyse the mechanical properties of the shallow portion of subduction zones, triaxial tests have been performed with smectitic and illitic samples, under confining pressure between 50 and 200 MPa and at temperature of 20 and 300°C. The aim of these experiments was to identify the deformation modes of such sedimentary material and to determine the effects of deformation and diagenesis on rheology of these materials and on the rock potential to exhibit instable failure. In the experiments, deformation operates under the same pattern with a progressive localisation from shear band to fracturation. Even if the deformation style does not differ much between experiments, the rheology of the samples tested at 20°C and at 300°C contrasts drastically. Indeed, while the samples (smectitic and illitic) tested at 20°C show exclusively a strengthening behaviour (i.e. stable), the smectitic samples tested at 300°C exhibit a rheology that systematically evolves from strengthening to stick-slip behaviour (i.e. unstable). These results indicate that the chemical reactivity of smectite under diagenetic conditions (diagenesis is activated in the experiments conducted at 300°C) constitutes a weakening mechanism promoting unstable sliding. Finally, we propose that, at the subduction zone scale, the chemical metastability of smectite could promote the propagation of the coseismic rupture to the very shallow portion of accretionary prisms
SANTOS, ADRIANO DOMENY DOS. "DYNAMICS OF A SLENDER ROTATING COLUMN SUBJECT TO THE STICK-SLIP ACTION IN TWO DISTINCT REGIONS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=26272@1.
Full textCONSELHO NACIONAL DE DESENVOLVIMENTO CIENTÍFICO E TECNOLÓGICO
Este trabalho apresenta um estudo do comportamento dinâmico de uma bancada de testes representativa do sistema real de perfuração, composta por um motor CC acoplado a um sistema físico torcional, sujeita a fontes de atrito que induzem um regime de stick-slip no sistema em duas regiões distintas. O estudo incluiu a identificação de parâmetros da bancada de testes por meio de uma série de ensaios experimentais; e a caracterização do atrito, por meio do levantamento experimental da curva do coeficiente de atrito, em função da velocidade angular dos rotores principais. O intuito inicial foi a obtenção de um modelo numérico que fosse o mais simples possível e que representasse bem a bancada de testes. Uma vez obtido o modelo numérico, prosseguiu-se com uma série de simulações que permitissem uma caracterização indireta do regime de atrito ao qual estivessem submetidos os rotores principais, partindo-se apenas de medições de parâmetros no motor. Esse estudo é de grande relevância para a compreensão qualitativa da dinâmica do sistema real de perfuração, uma vez que ainda hoje não há técnicas totalmente confiáveis para caracterização do comportamento da coluna no fundo do poço a partir de dados da superfície somente.
This paper presents a study of the dynamic behavior of a representative test bench of a real rotary drilling system, comprising a DC motor coupled to a very exible torsional system subjected to sources of friction which can induce self-excitation into two distinct regions of the system. The study includes the identification of parameter settings from the test bench by means of a series of experimental tests and characterization of friction, by obtaining the experimental curve of the friction coefficient as a function of the angular speed of the main rotor. The initial aim was to obtain a numerical model as simple as possible, capable of representing the test bench. Once obtained the numerical model, a series of numerical simulations were done, which allow an indirect characterization of the friction condition to which main rotors were subjected, starting only with the parameters measured at the drive. This study is of great importance for a qualitative understanding of the dynamics of the real drilling system, since today there is no fully reliable techniques to characterize the behavior of the column in the deep from surface data only.
Oubellil, Raouia. "Modeling and control of a SEM-integrated nano-robotic system driven by piezoelectric stick-slip actuators." Thesis, Université Grenoble Alpes (ComUE), 2016. http://www.theses.fr/2016GREAT117.
Full textThe capability of doing dexterous robotic tasks at the nanometer scale inside a Scanning Electron Microscope (SEM) is a critical issue for nanotechnologies. SEM-integrated nano-robotic systems have consequently emerged in many robotics laboratories. They can be composed of one or more actuators assembled into nano-robotic platforms with one or several effectors. Piezoelectric Stick-Slip (PSS) actuators is one of the best candidate to actuate SEM-integrated nano-robotic systems because it is able to perform coarse positioning with millimeter displacement range and fine positioning with travel range of few micrometers. Modeling of PSS actuators is complex and difficult mainly because of their hybrid operating mode. Furthermore, control is challenging due to several characteristics related to PSS actuators, namely friction, hysteresis and undamped vibrations, which degrade their performance in terms of precision and speed. This work deals with modeling and control of a 3-axes SEM integrated nano-robotic system driven by piezoelectric stick-slip actuators. Each element and characteristic of PSS actuators are analyzed and modeled to thereafter establish a complete dynamic model able to describe the two functioning modes, namely the scanning and the stepping modes. PSS actuators are then controlled in each of these modes. Robust control strategies are developed to achieve high-resolution and fast positioning in scanning mode. Such performance is fundamental in several micro/nano-robotic tasks such as fast and accurate nano-assembly and nano-material characterization. A frequency/amplitude proportional controller is designed to perform millimeter displacement in stepping mode. This is motivated by robotic tasks where large motion is required, such as large surfaces scan and bringing a probe close to a sample to manipulate. A switched strategy, which combines scanning and stepping motion modes, is then proposed to remedy to the lack of precision in stepping motion, when passing from a large to a small displacement. This work has given rise to results which open new perspectives to the use of PSS actuators in SEM integrated nano-robotic systems
PAULA, GUILHERME RODRIGUES SAMPAIO DE. "DYNAMICS AND CONTROL OF STICK-SLIP AND TORSIONAL VIBRATIONS OF FLEXIBLE SHAFT DRIVEN SYSTEMS APPLIED TO DRILLSTRINGS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2017. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=31846@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Sistemas rotativos atuados através de um eixo flexível apresentam um grande desafio para estratégias de controle, uma vez que o atuador não está conectado diretamente ao sistema principal, causando efeitos de propagação de ondas e acúmulos e dissipações de energia no eixo. Este trabalho apresenta um estudo sobre uma das mais notórias aplicações deste problema, sistemas de perfuração de petróleo. Habitualmente, o sistema de perfuração é composto por um motor de topo conectado à broca através de milhares de metros de tubos de aço que transmitem o toque. Diversos tipos de vibrações podem ser observadas: Axiais, de flexão e torcionais, estas últimas ligadas ao fenomeno stick-slip. Para um completo conhecimento do problema, é necessário conhecer cada uma delas. Esta tese trata especificamente das vibrações torsionais através de uma análise com dois diferentes modelos, um primeiro mais simples de fois graus de liberdade (inércia, mola torcional, amortecedor), e um segundo mais completo discretizado em 20 graus de liberdade capaz de considerar a masssa do eixo e efeitos de propagação de ondas mecânicas no eixo. Este trabalho inclui aidna a construção de uma bancada em escala reduzida para observar os fenômenos associados as vibraçoes torcionais. São apresentados ainda estudos numéricos e experimentais de técnicas de controle de minimizar os efeitos do atrito na dinâmica torcional do sistema. Duas estrututas de controle são estudadas nesta tese a fim de reduzir vibrações torcionais em colunas de perfuração. A primeira é um controle simples, de malha aberta, baseado no comportamento do sistema. A segunda é o controle adaptativo L1, que faz uso de um modelo de refeência do sistema em sua estrutura.
Systems actuated trough a highly flexible shaft poses a big challenge to control strategies as the actuator is not connected directly to the end effector, causing propagation effects as well as an energy accumulation and dissipation in the shaft. This thesis focuses the study of one of the most investigated application of this type, the top driven drilling system used in the oil and gas industry. Usually, the drilling system is composed by a top drive linked to the drill bit trough hundreds or even thousands of meters of steel pipes. All kind of vibrations will be found: longitudinal deformations will be associated to the bit bouncing, flexional with rubbing, and torsional with stick-slip effects. A better understanding is only possible when each of these situations is carefully investigated. This thesis focuses on the torsional deformation of the highly flexible string and presents two different models for the drill string, the first is the most common single spring single damper model. The second one is a 20 DOF Lumped parameters that has the advantage of being able to consider the mass of the drill string and propagation of torsional waves in the shaft. The investigation includes the development of a test rig adequate for torsional vibrations under damping that may induce stick-slip in the system. Two control techniques are studied to reduce the torsional vibrations in drill strings with numerical and experimental results presented. The first is a behavior based open loop scheme control, which is very simple and effective to reduce stick-slip oscillations. The second one is the L1 adaptive control that uses a reference model on its structure.
Abdulgalil, Farag. "Commande non linéaire dans les systèmes de forage pétrolier : contribution à la suppression du phénomène de "stick-slip"." Phd thesis, Université Paris Sud - Paris XI, 2006. http://tel.archives-ouvertes.fr/tel-00272937.
Full textA l'heure actuelle, les commandes des systèmes de forage pétroliers sont réalisées à l'aide de régulateurs classiques PI ou PID. Leurs performances se dégradent notablement lors de vibration de torsion causée par le « stick- slip », phénomène qui peut provoquer des couples non linéaires et donc endommager le trépan et le train de tiges. Par conséquent, il est nécessaire de disposer de systèmes de commande plus performants afin de mieux répondre aux exigences et aux performances demandées.
En dépit des diverses lois de commandes linéaires tentatives pour commander ce système mais qui ne garantissent pas la stabilité vis-à-vis des incertitudes. Ceci nous a conduits à proposer une modèle non linéaire en prenant en compte la totalité de l'information du phénomène du stick-slip, ce qui a conduit à une modélisation globale du forage rotary approchant donc au mieux le comportement réel de la plate-forme pétrolière. Pour cela, nous avons suggéré deux approches pour améliorer les performances du système de forage rotary:
• Commande par la technique de linéarisation par bouclage.
• Développement d'une commande par la technique des modes glissant associé à la commande linéarisation par Bouclage.
Comme le système de forage est généralement, est un système soumis aux incertitudes paramétriques, nous avons proposé, de plus, une nouvelle loi de commande non linéaire par Backstepping permettant de mieux améliorer la réponse de la vitesse de rotation du trépan.
Ces trois stratégies de commandes apparaissent la première fois dans ce domaine et la approche de Backsteping s'avère la meilleure. Les résultats de simulations obtenus dans les trois cas sont concluants et la synthèse par Backstepping montré la supériorité de, où la question de robustesse a pu être considérée.
Cavalcante, de Sousa José Mácio. "Analyse der Ursachen des Stick-Slip-Effekts an Bahnenerzeugnissen für die Anwendung im Fahrzeuginnenraum am Beispiel von PVC." Doctoral thesis, Technische Universitaet Bergakademie Freiberg Universitaetsbibliothek "Georgius Agricola", 2009. http://nbn-resolving.de/urn:nbn:de:bsz:105-9990928.
Full textSvernestam, Jonas. "En studie av en industrirobots beteende vid borrning." Thesis, Linköping University, Department of Mechanical Engineering, 2005. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-4603.
Full textIn the assembly process of airframe structures there are many drilled holes and on some parts the holes are mainly drilled manually with pneumatic handheld drilling machines. During conventional drilling in metal, burrs appear. To remove these burrs the parts of the structure must be separated and deburred before they can be put together for fastening. This is a time consuming measure and therefore expensive. To facilitate this process and lower production costs some parts of the process needs to be automated.
A part of this thesis was a project in co-operation with Saab, Novator, Specma Automation and the University of Linköping. The purpose of this project was to investigate the ability of an industrial robot to drill holes in aeroplane structures using orbital drilling.
How the project tests were carried out and the results of these tests are presented in the first part of this thesis. The tests showed that slip-stick appeared when a force was applied on the working object by the robot. Because of the movement of the pressure foot the drilled hole will be in the wrong position and if the movement appears during drilling the quality of the hole is being poor.
Several different tests were performed using different amounts of forces and different pressure feet trying to prevent slip-stick from appearing. Finally tests were performed with good results concerning the quality of the holes.
In the second part of this thesis the proceeding tests that were carried out are presented. The purpose of these tests was to find out how the robot acts when a static pressure is applied on a work object by the robot and try to find out what the cause of the slip-stick was. Several tests were done where the robot applied a force on several different points on the fixture and the slip-stick was measured.
The tests that were carried out during this thesis showed that an industrial robot can be used to drill holes in aeroplane structures. To make sure that the quality of the drilled holes is sufficient for the high demands of the aeroplane industry the working area of the robot is limited to a small area in front of the robot. The slip-stick that appears when the robot is extended into a position on the far side of the robot is too large for the robot to drill the hole in an accurate position.
Vid flygplansmontering borras det många olika hål och på vissa delar borras större delen av dessa hål manuellt med pneumatiska handborrmaskiner. Vid konventionell borrning i metall bildas oönskade grader. Strukturen plockas därför isär så att graderna kan tas bort innan strukturens delar kan passas samman igen för att sammanfogas. Detta är en tidskrävande åtgärd och därmed dyr och i ett steg att förenkla denna process och få en billigare produktion vill man automatisera vissa steg i denna process.
En del av detta examensarbete var ett projekt i samarbete med Saab, Novator, Specma Automation och Linköpings Universitet vars syfte var att klargöra en robots förmåga att borra hål i flygplansmaterial med orbitalborrningsteknik.
I första delen av detta examensarbete redovisas genomförande och resultat av projektets tester. Testerna visade att tryckfoten gled på testmaterialets yta när roboten lade en tryckkraft på testplåten, så kallad slip-stick uppkom. Denna glidning gör att det borrade hålet inte hamnar på rätt position och sker glidningen under borroperationen så försämras hålets kvalité. Flera olika tester gjordes med varierad tryckkraft och med olika tryckfötter för att försöka förhindra att slip-stick uppkom. Tester genomfördes där hål borrades med bra kvalité.
I den andra delen av denna rapport redovisas fortsättningen på examensarbetet som var en vidareundersökning av de tidigare genomförda testerna. Syftet med denna del var att undersöka hur en industrirobot beter sig när den används för att lägga på en tryckkraft mot ett material samt att försöka ta reda på vad som är orsaken till slip-sticken. Fler tester gjordes där roboten tryckte på olika punkter på en fixtur och de uppkomna slip-sticken mättes upp.
Testerna under detta examensarbete har visat att det går att använda en industrirobot till att borra hål i flyglansmaterial. För att kvaliteten på de borrade hålen ska klara de höga krav som ställs inom flygplansindustrin är robotens arbetsområde begränsat till ett litet fönster mitt framför roboten. De glidningar som uppkommer när robotarmen är utsträckt långt åt sidan om roboten är alldeles för stora för de positioneringskrav som är på hålens placering på flygplansstrukturen.
Tonazzi, Davide. "Macroscopic frictional contact scenarios and local contact dynamics : At the origins of “macroscopic stick-slip”, mode coupling instabilities and stable continuous sliding." Thesis, Lyon, INSA, 2014. http://www.theses.fr/2014ISAL0110/document.
Full textLocal contact behavior and its interaction with the global dynamics of the system are at the origin of innumerable contact issues concerning several different disciplines like tribology, geophysics, vibration mechanics or fracture mechanics. When two elastic media are in relative motion with a frictional interface, friction induced vibrations arise into the system. By a macroscopic point of view, the “macroscopic stick-slip” scenario occurring during relative motion is characterized by sudden friction force drops (sliding state) along the time, separated by periods of elastic energy accumulation (stick state). Instead, the mode dynamic instability occurs when a vibration mode of the mechanical system becomes unstable, due to frictional contact forces. This kind of instabilities, generated by frictional forces, have been mainly object of papers dealing with specific issues in different domains. In this context, experimental and numerical analyses have been focused here on understanding how the local interface behavior affects the macroscopic frictional response of the system, and, conversely, during instability scenarios. The macroscopic frictional scenarios (macroscopic stick-slip instability, mode coupling instability, stable continuous sliding) arising between two simple elastic media in relative motion have been investigated numerically and experimentally. A newer experimental setup (TRIBOWAVE) has been developed and it allowed to reproduce and to investigate the different scenarios under well-controlled boundary conditions. The same frictional scenarios have been reproduced by transient numerical simulations. A dedicated friction law as a function of adherence (sticking) time has been recovered by means of experimental tests. The obtained friction law has been implemented in the numerical model, leading to a quantitative validation of the simulated scenarios by the experiments. Nonlinear transient simulations, complex eigenvalue analyses and experimental tests allowed for drawing instability maps as a function of system key parameters. The numerical model, validated by the comparison with the experimental global measurements (forces, accelerations/velocity), allowed for investigating the coupling between the local contact behavior (contact status distribution, wave and rupture propagation, precursors) and the system dynamic response during macroscopic stick-slip instability, mode coupling instability and stable continuous sliding. The understanding of the coupling between contact and system dynamics will bring to further improvements on the control of contact instabilities and related wear issues
Amri, Mohamed. "Étude expérimentale et théorique de l’effet de la vitesse de coupe sur la forabilité des roches sous pression de boue." Thesis, Paris Sciences et Lettres (ComUE), 2016. http://www.theses.fr/2016PSLEM095.
Full textThe optimization of the drilling practice requires a better understanding of drillstring harmful vibrations such as stick-slip. This form of torsional vibrations is a typical problem of PDC (Polycristalline Diamond Compact) drillbits. It can reduce the rate of penetration drastically and can raise fatigue of the drilling devices. Many attempts were carried out in the last years in order to determine the causes of stick-slip phenomenon. Field observations show that torque on bit decreases as a function of bit velocity during stick-slip oscillations. Hence, it is widely believed that this decreasing relationship is the root cause of stick-slip.The purpose of this work is to examine cutting speed influence on rock drillability as a function of operating conditions and hydromechanical properties of the drilled formation. For this, a set of drilling tests was performed in three sedimentary rocks of different permeability using a full scale PDC drillbit and a single PDC cutter. In the first step, dry tests were carried out at atmospheric pressure. As previously observed in literature, single-cutter tests showed that drilling forces increase with cutting velocity. In a second step, we performed the same experiments at 20 MPa bottom-hole pressure. It appears that rate effect on cutting forces in the medium and low-permeability rocks is relatively low. By contrast, rate effect in the highly permeable rock increases by one order of magnitude in comparison with dry experiments.In order to understand this phenomenon, a steady state solution of the cutting model is derived in the framework of the theory of poroelastoplasticity. The problem is firstly solved analytically using some assumptions derived from previous works. Then, a numerical resolution based on finite element method is presented to solve the fully coupled problem ensuring the satisfaction of poro-material physics basic equations. Using these two different approaches, we show that pore pressure in shear-dilatant rocks decreases as a function of cutting velocity depending on rock permeability and interstitial fluid properties. This change has a hardening effect resulting in an increase of rock drilling resistance. Comparison between theory and experience shows good agreements
Aubry, Jérôme. "Séismes au laboratoire : friction, plasticité et bilan énergétique." Thesis, Paris Sciences et Lettres (ComUE), 2019. http://www.theses.fr/2019PSLEE053.
Full textIn the lithosphere, the transition from brittle to plastic rock deformation corresponds to the semi-brittle regime. Understand how natural faults behave in the semi-brittle regime is fundamental to explain why large earthquakes generally nucleate at the base of the seismogenic zone, found at pressure and temperature conditions close to the predicted brittle-plastic transition. During an earthquake, part of the released elastic strain energy stored during the interseismic period is dissipated within a fault slip zone by frictional and fracturing processes, the rest being radiated away via elastic waves. This energy balance is influenced by the deformation of fault surfaces during slow or fast sliding, especially by frictional heating processes which could not be resolved by seismology. To investigate semi-brittle deformation and the energy balance of natural earthquakes, we performed laboratory earthquakes in triaxial conditions on experimental faults of various lithologies. We studied the influence of the confining pressure, axial loading rates, temperature and fault roughness on fault stability across the brittle-plastic transition and investigate the dynamics of laboratory earthquakes by measuring frictional heat dissipated during the propagation of shear instabilities. The main conclusions are twofold. First, laboratory earthquakes may nucleate on inherited fault interfaces at brittle-plastic transition conditions and fault slip behavior is mainly influenced by roughness. Second, we conclude that during sliding, faults exhibit a transition from a weak stage with multiple strong asperities and little overall radiation, to a highly radiative stage during which the fault behaves as a single strong asperity
Di, Bartolomeo Mariano, and Bartolomeo Mariano Di. "Wave generation and propagation at tribological interfaces." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00715732.
Full textBenkassem, Sâd. "Propriétés mécaniques et modélisation multiéchelle de l'effet de taille dans les polycristaux nanométriques." Metz, 2007. http://docnum.univ-lorraine.fr/public/UPV-M/Theses/2007/Benkassem.Sad.SMZ0729.pdf.
Full textThe yield stress of crystalline materials depends on the grain size accordhg to the Hall-Petch relationship. In this work, a multi scale modeling of the effect of size using the generalized self-cbnsistent method will be presented in order to predict the viscoplastic behavior of nanocrystalline materials. In our step, one,models the supposed active mechanisms separately in the nanomatenals. In the models thus worked out, inclusion iegresents the grain core and the matrix represents the grain boundaries and triple junctions. Various approaches will be discussed and studied in order to mode1 the abnormal behavior of the nanocrystalline materials. 'We will study the dislocation glide mechanism as well as Coble creep the emission and penetration mechanism of dislocations by the grain boundaries and finally the grain boundaries sliding mechanism where the interface grain corelgrain boundary plays a considerable part of the slip which can generate the damage of the interface by stick-slip mechanism
Fulleringer, Benjamin. "Semi-analytical modeling of complex mechanical contacts : application to inclusions and swear of coated surfaces." Phd thesis, INSA de Lyon, 2011. http://tel.archives-ouvertes.fr/tel-00684944.
Full textFerreira, Jeferson. "Fatores atuantes no aperto de fixadores roscados de aço com tratamentos superficiais que influem no surgimento do fenômeno stick-slip/." reponame:Biblioteca Digital de Teses e Dissertações da FEI, 2014. http://sofia.fei.edu.br:8080/pergamumweb/vinculos/00000b/00000b14.pdf.
Full textToumi, Samir. "Contribution à la suppression du phénomène stick slip et à la construction d'un observateur de dimension infinie en forage pétrolier." Thesis, Université Paris-Saclay (ComUE), 2017. http://www.theses.fr/2017SACLE034/document.
Full textThe different types of drilling vibrations play an important role in the malfunctioning of the drilling operations because the lead to the premature rupture of the trains, consequently, to the Loss of the tool at the bottom hole and also damage to the machine. Much of our analysis in this specification relates to the control of the phenomenon of vibration of twisting leading to a controlled rotational speed on the edge. The mathematical aspects and simulation results will be detailed. The modeling of the torsion phenomenon affecting the drill string during was represented by a second order partial differential equation : linear type integrating the phenomenon of friction. Two entries appear in the boundary conditions in terms of the speed of the train and the reaction with the soil. It is therefore a matter of designating the speed which ensures adequate rotation for drilling and which avoid the torsional phenomenon of twist taking into account the interaction of formation with the soil. The dynamic of the drill string stability depends on a system of fluid which should be injected to bring cuttings out of the well bore and amplify the torsional vibrations phenomena. To suppress fracturing collapse or influx of fluids surrounding the well, it is important to integrate the dynamic of the pressure in this study : PDE-ODE control problem. Finally, we are concerned with the problem of boundary observer stabilization for a system of hyperbolic PDEs which describes the drilling systems. The design relies on the top boundary measurements only
Elmaian, Alex. "Méthodologies de simulation des bruits automobiles induits par le frottement." Phd thesis, Université du Maine, 2013. http://tel.archives-ouvertes.fr/tel-00839253.
Full text