To see the other types of publications on this topic, follow the link: Sticking coefficient.

Journal articles on the topic 'Sticking coefficient'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Sticking coefficient.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Yang, Yu Sen, Wesley Huang, Ming Shyan Huang, and Cheng Fong Huang. "Anti-Sticking Effects of Cr-N and Zr-DLC Films on Microinjection Molding for LGP Applications." Advanced Materials Research 179-180 (January 2011): 339–44. http://dx.doi.org/10.4028/www.scientific.net/amr.179-180.339.

Full text
Abstract:
Sticking problems in injection molds are a significant challenge in product quality control. Molds are usually coated with a surface ceramic layer to prevent sticking problems. This study presents two films deposited on light-guide plate microinjection molds using an unbalanced magnetron sputtering process to investigate the anti-sticking property of molds. The deposited film materials include chromium nitride (Cr-N) and zirconium containing diamond-like carbon (Zr-DLC). The anti-stick film properties examined here include water contact angles, the coefficients of friction, as well as product
APA, Harvard, Vancouver, ISO, and other styles
2

Carraro, Carlo, and Milton W. Cole. "Sticking coefficient at ultralow energy: Quantum reflection." Progress in Surface Science 57, no. 1 (1998): 61–93. http://dx.doi.org/10.1016/s0079-6816(98)00013-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Armand, G., and J. R. Manson. "Sticking coefficient of light particles on surfaces." Physical Review B 43, no. 18 (1991): 14371–77. http://dx.doi.org/10.1103/physrevb.43.14371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Vattuone, L., M. Rocca, C. Boragno, and U. Valbusa. "Initial sticking coefficient of O2 on Ag(110)." Journal of Chemical Physics 101, no. 1 (1994): 713–25. http://dx.doi.org/10.1063/1.468127.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Gortel, Zbigniew W., and Jacek Szymanski. "New approach to calculation of the sticking coefficient." Physics Letters A 147, no. 1 (1990): 59–64. http://dx.doi.org/10.1016/0375-9601(90)90014-f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rocca, M., P. Traversaro, and U. Valbusa. "Initial sticking coefficient of O2 on Ag (001)." Journal of Electron Spectroscopy and Related Phenomena 54-55 (January 1990): 131–41. http://dx.doi.org/10.1016/0368-2048(90)80205-o.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Wille, Holger, and Edmund P. Burte. "A dual sticking coefficient chemical vapor deposition model." Microelectronic Engineering 19, no. 1-4 (1992): 503–6. http://dx.doi.org/10.1016/0167-9317(92)90484-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Dean, B., A. A. Haasz, and P. C. Stangeby. "Sticking coefficient of molecular and atomic hydrogen on palladium." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 5, no. 4 (1987): 2332–35. http://dx.doi.org/10.1116/1.574446.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Özdemir, I., and D. Perinic. "Helium sticking coefficient on cryopanels coated by activated carbon." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 16, no. 4 (1998): 2524–27. http://dx.doi.org/10.1116/1.581376.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Bhaskar, N. D., C. M. Kahla, and L. R. Martin. "Absorption of cesium by polycrystalline graphite-sticking coefficient studies." Carbon 28, no. 1 (1990): 71–78. http://dx.doi.org/10.1016/0008-6223(90)90095-g.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Lenev, D. Yu, and G. E. Norman. "Sticking coefficient for Fe atoms interacting with iron cluster." Journal of Physics: Conference Series 946 (January 2018): 012111. http://dx.doi.org/10.1088/1742-6596/946/1/012111.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Raiser, D., and C. Baltzinger. "Sticking coefficient determination and study of gadolinium-tantalum interfaces." Surface Science 213, no. 2-3 (1989): 414–21. http://dx.doi.org/10.1016/0039-6028(89)90301-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Yang, S. N., and T. M. Lu. "The sticking coefficient of Ar on small Ar clusters." Solid State Communications 61, no. 6 (1987): 351–54. http://dx.doi.org/10.1016/0038-1098(87)90583-7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Raiser, D., and C. Baltzinger. "Sticking coefficient determination and study of gadolinium-tantalum interfaces." Surface Science Letters 213, no. 2-3 (1989): A225. http://dx.doi.org/10.1016/0167-2584(89)90466-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Poppa, H., D. Fargues, L. Kieken, D. Neiman, and R. Savoy. "The sticking coefficient of Pd on planar alumina supports." Vacuum 41, no. 1-3 (1990): 485–88. http://dx.doi.org/10.1016/0042-207x(90)90392-c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

KOHN, W. "QUANTUM MECHANICS OF STICKING." Surface Review and Letters 01, no. 01 (1994): 129–32. http://dx.doi.org/10.1142/s0218625x94000151.

Full text
Abstract:
The sticking coefficient s(E) of an atom of low energy E striking a solid surface is discussed, with emphasis on the threshold behavior as E→0. The subject is under active experimental and theoretical study, which is summarized. There is general agreement that a classical treatment of the motion of the incident and target atoms yields s(E)→1 as E→0. This paper, in disagreement with the work by Th. Martin, R. Bruinsma, and P. Platzman, argues that, quantum mechanically, for small E, s(E)~E1/2 for neutral incident atoms and s(E)→ α(<1) for charged ones, regardless of the strength of the inter
APA, Harvard, Vancouver, ISO, and other styles
17

Nosonovsky, Michael. "Beyond the Sticking Point." Mechanical Engineering 140, no. 03 (2018): 30–35. http://dx.doi.org/10.1115/1.2018-mar-1.

Full text
Abstract:
This article discusses that new friction theories can help engineers not only avoid costly blunders but also come up with elegant novel solutions to longstanding challenges. The article also highlights that conventional design tools such as the computer-aided design or computer-aided engineering software, deal with friction by assuming a constant value of the coefficient of friction. Engineers would be better off defining that parameter themselves to capture the dynamic nature of friction. Frictional effects are increasingly important with miniaturization. This is because small devices have hi
APA, Harvard, Vancouver, ISO, and other styles
18

Spohr, E., M. Wolfsberg, and P. Bopp. "Computer Simulation Studies of the Adsorption of Water on a Metal Surface." Zeitschrift für Naturforschung A 46, no. 1-2 (1991): 174–82. http://dx.doi.org/10.1515/zna-1991-1-227.

Full text
Abstract:
AbstractWe report computer simulations of the adsorption process of water on a platinum (100) surface. At very low impact energies the sticking coefficient approaches unity in agreement with experimental evidence. The sticking coefficient for the bare surface decreases strongly with increasing impact energy already in the energy range <0.5 eV and also with increasing surface temperature. At all but the lowest impact energies the sticking coefficient increases drastically if the impact zone of the approaching molecule is in the vicinity of preadsorbed water molecule(s). The reason for this p
APA, Harvard, Vancouver, ISO, and other styles
19

Karpov, I., W. Gladfelter, and A. Franciosi. "Sticking coefficient and growth rate during Al chemical vapor deposition." Applied Physics Letters 69, no. 27 (1996): 4191–93. http://dx.doi.org/10.1063/1.116982.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Taborek, P., and L. J. Senator. "Helium on graphite: Low-temperature desorption kinetics and sticking coefficient." Physical Review Letters 56, no. 6 (1986): 628–31. http://dx.doi.org/10.1103/physrevlett.56.628.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

Ngalande, Cedrick, and Andrew D. Ketsdever. "Unique cryogenic pumping array for low sticking coefficient gas flows." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 28, no. 6 (2010): 1356–62. http://dx.doi.org/10.1116/1.3497029.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Vattuone, L., M. Rocca, C. Boragno, and U. Valbusa. "Coverage dependence of sticking coefficient of O2 on Ag(110)." Journal of Chemical Physics 101, no. 1 (1994): 726–30. http://dx.doi.org/10.1063/1.468128.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Harris, S. "Step sticking coefficient effects during MBE at low adatom densities." Surface Science 291, no. 1-2 (1993): L730—L732. http://dx.doi.org/10.1016/0039-6028(93)91467-4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Rose, M., J. W. Bartha, and I. Endler. "Temperature dependence of the sticking coefficient in atomic layer deposition." Applied Surface Science 256, no. 12 (2010): 3778–82. http://dx.doi.org/10.1016/j.apsusc.2010.01.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
25

Harris, S. "Step sticking coefficient effects during MBE at low adatom densities." Surface Science Letters 291, no. 1-2 (1993): L730—L732. http://dx.doi.org/10.1016/0167-2584(93)90277-p.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Deng, S. H. M., D. B. Cassidy, R. G. Greaves, and A. P. Mills. "Sticking coefficient of nitrogen on solid N2 at low temperatures." Applied Surface Science 253, no. 24 (2007): 9467–69. http://dx.doi.org/10.1016/j.apsusc.2007.06.025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Tan, Wan Chun, Mi Zhou, Yun Bo Wang, Shi Quan Sun, Xiao Bao Nie, and Fang Tong Wu. "Study on the Computer Simulation of Cluster Formation in 2-Dimensional Space." Applied Mechanics and Materials 209-211 (October 2012): 2072–76. http://dx.doi.org/10.4028/www.scientific.net/amm.209-211.2072.

Full text
Abstract:
The main phenomenon of coagulation is that particles aggregate to form flocs. In this paper, the formation of cluster was simulated on computer in 2-dimensional space using cluster -cluster aggregation model and the factors of effect was studied using fractal theory.The effect of sticking probability, sticking position , motion trajectory particle, diffusion coefficient and particle number concentration have been obtained.
APA, Harvard, Vancouver, ISO, and other styles
28

KALANTARI, S. Z., та M. SOHANI. "EFFECTS OF THE SIDE-PATH MODEL ON THE MUON TOTAL STICKING COEFFICIENT AND CYCLING RATE IN D/T μCF". International Journal of Modern Physics E 11, № 06 (2002): 539–54. http://dx.doi.org/10.1142/s0218301302001095.

Full text
Abstract:
In this paper we explore the effects of the meta-stable states of dtμ* molecules on crucial parameters in μCF such as total sticking coefficient and muon cycling rate. For this purpose we establish a new approach in the study of the determination of the q1s parameter and the relative population of muonic atoms by solving the kinetics of μCF. We have answered the basic questions about the muon total sticking including the side-path effects.
APA, Harvard, Vancouver, ISO, and other styles
29

Cansizoglu, Mehmet F., Mesut Yurukcu, and Tansel Karabacak. "Ripple Formation during Oblique Angle Etching." Coatings 9, no. 4 (2019): 272. http://dx.doi.org/10.3390/coatings9040272.

Full text
Abstract:
Chemical removal of materials from the surface is a fundamental step in micro- and nano-fabrication processes. In conventional plasma etching, etchant molecules are non-directional and perform a uniform etching over the surface. However, using a highly directional obliquely incident beam of etching agent, it can be possible to engineer surfaces in the micro- or nano- scales. Surfaces can be patterned with periodic morphologies like ripples and mounds by controlling parameters including the incidence angle with the surface and sticking coefficient of etching particles. In this study, the dynami
APA, Harvard, Vancouver, ISO, and other styles
30

Chakraborty, Purnendu, and Michael R. Zachariah. "Sticking Coefficient and Processing of Water Vapor on Organic-Coated Nanoaerosols." Journal of Physical Chemistry A 112, no. 5 (2008): 966–72. http://dx.doi.org/10.1021/jp076442f.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Chaabouni, H., H. Bergeron, S. Baouche, et al. "Sticking coefficient of hydrogen and deuterium on silicates under interstellar conditions." Astronomy & Astrophysics 538 (February 2012): A128. http://dx.doi.org/10.1051/0004-6361/201117409.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Insepov, Z. A., and A. M. Zhankadamova. "Molecular dynamics calculation of the sticking coefficient of gases to surfaces." Zeitschrift f�r Physik D Atoms, Molecules and Clusters 20, no. 1-4 (1991): 145–46. http://dx.doi.org/10.1007/bf01543959.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

WORTHY, G., C. COTTRELL, A. WIGHT, and A. HODGSON. "DISSOCIATION OF O2 ON Fe(110)." Surface Review and Letters 01, no. 04 (1994): 501–3. http://dx.doi.org/10.1142/s0218625x94000527.

Full text
Abstract:
The initial sticking coefficient for dissociative chemisorption of O 2 on Fe(110) has been measured as a function of translational energy, incidence angle, and surface temperature. Dissociation is activated at translational energies above 100 meV, with the sticking probability rising from 0.26 at low energy to >0.9 for energies above 400 meV. At low energies the sticking probability increases as the surface temperature and the normal component of the momentum are reduced, indicating dissociation proceeds via trapping into a molecular precursor state. The initial saturation coverage at room
APA, Harvard, Vancouver, ISO, and other styles
34

Persson, M., and J. Harris. "Trajectory approximation calculations of the sticking coefficient of Ne on Cu(100)." Surface Science 187, no. 1 (1987): 67–85. http://dx.doi.org/10.1016/s0039-6028(87)80122-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
35

Tichmann, Klaus, Udo von Toussaint, and Wolfgang Jacob. "Determination of the sticking coefficient of energetic hydrocarbon molecules by molecular dynamics." Journal of Nuclear Materials 420, no. 1-3 (2012): 291–96. http://dx.doi.org/10.1016/j.jnucmat.2011.10.018.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Marjunus, R. "Initial Sticking Coefficient Attenuation of Gases in Carbon Monoxide Sensing on Pt80Au14Ti6." Journal of Physics: Conference Series 1338 (October 2019): 012021. http://dx.doi.org/10.1088/1742-6596/1338/1/012021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

WILLETT, L. J., and S. K. LOYALKA. "Sticking Coefficient-Orchestrated Selection in a Kinetic Model for the First Origin." Journal of Theoretical Biology 218, no. 1 (2002): 13–33. http://dx.doi.org/10.1006/jtbi.2002.3060.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Kiyota, Yukihiro, and Taroh Inada. "Sticking coefficient of boron and phosphorus on silicon during vapor-phase doping." Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films 19, no. 5 (2001): 2441–45. http://dx.doi.org/10.1116/1.1387055.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Dietrich, H., P. Geng, K. Jacobi, and G. Ertl. "Sticking coefficient for dissociative adsorption of N2 on Ru single‐crystal surfaces." Journal of Chemical Physics 104, no. 1 (1996): 375–81. http://dx.doi.org/10.1063/1.470836.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Gates, S. M., C. M. Greenlief, D. B. Beach, and R. R. Kunz. "Reactive sticking coefficient of silane on the Si(111)-(7×7) Surface." Chemical Physics Letters 154, no. 6 (1989): 505–10. http://dx.doi.org/10.1016/0009-2614(89)87141-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Koleva, M. K., and L. A. Petrov. "The sticking coefficient dependence on the coverage at strong chemisorption and coadsorptton." Surface Science 223, no. 3 (1989): 383–92. http://dx.doi.org/10.1016/0039-6028(89)90667-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Persson, M., and J. Harris. "Trajectory approximation calculations of the sticking coefficient of Ne on Cu(100)." Surface Science Letters 187, no. 1 (1987): A317. http://dx.doi.org/10.1016/0167-2584(87)90868-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Koleva, M. K., and L. A. Petrov. "The sticking coefficient dependence on the coverage at strong chemisorption and coadsorption." Surface Science Letters 223, no. 3 (1989): A588. http://dx.doi.org/10.1016/0167-2584(89)90890-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
44

Khazov, A. V., and A. N. Unyanin. "The enhancement of cutting capacity of a grinding wheel when processing ductile steel blank parts by ultrasonic activation." Vektor nauki Tol'yattinskogo gosudarstvennogo universiteta, no. 1 (2021): 55–62. http://dx.doi.org/10.18323/2073-5073-2021-1-55-62.

Full text
Abstract:
The study aimed to identify the relations between the sticking intensity and ultrasonic vibrations (UV) used for processing and evaluate the wheels’ performance when grinding ductile materials blank parts. The authors carried out the numerical simulation of local temperatures and the 3H3M3F steel workpiece temperature when grinding by ultrasonic activation. The study determined that the application of ultrasonic vibrations with the amplitude of 3 µm causes the decrease in local temperatures by 13…40 %, and in blank part temperature – up to 20 %. The calculation identified that the activation o
APA, Harvard, Vancouver, ISO, and other styles
45

Faktor, D., M. Vesely, and R. Harman. "Virtual and real As4 sticking coefficient during the molecular beam epitaxy of GaAs." Applied Surface Science 68, no. 3 (1993): 353–55. http://dx.doi.org/10.1016/0169-4332(93)90256-b.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Schustereder, W., B. Rasul, N. Endstrasser, et al. "Sticking coefficient and SIMS of hydrocarbons on fusion relevant plasma-sprayed tungsten surfaces." Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms 258, no. 1 (2007): 278–81. http://dx.doi.org/10.1016/j.nimb.2006.12.130.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Meier, Matthias, and Achim von Keudell. "Temperature dependence of the sticking coefficient of methyl radicals at hydrocarbon film surfaces." Journal of Chemical Physics 116, no. 12 (2002): 5125. http://dx.doi.org/10.1063/1.1453966.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Mahieu, S., K. Van Aeken, D. Depla, D. Smeets, and A. Vantomme. "Dependence of the sticking coefficient of sputtered atoms on the target–substrate distance." Journal of Physics D: Applied Physics 41, no. 15 (2008): 152005. http://dx.doi.org/10.1088/0022-3727/41/15/152005.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Chiu, T. H., and S. N. G. Chu. "Is the cation sticking coefficient unity in molecular beam epitaxy at low temperature?" Applied Physics Letters 57, no. 14 (1990): 1425–27. http://dx.doi.org/10.1063/1.103455.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Robertson, Robert M., and Michel J. Rossi. "Sticking coefficient of the SiH2 free radical on a hydrogenated silicon‐carbon surface." Applied Physics Letters 54, no. 2 (1989): 185–87. http://dx.doi.org/10.1063/1.101442.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!