Journal articles on the topic 'Stochastic Newton algorithms'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Stochastic Newton algorithms.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Deng, Xi, Gonglin Yuan, and Yuehan Yang. "A Stochastic Inertial Limited Memory BFGS Algorithm Based on the Mathematical Model of Rural Pipeline Network and its Application in Machine Learning." Journal of Physics: Conference Series 2890, no. 1 (2024): 012001. http://dx.doi.org/10.1088/1742-6596/2890/1/012001.
Full textKovacevic, Ivana, Branko Kovacevic, and Zeljko Djurovic. "On strong consistency of a class of recursive stochastic Newton-Raphson type algorithms with application to robust linear dynamic system identification." Facta universitatis - series: Electronics and Energetics 21, no. 1 (2008): 1–21. http://dx.doi.org/10.2298/fuee0801001k.
Full textYousefi, Mahsa, and Ángeles Martínez. "Deep Neural Networks Training by Stochastic Quasi-Newton Trust-Region Methods." Algorithms 16, no. 10 (2023): 490. http://dx.doi.org/10.3390/a16100490.
Full textForneron, Jean-Jacques, and Serena Ng. "Estimation and Inference by Stochastic Optimization: Three Examples." AEA Papers and Proceedings 111 (May 1, 2021): 626–30. http://dx.doi.org/10.1257/pandp.20211038.
Full textCao, Pengfei, and Xionglin Luo. "Performance analysis of multi-innovation stochastic Newton recursive algorithms." Digital Signal Processing 56 (September 2016): 15–23. http://dx.doi.org/10.1016/j.dsp.2016.05.005.
Full textGhoshdastidar, Debarghya, Ambedkar Dukkipati, and Shalabh Bhatnagar. "Newton-based stochastic optimization using q-Gaussian smoothed functional algorithms." Automatica 50, no. 10 (2014): 2606–14. http://dx.doi.org/10.1016/j.automatica.2014.08.021.
Full textSilva, Maurício Rodrigues. "SOLUTION OF A KINEMATICS PROBLEM USING A HYBRID STOCHASTIC DETERMINISTIC ALGORITHM." ARACÊ 7, no. 6 (2025): 32743–55. https://doi.org/10.56238/arev7n6-212.
Full textFauzi, Aldi Rahmad Nur, Sobri Abusini, and Corina Karim. "Comparing Newton Raphson and Stochastic Gradient Descent Methods for Traffic Accident in Malang." CAUCHY: Jurnal Matematika Murni dan Aplikasi 10, no. 2 (2025): 519–32. https://doi.org/10.18860/cauchy.v10i2.33177.
Full textShao, Wei, and Guangbao Guo. "Multiple-Try Simulated Annealing Algorithm for Global Optimization." Mathematical Problems in Engineering 2018 (July 17, 2018): 1–11. http://dx.doi.org/10.1155/2018/9248318.
Full textWang, Qing, and Yang Cao. "Stochastic Finite Element Method for Nonlinear Dynamic Problem with Random Parameters." Advanced Materials Research 189-193 (February 2011): 1348–57. http://dx.doi.org/10.4028/www.scientific.net/amr.189-193.1348.
Full textGao, Guohua, Gaoming Li, and Albert Coburn Reynolds. "A Stochastic Optimization Algorithm for Automatic History Matching." SPE Journal 12, no. 02 (2007): 196–208. http://dx.doi.org/10.2118/90065-pa.
Full textWang, Yanshan, In-Chan Choi, and Hongfang Liu. "Generalized ensemble model for document ranking in information retrieval." Computer Science and Information Systems 14, no. 1 (2017): 123–51. http://dx.doi.org/10.2298/csis160229042w.
Full textIncorvaia, Gabriele, and Oliver Dorn. "Stochastic Optimization Methods for Parametric Level Set Reconstructions in 2D through-the-Wall Radar Imaging." Electronics 9, no. 12 (2020): 2055. http://dx.doi.org/10.3390/electronics9122055.
Full textClayton, R. P., and R. F. Martinez-Botas. "Application of generic algorithms in aerodynamic optimisation design procedures." Aeronautical Journal 108, no. 1090 (2004): 611–20. http://dx.doi.org/10.1017/s0001924000000440.
Full textCharalambous, C. D., and J. L. Hibey. "Exact filters for Newton–Raphson parameter estimation algorithms for continuous-time partially observed stochastic systems." Systems & Control Letters 42, no. 2 (2001): 101–15. http://dx.doi.org/10.1016/s0167-6911(00)00082-7.
Full textSochi, Taha. "Deterministic and stochastic algorithms for resolving the flow fields in ducts and networks using energy minimization." International Journal of Modern Physics C 27, no. 04 (2016): 1650036. http://dx.doi.org/10.1142/s0129183116500364.
Full textGoryainov, V. B., and W. M. Khing. "Comparison of Classical and Robust Estimates of Threshold Auto-regression Parameters." Mathematics and Mathematical Modeling, no. 5 (February 6, 2021): 33–44. http://dx.doi.org/10.24108/mathm.0520.0000224.
Full textIsabona, Joseph, Agbotiname Lucky Imoize, Oluwasayo Akinloye Akinwumi, et al. "Optimal Radio Propagation Modeling and Parametric Tuning Using Optimization Algorithms." Information 14, no. 11 (2023): 621. http://dx.doi.org/10.3390/info14110621.
Full textIlle, Nicole. "Orthogonal extended infomax algorithm." Journal of Neural Engineering 21, no. 2 (2024): 026032. http://dx.doi.org/10.1088/1741-2552/ad38db.
Full textHuang, Meihua, Pongsakorn Sunthrayuth, Amjad Ali Pasha, and Muhammad Altaf Khan. "Numerical solution of stochastic and fractional competition model in Caputo derivative using Newton method." AIMS Mathematics 7, no. 5 (2022): 8933–52. http://dx.doi.org/10.3934/math.2022498.
Full textRoeva, Olympia, and Dafina Zoteva. "Model Identification of E. coli Cultivation Process Applying Hybrid Crow Search Algorithm." Fermentation 10, no. 1 (2023): 12. http://dx.doi.org/10.3390/fermentation10010012.
Full textZiolkowski, Patryk. "Influence of Optimization Algorithms and Computational Complexity on Concrete Compressive Strength Prediction Machine Learning Models for Concrete Mix Design." Materials 18, no. 6 (2025): 1386. https://doi.org/10.3390/ma18061386.
Full textDoroshenko, A. Yu, D. V. Zhora, V. O. Haidukevych, Y. O. Haidukevych, and O. A. Yatsenko. "Forecasting electrical energy consumption for 24 hours ahead at country scale." PROBLEMS IN PROGRAMMING, no. 2-3 (September 2024): 147–54. https://doi.org/10.15407/pp2024.02-03.147.
Full textNzokem, Aubain Hilaire. "Pricing European Options under Stochastic Volatility Models: Case of Five-Parameter Variance-Gamma Process." Journal of Risk and Financial Management 16, no. 1 (2023): 55. http://dx.doi.org/10.3390/jrfm16010055.
Full textAhmed, Essam A., Tariq S. Alshammari, and Mohamed S. Eliwa. "Different Statistical Inference Algorithms for the New Pareto Distribution Based on Type-II Progressively Censored Competing Risk Data with Applications." Mathematics 12, no. 13 (2024): 2136. http://dx.doi.org/10.3390/math12132136.
Full textKetabchi, Saeed, and Malihe Behboodi-Kahoo. "Smoothing Techniques and Augmented Lagrangian Method for Recourse Problem of Two-Stage Stochastic Linear Programming." Journal of Applied Mathematics 2013 (2013): 1–8. http://dx.doi.org/10.1155/2013/735916.
Full textLiu, Hanger, Yan Li, and Maojun Zhang. "An Active Set Limited Memory BFGS Algorithm for Machine Learning." Symmetry 14, no. 2 (2022): 378. http://dx.doi.org/10.3390/sym14020378.
Full textStephen, Karl D., Juan Soldo, Colin Macbeth, and Mike A. Christie. "Multiple Model Seismic and Production History Matching: A Case Study." SPE Journal 11, no. 04 (2006): 418–30. http://dx.doi.org/10.2118/94173-pa.
Full textDavila, C. E. "A stochastic Newton algorithm with data-adaptive step size." IEEE Transactions on Acoustics, Speech, and Signal Processing 38, no. 10 (1990): 1796–98. http://dx.doi.org/10.1109/29.60110.
Full textLi, Heng, Jun Peng, Weirong Liu, Zhiwu Huang, and Kuo-Chi Lin. "A Newton-Based Extremum Seeking MPPT Method for Photovoltaic Systems with Stochastic Perturbations." International Journal of Photoenergy 2014 (2014): 1–13. http://dx.doi.org/10.1155/2014/938526.
Full textMilzarek, Andre, Fabian Schaipp, and Michael Ulbrich. "A Semismooth Newton Stochastic Proximal Point Algorithm with Variance Reduction." SIAM Journal on Optimization 34, no. 1 (2024): 1157–85. http://dx.doi.org/10.1137/22m1488181.
Full textBishwal, Jaya P. N. "MLE Evolution Equation for Fractional Diffusions and Berry-Esseen Inequality of Stochastic Gradient Descent Algorithm for American Option." European Journal of Statistics 2 (September 6, 2022): 13. http://dx.doi.org/10.28924/ada/stat.2.13.
Full textBercu, Bernard, Antoine Godichon, and Bruno Portier. "An Efficient Stochastic Newton Algorithm for Parameter Estimation in Logistic Regressions." SIAM Journal on Control and Optimization 58, no. 1 (2020): 348–67. http://dx.doi.org/10.1137/19m1261717.
Full textSun, Ruquan, Tianyou Li, Xiaofeng Zeng, Haishan Zou, Kai Chen, and Jing Lu. "Quasi-Newton simultaneous perturbation stochastic approximation algorithm for broadband active noise control (L)." Journal of the Acoustical Society of America 157, no. 6 (2025): 4461–67. https://doi.org/10.1121/10.0036893.
Full textMazzi, Claudio, Angelo Damone, Andrea Vandelli, Gastone Ciuti, and Milena Vainieri. "Stochastic Claims Reserve in the Healthcare System: A Methodology Applied to Italian Data." Risks 12, no. 2 (2024): 24. http://dx.doi.org/10.3390/risks12020024.
Full textSparks, A. G., and D. S. Bernstein. "Optimal Rejection of Stochastic and Deterministic Disturbances." Journal of Dynamic Systems, Measurement, and Control 119, no. 1 (1997): 140–43. http://dx.doi.org/10.1115/1.2801207.
Full textAhmed, Mohammed Moyed. "A Novel Variance Reduction Proximal Stochastic Newton Algorithm for Large-Scale Machine Learning Optimization." International Journal of Advanced Network, Monitoring and Controls 9, no. 4 (2024): 84–90. https://doi.org/10.2478/ijanmc-2024-0040.
Full textLiu, Qiang, Rang Ding Wang, Ying Zhu, and Cheng Tou Du. "An Algorithm to Eliminate Stochastic Jump Measurements of Ultrasonic Flow-Meter with Time Difference Method." Advanced Materials Research 267 (June 2011): 414–21. http://dx.doi.org/10.4028/www.scientific.net/amr.267.414.
Full textChu, Dejun, Changshui Zhang, Shiliang Sun, and Qing Tao. "Structured BFGS Method for Optimal Doubly Stochastic Matrix Approximation." Proceedings of the AAAI Conference on Artificial Intelligence 37, no. 6 (2023): 7193–201. http://dx.doi.org/10.1609/aaai.v37i6.25877.
Full textZhou, Bojian, Michiel C. J. Bliemer, Xuhong Li, and Di Huang. "A modified truncated Newton algorithm for the logit-based stochastic user equilibrium problem." Applied Mathematical Modelling 39, no. 18 (2015): 5415–35. http://dx.doi.org/10.1016/j.apm.2015.01.010.
Full textAltinoz, O. Tolga, and A. Egemen Yilmaz. "Multiobjective Hooke–Jeeves algorithm with a stochastic Newton–Raphson-like step-size method." Expert Systems with Applications 117 (March 2019): 166–75. http://dx.doi.org/10.1016/j.eswa.2018.09.033.
Full textKulkarni, Ankur A., and Vivek S. Borkar. "Finite dimensional approximation and Newton-based algorithm for stochastic approximation in Hilbert space." Automatica 45, no. 12 (2009): 2815–22. http://dx.doi.org/10.1016/j.automatica.2009.09.031.
Full textWang, Xiaozhou, and Xiaojun Chen. "Solving Two-Stage Stochastic Variational Inequalities by a Hybrid Projection Semismooth Newton Algorithm." SIAM Journal on Scientific Computing 45, no. 4 (2023): A1741—A1765. http://dx.doi.org/10.1137/22m1475302.
Full textLi, Changguo, Yongzhen Pei, Meixia Zhu, and Yue Deng. "Parameter Estimation on a Stochastic SIR Model with Media Coverage." Discrete Dynamics in Nature and Society 2018 (June 12, 2018): 1–7. http://dx.doi.org/10.1155/2018/3187807.
Full textChen, Minghan, Brandon D. Amos, Layne T. Watson, et al. "Quasi-Newton Stochastic Optimization Algorithm for Parameter Estimation of a Stochastic Model of the Budding Yeast Cell Cycle." IEEE/ACM Transactions on Computational Biology and Bioinformatics 16, no. 1 (2019): 301–11. http://dx.doi.org/10.1109/tcbb.2017.2773083.
Full textMontes, Francisco, and Jorge Mateu. "On the MLE for a spatial point pattern." Advances in Applied Probability 28, no. 2 (1996): 339. http://dx.doi.org/10.1017/s0001867800048382.
Full textAbdulkadirov, R. I., and P. A. Lyakhov. "A new approach to training neural networks using natural gradient descent with momentum based on Dirichlet distributions." Computer Optics 47, no. 1 (2023): 160–69. http://dx.doi.org/10.18287/2412-6179-co-1147.
Full textDing, Liang, and Jun Cao. "Electromagnetic Nondestructive Testing by Perturbation Homotopy Method." Mathematical Problems in Engineering 2014 (2014): 1–10. http://dx.doi.org/10.1155/2014/895159.
Full textChen, Pin-Bo, Gui-Hua Lin, and Zhen-Ping Yang. "An inexact semismooth Newton SAA-based algorithm for stochastic nonsmooth SOC complementarity problems with application to a stochastic power flow programming problem." Journal of Computational and Applied Mathematics 458 (April 2025): 116361. http://dx.doi.org/10.1016/j.cam.2024.116361.
Full textReyes, Jimmy, Inmaculada Barranco-Chamorro, Diego Gallardo, and Héctor Gómez. "Generalized Modified Slash Birnbaum–Saunders Distribution." Symmetry 10, no. 12 (2018): 724. http://dx.doi.org/10.3390/sym10120724.
Full text