Academic literature on the topic 'Stochastic ordinary differential equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stochastic ordinary differential equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Stochastic ordinary differential equations"
Ünal, Gazanfer. "Stochastic symmetries of Wick type stochastic ordinary differential equations." International Journal of Modern Physics: Conference Series 38 (January 2015): 1560079. http://dx.doi.org/10.1142/s2010194515600794.
Full textDeimling, K. "Sample solutions of stochastic ordinary differential equations∗." Stochastic Analysis and Applications 3, no. 1 (January 1985): 15–21. http://dx.doi.org/10.1080/07362998508809051.
Full textUbøe, Jan. "Measurements of ordinary and stochastic differential equations." Stochastic Processes and their Applications 89, no. 2 (October 2000): 315–31. http://dx.doi.org/10.1016/s0304-4149(00)00026-0.
Full textJust, Wolfram, and Herwig Sauermann. "Ordinary differential equations for nonlinear stochastic oscillators." Physics Letters A 131, no. 4-5 (August 1988): 234–38. http://dx.doi.org/10.1016/0375-9601(88)90018-7.
Full textLuo, Peng, and Falei Wang. "Stochastic differential equations driven by G-Brownian motion and ordinary differential equations." Stochastic Processes and their Applications 124, no. 11 (November 2014): 3869–85. http://dx.doi.org/10.1016/j.spa.2014.07.004.
Full textHiroshi, Kunita. "Convergence of stochastic flows connected with stochastic ordinary differential equations." Stochastics 17, no. 3 (May 1986): 215–51. http://dx.doi.org/10.1080/17442508608833391.
Full textPapanicolaou, G. C., and W. Kohler. "Asymptotic theory of mixing stochastic ordinary differential equations." Communications on Pure and Applied Mathematics 27, no. 5 (September 13, 2010): 641–68. http://dx.doi.org/10.1002/cpa.3160270503.
Full textSpigler, Renato. "Numerical simulation for certain stochastic ordinary differential equations." Journal of Computational Physics 74, no. 1 (January 1988): 244–62. http://dx.doi.org/10.1016/0021-9991(88)90079-4.
Full textAugustin, F., and P. Rentrop. "Stochastic Galerkin techniques for random ordinary differential equations." Numerische Mathematik 122, no. 3 (April 18, 2012): 399–419. http://dx.doi.org/10.1007/s00211-012-0466-8.
Full textFredericks, E., and F. M. Mahomed. "Symmetries of th-Order Approximate Stochastic Ordinary Differential Equations." Journal of Applied Mathematics 2012 (2012): 1–15. http://dx.doi.org/10.1155/2012/263570.
Full textDissertations / Theses on the topic "Stochastic ordinary differential equations"
Dalal, Nirav. "Applications of stochastic and ordinary differential equations to HIV dynamics." Thesis, University of Strathclyde, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435132.
Full textLOBAO, WALDIR JESUS DE ARAUJO. "SOLUTION OF ORDINARY, PARTIAL AND STOCHASTIC DIFFERENTIAL EQUATIONS BY GENETIC PROGRAMMING AND AUTOMATIC DIFFERENTIATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=29824@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
O presente trabalho teve como objetivo principal investigar o potencial de algoritmos computacionais evolutivos, construídos a partir das técnicas de programação genética, combinados com diferenciação automática, na obtenção de soluções analíticas, exatas ou aproximadas, para problemas de equações diferenciais ordinárias (EDO), parciais (EDP) e estocásticas. Com esse intuito, e utilizando-se o ambiente de programação Matlab, diversos algoritmos foram elaborados e soluções analíticas de diferentes tipos de equações diferenciais foram determinadas. No caso das equações determinísticas, EDOs e EDPs, foram abordados problemas de diferentes graus de dificuldade, do básico até problemas complexos como o da equação do calor e a equação de Schrödinger para o átomo de hélio. Os resultados obtidos são promissores, com soluções exatas para a grande maioria dos problemas tratados e que atestam, empiricamente, a consistência e robustez da metodologia proposta. Com relação às equações estocásticas, o trabalho apresenta uma nova proposta de solução e metodologia alternativa para a precificação de opções europeias, de compra e de venda, e realiza algumas aplicações para o mercado brasileiro, com ações da Petrobras e da Vale. Além destas aplicações, são apresentadas as soluções de alguns modelos clássicos, usualmente utilizados na modelagem de preços e retornos de ativos financeiros, como, por exemplo, o movimento Browniano geométrico. De uma forma geral, os resultados obtidos nas aplicações indicam que a metodologia proposta nesta tese pode ser uma alternativa eficiente na modelagem de problemas científicos complexos.
The main objective of this work was to investigate the potential of evolutionary algorithms, built from genetic programming techniques and combined with automatic differentiation, in obtaining exact or approximate analytical solutions for problems of ordinary (ODE), partial (PDE), and stochastic differential equations. To this end, and using the Matlab programming environment, several algorithms were developed and analytical solutions of different types of differential equations were determined. In the case of deterministic equations, ODE and PDE problems of varying degrees of difficulty were discussed, from basic to complex problems such as the heat equation and the Schrödinger equation for the helium atom. The results are promising, including exact solutions for the vast majority of the problems treated, which attest empirically the consistency and robustness of the proposed methodology. Regarding the stochastic equations, the work presents a new proposal for a solution and alternative methodology for European options pricing, buying and selling, and performs some applications for the Brazilian market, with stock prices of Petrobras and Vale. In addition to these applications, there are presented solutions of some classical models, usually used in the modeling of prices and returns of financial assets, such as the geometric Brownian motion. In a general way, the results obtained in applications indicate that the methodology proposed in this dissertation can be an efficient alternative in modeling complex scientific problems.
Moon, Kyoung-Sook. "Convergence rates of adaptive algorithms for deterministic and stochastic differential equations." Licentiate thesis, KTH, Numerical Analysis and Computer Science, NADA, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1382.
Full textHahne, Jan [Verfasser]. "Waveform-relaxation methods for ordinary and stochastic differential equations with applications in distributed neural network simulations / Jan Hahne." Wuppertal : Universitätsbibliothek Wuppertal, 2018. http://d-nb.info/1164103385/34.
Full textDing, Jie. "Structural and fluid analysis for large scale PEPA models, with applications to content adaptation systems." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/7975.
Full textRobacker, Thomas C. "Comparison of Two Parameter Estimation Techniques for Stochastic Models." Digital Commons @ East Tennessee State University, 2015. https://dc.etsu.edu/etd/2567.
Full textTribastone, Mirco. "Scalable analysis of stochastic process algebra models." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4629.
Full textWang, Shuo. "Analysis and Application of Haseltine and Rawlings's Hybrid Stochastic Simulation Algorithm." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82717.
Full textPh. D.
Bahník, Michal. "Stochastické obyčejné diferenciálni rovnice." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-232074.
Full textMARINO, GISELA DORNELLES. "COMPLEX ORDINARY DIFFERENTIAL EQUATIONS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10175@1.
Full textNeste texto estudamos diversos aspectos de singularidades de campos vetoriais holomorfos em dimensão 2. Discutimos detalhadamente o caso particular de uma singularidade sela-nó e o papel desempenhado pelas normalizações setoriais. Isto nos conduz à classificação analítica de difeomorfismos tangentes à identidade. seguir abordamos o Teorema de Seidenberg, tratando da redução de singularidades degeneradas em singularidades simples, através do procedimento de blow-up. Por fim, estudamos a demonstração do Teorema de Mattei-Moussu, acerca da existência de integrais primeiras para folheações holomorfas.
In the present text, we study the different aspects of singularities of holomorphic vector fields in dimension 2. We discuss in detail the particular case of a saddle-node singularity and the role of the sectorial normalizations. This leads us to the analytic classiffication of diffeomorphisms which are tangent to the identity. Next, we approach the Seidenberg Theorem, dealing with the reduction of degenerated singularities into simple ones, by means of the blow-up procedure. Finally, we study the proof of the well-known Mattei-Moussu Theorem concerning the existence of first integrals to holomorphic foliations.
Books on the topic "Stochastic ordinary differential equations"
Stochastic ordinary and stochastic partial differential equations: Transition from microscopic to macroscopic equations. New York: Springer Science+Business Media, 2008.
Find full textAn introduction to stochastic differential equations. Providence, Rhode Island: American Mathematical Society, 2013.
Find full textJamal, Najim, and SpringerLink (Online service), eds. Stochastic Analysis and Related Topics: In Honour of Ali Süleyman Üstünel, Paris, June 2010. Berlin, Heidelberg: Springer Berlin Heidelberg, 2012.
Find full textHerrmann, Samuel. Stochastic resonance: A mathematical approach in the small noise limit. Providence, Rhode Island: American Mathematical Society, 2014.
Find full textWu, Rangquan. Stochastic differential equations. Boston, Mass: Pitman Advanced, 1985.
Find full textservice), SpringerLink (Online, ed. Stochastic Differential Equations. Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg, 2011.
Find full textSobczyk, Kazimierz. Stochastic Differential Equations. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3712-6.
Full textCecconi, Jaures, ed. Stochastic Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-642-11079-5.
Full textØksendal, Bernt. Stochastic Differential Equations. Berlin, Heidelberg: Springer Berlin Heidelberg, 1998. http://dx.doi.org/10.1007/978-3-662-03620-4.
Full textBook chapters on the topic "Stochastic ordinary differential equations"
Griffiths, David F., and Desmond J. Higham. "Stochastic Differential Equations." In Numerical Methods for Ordinary Differential Equations, 225–41. London: Springer London, 2010. http://dx.doi.org/10.1007/978-0-85729-148-6_16.
Full textHan, Xiaoying, and Peter E. Kloeden. "Stochastic Differential Equations." In Random Ordinary Differential Equations and Their Numerical Solution, 29–36. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6265-0_3.
Full textHolden, Helge, Bernt Øksendal, Jan Ubøe, and Tusheng Zhang. "Applications to Stochastic Ordinary Differential Equations." In Stochastic Partial Differential Equations, 115–57. New York, NY: Springer New York, 2009. http://dx.doi.org/10.1007/978-0-387-89488-1_3.
Full textHolden, Helge, Bernt Øksendal, Jan Ubøe, and Tusheng Zhang. "Applications to stochastic ordinary differential equations." In Stochastic Partial Differential Equations, 105–40. Boston, MA: Birkhäuser Boston, 1996. http://dx.doi.org/10.1007/978-1-4684-9215-6_3.
Full textGrigoriu, Mircea. "Stochastic Ordinary Differential and Difference Equations." In Springer Series in Reliability Engineering, 237–335. London: Springer London, 2012. http://dx.doi.org/10.1007/978-1-4471-2327-9_7.
Full textGliklikh, Yuri E. "Stochastic Differential Equations on Manifolds." In Ordinary and Stochastic Differential Geometry as a Tool for Mathematical Physics, 75–98. Dordrecht: Springer Netherlands, 1996. http://dx.doi.org/10.1007/978-94-015-8634-4_3.
Full textMohammed, S. E. A. "Almost surely non-linear solutions of stochastic linear delay equations." In Ordinary and Partial Differential Equations, 270–75. Berlin, Heidelberg: Springer Berlin Heidelberg, 1985. http://dx.doi.org/10.1007/bfb0074735.
Full textAubin, Jean-Pierre. "Viability Theorems for Ordinary and Stochastic Differential Equations." In Viability Theory, 19–52. Boston: Birkhäuser Boston, 2009. http://dx.doi.org/10.1007/978-0-8176-4910-4_3.
Full textHan, Xiaoying, and Peter E. Kloeden. "Taylor Expansions for Ordinary and Stochastic Differential Equations." In Random Ordinary Differential Equations and Their Numerical Solution, 61–72. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6265-0_6.
Full textHan, Xiaoying, and Peter E. Kloeden. "Numerical Methods for Ordinary and Stochastic Differential Equations." In Random Ordinary Differential Equations and Their Numerical Solution, 101–8. Singapore: Springer Singapore, 2017. http://dx.doi.org/10.1007/978-981-10-6265-0_9.
Full textConference papers on the topic "Stochastic ordinary differential equations"
Horváth Bokor, Rózsa. "On stability for numerical approximations of stochastic ordinary differential equations." In The 7'th Colloquium on the Qualitative Theory of Differential Equations. Szeged: Bolyai Institute, SZTE, 2003. http://dx.doi.org/10.14232/ejqtde.2003.6.15.
Full textGuias, Flavius. "Stochastic Simulation Method for Linearly Implicit Ordinary Differential Equations." In 2015 Second International Conference on Mathematics and Computers in Sciences and in Industry (MCSI). IEEE, 2015. http://dx.doi.org/10.1109/mcsi.2015.52.
Full textLiang, Yuxuan, Kun Ouyang, Hanshu Yan, Yiwei Wang, Zekun Tong, and Roger Zimmermann. "Modeling Trajectories with Neural Ordinary Differential Equations." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/207.
Full textMkhize, T. G., G. F. Oguis, K. Govinder, S. Moyo, and S. V. Meleshko. "Group classification of systems of two linear second-order stochastic ordinary differential equations." In MODERN TREATMENT OF SYMMETRIES, DIFFERENTIAL EQUATIONS AND APPLICATIONS (Symmetry 2019). AIP Publishing, 2019. http://dx.doi.org/10.1063/1.5125077.
Full textKomori, Yoshio, Evelyn Buckwar, Theodore E. Simos, George Psihoyios, Ch Tsitouras, and Zacharias Anastassi. "Stochastic Runge-Kutta Methods with Deterministic High Order for Ordinary Differential Equations." In NUMERICAL ANALYSIS AND APPLIED MATHEMATICS ICNAAM 2011: International Conference on Numerical Analysis and Applied Mathematics. AIP, 2011. http://dx.doi.org/10.1063/1.3637935.
Full textGuias, Flavius. "Stochastic Picard-Runge-Kutta Solvers for Large Systems of Autonomous Ordinary Differential Equations." In 2017 Fourth International Conference on Mathematics and Computers in Sciences and in Industry (MCSI). IEEE, 2017. http://dx.doi.org/10.1109/mcsi.2017.55.
Full textBronstein, Manuel. "Linear ordinary differential equations." In Papers from the international symposium. New York, New York, USA: ACM Press, 1992. http://dx.doi.org/10.1145/143242.143264.
Full textBournez, Olivier. "Ordinary Differential Equations & Computability." In 2018 20th International Symposium on Symbolic and Numeric Algorithms for Scientific Computing (SYNASC). IEEE, 2018. http://dx.doi.org/10.1109/synasc.2018.00011.
Full textWang, Xiong, and Riheng Jia. "Mean Field Equilibrium in Multi-Armed Bandit Game with Continuous Reward." In Thirtieth International Joint Conference on Artificial Intelligence {IJCAI-21}. California: International Joint Conferences on Artificial Intelligence Organization, 2021. http://dx.doi.org/10.24963/ijcai.2021/429.
Full textDamasceno, Berenice C., and Luciano Barbanti. "Ordinary fractional differential equations are in fact usual entire ordinary differential equations on time scales." In 10TH INTERNATIONAL CONFERENCE ON MATHEMATICAL PROBLEMS IN ENGINEERING, AEROSPACE AND SCIENCES: ICNPAA 2014. AIP Publishing LLC, 2014. http://dx.doi.org/10.1063/1.4904589.
Full textReports on the topic "Stochastic ordinary differential equations"
Knorrenschild, M. Differential-algebraic equations as stiff ordinary differential equations. Office of Scientific and Technical Information (OSTI), May 1989. http://dx.doi.org/10.2172/6980335.
Full textJuang, Fen-Lien. Waveform methods for ordinary differential equations. Office of Scientific and Technical Information (OSTI), January 1990. http://dx.doi.org/10.2172/5005850.
Full textAslam, S., and C. W. Gear. Asynchronous integration of ordinary differential equations on multiprocessors. Office of Scientific and Technical Information (OSTI), July 1989. http://dx.doi.org/10.2172/5979551.
Full textDutt, Alok, Leslie Greengard, and Vladimir Rokhlin. Spectral Deferred Correction Methods for Ordinary Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, January 1998. http://dx.doi.org/10.21236/ada337779.
Full textChristensen, S. K., and G. Kallianpur. Stochastic Differential Equations for Neuronal Behavior. Fort Belvoir, VA: Defense Technical Information Center, June 1985. http://dx.doi.org/10.21236/ada159099.
Full textHerzog, K. J., M. D. Morris, and T. J. Mitchell. Bayesian approximation of solutions to linear ordinary differential equations. Office of Scientific and Technical Information (OSTI), November 1990. http://dx.doi.org/10.2172/6242347.
Full textOber, Curtis C., Roscoe Bartlett, Todd S. Coffey, and Roger P. Pawlowski. Rythmos: Solution and Analysis Package for Differential-Algebraic and Ordinary-Differential Equations. Office of Scientific and Technical Information (OSTI), February 2017. http://dx.doi.org/10.2172/1364461.
Full textDalang, Robert C., and N. Frangos. Stochastic Hyperbolic and Parabolic Partial Differential Equations. Fort Belvoir, VA: Defense Technical Information Center, July 1994. http://dx.doi.org/10.21236/ada290372.
Full textJiang, Bo, Roger Brockett, Weibo Gong, and Don Towsley. Stochastic Differential Equations for Power Law Behaviors. Fort Belvoir, VA: Defense Technical Information Center, January 2012. http://dx.doi.org/10.21236/ada577839.
Full textSharp, D. H., S. Habib, and M. B. Mineev. Numerical Methods for Stochastic Partial Differential Equations. Office of Scientific and Technical Information (OSTI), July 1999. http://dx.doi.org/10.2172/759177.
Full text