Dissertations / Theses on the topic 'Stochastic ordinary differential equations'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Stochastic ordinary differential equations.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Dalal, Nirav. "Applications of stochastic and ordinary differential equations to HIV dynamics." Thesis, University of Strathclyde, 2006. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.435132.
Full textLOBAO, WALDIR JESUS DE ARAUJO. "SOLUTION OF ORDINARY, PARTIAL AND STOCHASTIC DIFFERENTIAL EQUATIONS BY GENETIC PROGRAMMING AND AUTOMATIC DIFFERENTIATION." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2015. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=29824@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
O presente trabalho teve como objetivo principal investigar o potencial de algoritmos computacionais evolutivos, construídos a partir das técnicas de programação genética, combinados com diferenciação automática, na obtenção de soluções analíticas, exatas ou aproximadas, para problemas de equações diferenciais ordinárias (EDO), parciais (EDP) e estocásticas. Com esse intuito, e utilizando-se o ambiente de programação Matlab, diversos algoritmos foram elaborados e soluções analíticas de diferentes tipos de equações diferenciais foram determinadas. No caso das equações determinísticas, EDOs e EDPs, foram abordados problemas de diferentes graus de dificuldade, do básico até problemas complexos como o da equação do calor e a equação de Schrödinger para o átomo de hélio. Os resultados obtidos são promissores, com soluções exatas para a grande maioria dos problemas tratados e que atestam, empiricamente, a consistência e robustez da metodologia proposta. Com relação às equações estocásticas, o trabalho apresenta uma nova proposta de solução e metodologia alternativa para a precificação de opções europeias, de compra e de venda, e realiza algumas aplicações para o mercado brasileiro, com ações da Petrobras e da Vale. Além destas aplicações, são apresentadas as soluções de alguns modelos clássicos, usualmente utilizados na modelagem de preços e retornos de ativos financeiros, como, por exemplo, o movimento Browniano geométrico. De uma forma geral, os resultados obtidos nas aplicações indicam que a metodologia proposta nesta tese pode ser uma alternativa eficiente na modelagem de problemas científicos complexos.
The main objective of this work was to investigate the potential of evolutionary algorithms, built from genetic programming techniques and combined with automatic differentiation, in obtaining exact or approximate analytical solutions for problems of ordinary (ODE), partial (PDE), and stochastic differential equations. To this end, and using the Matlab programming environment, several algorithms were developed and analytical solutions of different types of differential equations were determined. In the case of deterministic equations, ODE and PDE problems of varying degrees of difficulty were discussed, from basic to complex problems such as the heat equation and the Schrödinger equation for the helium atom. The results are promising, including exact solutions for the vast majority of the problems treated, which attest empirically the consistency and robustness of the proposed methodology. Regarding the stochastic equations, the work presents a new proposal for a solution and alternative methodology for European options pricing, buying and selling, and performs some applications for the Brazilian market, with stock prices of Petrobras and Vale. In addition to these applications, there are presented solutions of some classical models, usually used in the modeling of prices and returns of financial assets, such as the geometric Brownian motion. In a general way, the results obtained in applications indicate that the methodology proposed in this dissertation can be an efficient alternative in modeling complex scientific problems.
Moon, Kyoung-Sook. "Convergence rates of adaptive algorithms for deterministic and stochastic differential equations." Licentiate thesis, KTH, Numerical Analysis and Computer Science, NADA, 2001. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-1382.
Full textHahne, Jan [Verfasser]. "Waveform-relaxation methods for ordinary and stochastic differential equations with applications in distributed neural network simulations / Jan Hahne." Wuppertal : Universitätsbibliothek Wuppertal, 2018. http://d-nb.info/1164103385/34.
Full textDing, Jie. "Structural and fluid analysis for large scale PEPA models, with applications to content adaptation systems." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/7975.
Full textRobacker, Thomas C. "Comparison of Two Parameter Estimation Techniques for Stochastic Models." Digital Commons @ East Tennessee State University, 2015. https://dc.etsu.edu/etd/2567.
Full textTribastone, Mirco. "Scalable analysis of stochastic process algebra models." Thesis, University of Edinburgh, 2010. http://hdl.handle.net/1842/4629.
Full textWang, Shuo. "Analysis and Application of Haseltine and Rawlings's Hybrid Stochastic Simulation Algorithm." Diss., Virginia Tech, 2016. http://hdl.handle.net/10919/82717.
Full textPh. D.
Bahník, Michal. "Stochastické obyčejné diferenciálni rovnice." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2015. http://www.nusl.cz/ntk/nusl-232074.
Full textMARINO, GISELA DORNELLES. "COMPLEX ORDINARY DIFFERENTIAL EQUATIONS." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2007. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=10175@1.
Full textNeste texto estudamos diversos aspectos de singularidades de campos vetoriais holomorfos em dimensão 2. Discutimos detalhadamente o caso particular de uma singularidade sela-nó e o papel desempenhado pelas normalizações setoriais. Isto nos conduz à classificação analítica de difeomorfismos tangentes à identidade. seguir abordamos o Teorema de Seidenberg, tratando da redução de singularidades degeneradas em singularidades simples, através do procedimento de blow-up. Por fim, estudamos a demonstração do Teorema de Mattei-Moussu, acerca da existência de integrais primeiras para folheações holomorfas.
In the present text, we study the different aspects of singularities of holomorphic vector fields in dimension 2. We discuss in detail the particular case of a saddle-node singularity and the role of the sectorial normalizations. This leads us to the analytic classiffication of diffeomorphisms which are tangent to the identity. Next, we approach the Seidenberg Theorem, dealing with the reduction of degenerated singularities into simple ones, by means of the blow-up procedure. Finally, we study the proof of the well-known Mattei-Moussu Theorem concerning the existence of first integrals to holomorphic foliations.
Ng, Chee Loong. "Parameter estimation in ordinary differential equations." Texas A&M University, 2004. http://hdl.handle.net/1969.1/388.
Full textGehrs, Kai Frederik. "Algorithmic methods for ordinary differential equations." [S.l.] : [s.n.], 2006. http://ubdata.uni-paderborn.de/ediss/17/2007/gehrs.
Full textBahar, Arifah. "Applications of stochastic differential equations and stochastic delay differential equations in population dynamics." Thesis, University of Strathclyde, 2005. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.415294.
Full textLagrange, John. "Power Series Solutions to Ordinary Differential Equations." TopSCHOLAR®, 2001. http://digitalcommons.wku.edu/theses/672.
Full textJorba, i. Monte Àngel. "On Quasiperiodic Perturbations of Ordinary Differential Equations." Doctoral thesis, Universitat de Barcelona, 1991. http://hdl.handle.net/10803/2122.
Full textIt is also known that, when the mass parameter "mi" (the mass of the small primary in the normalized units) is less than the Routh critical value "mi"(R) = 1/2(1 - square root (23/27) = 0.03852 ... (this is true in the Earth-Moon case) these points are linearly stable. Applying the KAM theorem to this case we can obtain that there exist invariant tori around these points. Now, if we restrict the motion of the particle to the plane of motion of the primaries we have that, inside each energy level, these tori split the phase space and this allows to prove that the equilateral points are stable (except for two values, "mi" = "mi"2 and "mi"= "mi"3 with low order resonances). In the spatial case, the invariant tori do not split the phase space and, due to the possible Arnold diffusion, these points can be unstable. But Arnold diffusion is a very slow phenomenon and we can have small neighbourhoods of "practical stability", that is, the particle will stay near the equilibrium point for very long time spans.
Unfortunately, the real Earth-Moon system is rather complex. In this case, due to the fact that that the motions of the Earth and the Moon are non circular (even non elliptical) and the strong influence of the Sun, the libration points do not exist as equilibrium points, and we need to define "instantaneous" libration points as the ones forming an equilateral triangle with the Earth and the Moon at each instant. If we perform some numerical integrations starting at (or near) these points we can see that the solutions go away after a short period of time, showing that these regions are unstable.
Two conclusions can be obtained from this fact. First: if we are interested in keeping a spacecraft there, we will need to use some kind of control. Second: the RTBP is not a good model for this problem} because the behaviour displayed by it is different from the one of the real system.
For these reasons, an improved model has been developed in order to study this problem. This model includes the main perturbations (due to the solar effect and to the noncircular motion of the Moon), assuming that they are quasi-periodic. This is a very good approximation for time spans of some thousands of years. It is not clear if this is true for longer time spans, but this matter will not be considered in this work. This model is in good agreement with the vector field of the solar system directly computed by means of the JPL ephemeris, for the time interval for which the JPL model is available.
The study of this kind of models is the main purpose of this work.
First of all, we have focused our attention on linear differential equations with constant coefficients, affected by a small quasi-periodic perturbation. These equations appear as variational equations along a quasi-periodic solution of a general equation and they also serve as an introduction to nonlinear problems.
The purpose is to reduce those systems to constant coefficients ones by means of a quasi-periodic change of variables, as the classical Floquet theorem does for periodic systems. It is also interesting to nave a way to compute this constant matrix, as well as the change of variables. The most interesting case occurs when the unperturbed system is of elliptic type. Other cases, as the hyperbolic one, have already been studied. We have added a parameter ("epsilon") in the system, multiplying the perturbation, such that if "epsilon" is equal to zero we recover the unperturbed system. In this case we have found that, under suitable hypothesis of non-resonance, analyticity and non-degeneracy with respect to "epsilon", it is possible to reduce the system to constant coefficients, for a cantorian set of values of "epsilon". Moreover, the proof is constructive in an iterative way. This means that it is possible to find approximations to the reduced matrix as well as to the change of variables that performs such reduction. These results are given in Chapter 1.
The nonlinear case is now going to be studied. We have then considered an elliptic equilibrium point of an autonomous ordinary differential equation, and we have added a small quasi-periodic perturbation, in such a way that the equilibrium point does not longer exist. As in the linear case, we have put a parameter ("epsilon") multiplying the perturbation. There is some "practical" evidence that there exists a quasi-periodic orbit, having the same basic frequencies that the perturbation, such that, when the perturbation goes to zero, this orbit goes to the equilibrium point. Our results show that, under suitable hypothesis, this orbit exists for a cantorian set of values of "epsilon". We have also found some results related to the stability of this orbit. These results are given in Chapter 2.
A remarkable case occurs when the system is Hamiltonian. Here it is interesting to know what happens to the invariant tori near these points when the perturbation is added. Note that the KAM theorem can not be applied directly due to the fact that the Hamiltonian is degenerated, in the sense that it has some frequencies (the ones of the perturbation) that have fixed values and they do not depend on actions in a diffeomorphic way. In this case, we have found that some tori still exist in the perturbed system. These tori come from the ones of the unperturbed system whose frequencies are non-resonant with those of the perturbation. The perturbed tori add these perturbing frequencies to the ones they already had. This can be described saying that the unperturbed tori are "quasi-periodically dancing" under the "rhythm" of the perturbation. These results can also be found in Chapter 2 and Appendix C.
The final point of this work has been to perform a study of the behaviour near the instantaneous equilateral libration points of the real Earth-Moon system. The purpose of those computations has been to find a way of keeping a spacecraft near these points in an unexpensive way. As it has been mentioned above in the real system these points are not equilibrium points, and their neighbourhood displays unstability. This leads us to use some control to keep the spacecraft there. It would be useful to have an orbit that was always near these points, because the spacecraft could be placed on it. Thus, only a station keeping would be necessary. The simplest orbit of this kind that we can compute is the one that replaces the equilibrium point. In Chapter 3, this computation has been carried out first for a planar simplified model and then for a spatial model. Then, the solution found for this last model has been improved, by means of numerical methods, in order to have a real orbit of the real system (here, by real system we mean the model of solar system provided by the JPL tapes). This improvement has been performed for a given (fixed) time-span. That is sufficient for practical purposes. Finally, an approximation to the linear stability of this refined orbit has been computed, and a very mild unstability has been found, allowing for an unexpensive station keeping. These results are given in Chapter 3 and Appendix A.
Finally, in Appendix B the reader can find the technical details concerning the way of obtaining the models used to study the neighbourhood of the equilateral points. This has been jointly developed with Gerard Gomez, Jaume Llibre, Regina Martinez, Josep Masdemont and Carles Simó.
We study several topics concerning quasi-periodic time-dependent perturbations of ordinary differential equations. This kind of equations appear in many applied problems of Celestial Mechanics, and we have used, as an illustration, the study of the behaviour near the Lagrangian points of the real Earth-Moon system. For this purpose, a model has been developed. It includes the main perturbations (due to the Sun and Moon), assuming that they are quasi-periodic.
Firstly, we deal with linear differential equations with constant coefficients, affected by a small quasi-periodic perturbation, trying to reduce then: to constant coefficients by means of a quasi-periodic change of variables. The most interesting case occurs when the unperturbed system is of elliptic type. We have added a parameter "epsilon" in the system, multiplying the perturbation, such that if "epsilon" is equal to zero we recover the unperturbed system. In this case, under suitable hypothesis of non-resonance, analyicity and non degeneracy with respect to "epsilon", it is possible to reduce the system to constant coefficients, for a cantorian set of values of "epsilon".
In the nonlinear case, we have considered an elliptic equilibrium point of an autonomous differential equation, and we have added a small quasi-periodic perturbation, in such a way that the equilibrium point does not exist. As in the linear case, we have put a parameter ("epsilon") multiplying the perturbation. Then, for a cantorian set of "epsilon", there exists a quasi-periodic orbit having the same basic frequencies as the perturbation, going to the equilibrium point when t: goes to zero. Some results concerning the stability of this orbit are stated. When the system is Hamiltonian, we have found that some tori still exist in the perturbed system. These tori come from the ones of the unperturbed system whose frequencies are non-resonant with those of the perturbation, adding these perturbing frequencies to the ones they already had.
Finally, a study of the behaviour near the Lagrangian points of the real Earth-Moon system is presented. The purpose has been to find the orbit replacing the equilibrium point. This computation has been carried out first for the model mentioned above and then it has been improved numerically, in order to have a real orbit of the real system. Finally, a study of the linear stability of this refined orbit has been done.
Måhl, Anna. "Separation of variables for ordinary differential equations." Thesis, Linköping University, Department of Mathematics, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-5620.
Full textIn case of the PDE's the concept of solving by separation of variables
has a well defined meaning. One seeks a solution in a form of a
product or sum and tries to build the general solution out of these
particular solutions. There are also known systems of second order
ODE's describing potential motions and certain rigid bodies that are
considered to be separable. However, in those cases, the concept of
separation of variables is more elusive; no general definition is
given.
In this thesis we study how these systems of equations separate and find that their separation usually can be reduced to sequential separation of single first order ODE´s. However, it appears that other mechanisms of separability are possible.
Sharples, Nicholas. "Some problems in irregular ordinary differential equations." Thesis, University of Warwick, 2012. http://wrap.warwick.ac.uk/55877/.
Full textHemmi, Mohamed Ali Carleton University Dissertation Mathematics and statistics. "Series solutions of nonlinear ordinary differential equations." Ottawa, 1994.
Find full textDareiotis, Anastasios Constantinos. "Stochastic partial differential and integro-differential equations." Thesis, University of Edinburgh, 2015. http://hdl.handle.net/1842/14186.
Full textAbourashchi, Niloufar. "Stability of stochastic differential equations." Thesis, University of Leeds, 2009. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.509828.
Full textZhang, Qi. "Stationary solutions of stochastic partial differential equations and infinite horizon backward doubly stochastic differential equations." Thesis, Loughborough University, 2008. https://dspace.lboro.ac.uk/2134/34040.
Full textSaravi, Masoud. "Numerical solution of linear ordinary differential equations and differential-algebraic equations by spectral methods." Thesis, Open University, 2007. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.446280.
Full textCarvalho, Alexandre Nolasco de. "Infinite dimensional dynamics described by ordinary differential equations." Diss., Georgia Institute of Technology, 1992. http://hdl.handle.net/1853/29585.
Full textKunze, Herbert Eduard. "Monotonicity properties of systems of ordinary differential equations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1997. http://www.collectionscanada.ca/obj/s4/f2/dsk3/ftp04/nq21361.pdf.
Full textTam, Kim M. "ODEASY, a query tool for ordinary differential equations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ36744.pdf.
Full text蔡澤鍔 and Chak-ngok Choy. "Lie's theory on solvability of ordinary differential equations." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1997. http://hub.hku.hk/bib/B3121518X.
Full textKhalaf, Bashir M. S. "Parallel numerical algorithms for solving ordinary differential equations." Thesis, University of Leeds, 1990. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.277599.
Full textWoods, Patrick Daniel. "Localisation in reversible fourth-order ordinary differential equations." Thesis, University of Bristol, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.299269.
Full textSun, Jian. "Visualizations of periodic orbits of ordinary differential equations." Cincinnati, Ohio : University of Cincinnati, 2002. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=ucin1012855340.
Full textChoy, Chak-ngok. "Lie's theory on solvability of ordinary differential equations /." Hong Kong : University of Hong Kong, 1997. http://sunzi.lib.hku.hk/hkuto/record.jsp?B19472675.
Full textSUN, JIAN. "VISUALIZATIONS OF PERIODIC ORBIT OF ORDINARY DIFFERENTIAL EQUATIONS." University of Cincinnati / OhioLINK, 2002. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1012855340.
Full textTung, Michael Ming-Sha. "Spline approximations for systems of ordinary differential equations." Doctoral thesis, Universitat Politècnica de València, 2013. http://hdl.handle.net/10251/31658.
Full textTESIS
Premiado
Zhang, Quanju. "Ordinary differential equation methods for some optimization problems." HKBU Institutional Repository, 2006. http://repository.hkbu.edu.hk/etd_ra/710.
Full textMu, Tingshu. "Backward stochastic differential equations and applications : optimal switching, stochastic games, partial differential equations and mean-field." Thesis, Le Mans, 2020. http://www.theses.fr/2020LEMA1023.
Full textThis thesis is related to Doubly Reflected Backward Stochastic Differential Equations (DRBSDEs) with two obstacles and their applications in zero-sum stochastic switching games, systems of partial differential equations, mean-field problems.There are two parts in this thesis. The first part deals with optimal stochastic switching and is composed of two works. In the first work we prove the existence of the solution of a system of DRBSDEs with bilateral interconnected obstacles in a probabilistic framework. This problem is related to a zero-sum switching game. Then we tackle the problem of the uniqueness of the solution. Finally, we apply the obtained results and prove that, without the usual monotonicity condition, the associated PDE system has a unique solution in viscosity sense. In the second work, we also consider a system of DRBSDEs with bilateral interconnected obstacles in the markovian framework. The difference between this work and the first one lies in the fact that switching does not work in the same way. In this second framework, when switching is operated, the system is put in the following state regardless of which player decides to switch. This difference is fundamental and largely complicates the problem of the existence of the solution of the system. Nevertheless, in the Markovian framework we show this existence and give a uniqueness result by the Perron’s method. Later on, two particular switching games are analyzed.In the second part we study a one-dimensional Reflected BSDE with two obstacles of mean-field type. By the fixed point method, we show the existence and uniqueness of the solution in connection with the integrality of the data
Lourenço, José. "Unifying the epidemiological, ecological and evolutionary dynamics of Dengue." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:cb4db8dd-5467-4c6e-8d3e-3e0fe738bc0a.
Full textHofmanová, Martina. "Degenerate parabolic stochastic partial differential equations." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2013. http://tel.archives-ouvertes.fr/tel-00916580.
Full textCurry, Charles. "Algebraic structures in stochastic differential equations." Thesis, Heriot-Watt University, 2014. http://hdl.handle.net/10399/2791.
Full textRajotte, Matthew. "Stochastic Differential Equations and Numerical Applications." VCU Scholars Compass, 2014. http://scholarscompass.vcu.edu/etd/3383.
Full textRassias, Stamatiki. "Stochastic functional differential equations and applications." Thesis, University of Strathclyde, 2008. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.486536.
Full textNie, Tianyang. "Stochastic differential equations with constraints on the state : backward stochastic differential equations, variational inequalities and fractional viability." Thesis, Brest, 2012. http://www.theses.fr/2012BRES0047.
Full textThis PhD thesis is composed of three main topics: The first one studies the existence and the uniqueness for fully coupled forward-backward stochastic differential equations (SDEs) with subdifferential operators in both the forward and the backward equations, and it discusses also a new type of associated parabolic partial variational inequalities with two subdifferential operators, one acting over the state domain and the other over the co-domain. The second topic concerns the investigation of backward SDEs without as well as with subdifferential operator, both driven by a fractional Brownian motion with Hurst parameter H> 1/2. It extends in a rigorous manner the results of Hu and Peng (SICON, 2009) to backward stochastic variational inequalities. Finally, the third topic focuses on a deterministic characterisation of the viability for SDEs driven by a fractional Brownian motion. The three research topics mentioned above have in common to study SDEs with state constraints. The discussion of each of the three topics is based on a publication and on submitted manuscripts, respectively
Caberlin, Martin D. "Stiff ordinary and delay differential equations in biological systems." Thesis, McGill University, 2002. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=29416.
Full textHynick, Amy Marie. "On pulse detection in initial value ordinary differential equations." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1999. http://www.collectionscanada.ca/obj/s4/f2/dsk1/tape9/PQDD_0021/MQ49375.pdf.
Full textSandberg, Mattias. "Approximation of Optimally Controlled Ordinary and Partial Differential Equations." Doctoral thesis, Stockholm, 2006. http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-4066.
Full textBrown, A. A. "Optimisation methods involving the solution of ordinary differential equations." Thesis, University of Hertfordshire, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374887.
Full textMacdonald, Benn. "Statistical inference for ordinary differential equations using gradient matching." Thesis, University of Glasgow, 2017. http://theses.gla.ac.uk/7987/.
Full textReddinger, Kaitlin Sue. "Numerical Stability & Numerical Smoothness of Ordinary Differential Equations." Bowling Green State University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1431597407.
Full textJenab, Bita. "Asymptotic theory of second-order nonlinear ordinary differential equations." Thesis, University of British Columbia, 1985. http://hdl.handle.net/2429/24690.
Full textScience, Faculty of
Mathematics, Department of
Graduate
Mélykúti, Bence. "Theoretical advances in the modelling and interrogation of biochemical reaction systems : alternative formulations of the chemical Langevin equation and optimal experiment design for model discrimination." Thesis, University of Oxford, 2010. http://ora.ox.ac.uk/objects/uuid:d368c04c-b611-41b2-8866-cde16b283b0d.
Full textYalman, Hatice. "Change Point Estimation for Stochastic Differential Equations." Thesis, Växjö University, School of Mathematics and Systems Engineering, 2009. http://urn.kb.se/resolve?urn=urn:nbn:se:vxu:diva-5748.
Full textA stochastic differential equationdriven by a Brownian motion where the dispersion is determined by a parameter is considered. The parameter undergoes a change at a certain time point. Estimates of the time change point and the parameter, before and after that time, is considered.The estimates were presented in Lacus 2008. Two cases are considered: (1) the drift is known, (2) the drift is unknown and the dispersion space-independent. Applications to Dow-Jones index 1971-1974 and Goldmann-Sachs closings 2005-- May 2009 are given.
Leng, Weng San. "Backward stochastic differential equations and option pricing." Thesis, University of Macau, 2003. http://umaclib3.umac.mo/record=b1447308.
Full text