Academic literature on the topic 'Stochastic reaction-Advection-Diffusion'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stochastic reaction-Advection-Diffusion.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Stochastic reaction-Advection-Diffusion"

1

Martí, A. C., F. Sagués, and J. M. Sancho. "Reaction-diffusion fronts under stochastic advection." Physical Review E 56, no. 2 (1997): 1729–32. http://dx.doi.org/10.1103/physreve.56.1729.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Gao, Peng. "Averaging principle for multiscale stochastic reaction‐diffusion‐advection equations." Mathematical Methods in the Applied Sciences 42, no. 4 (2018): 1122–50. http://dx.doi.org/10.1002/mma.5418.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Das, Subir, Anup Singh, and Seng Ong. "Numerical solution of fractional order advection-reaction diffusion equation." Thermal Science 22, Suppl. 1 (2018): 309–16. http://dx.doi.org/10.2298/tsci170624034d.

Full text
Abstract:
In this paper, the Laplace transform method is used to solve the advection-diffusion equation having source or sink term with initial and boundary conditions. The solution profile of normalized field variable for both conservative and non-conservative systems are calculated numerically using the Bellman method and the results are presented through graphs for different particular cases. A comparison of the numerical solution with the existing analytical solution for standard order conservative system clearly exhibits that the method is effective and reliable. The important part of the study is
APA, Harvard, Vancouver, ISO, and other styles
4

Garcia-Montoya, Nina, Julienne Kabre, Jorge E. Macías-Díaz, and Qin Sheng. "Second-Order Semi-Discretized Schemes for Solving Stochastic Quenching Models on Arbitrary Spatial Grids." Discrete Dynamics in Nature and Society 2021 (May 5, 2021): 1–19. http://dx.doi.org/10.1155/2021/5530744.

Full text
Abstract:
Reaction-diffusion-advection equations provide precise interpretations for many important phenomena in complex interactions between natural and artificial systems. This paper studies second-order semi-discretizations for the numerical solution of reaction-diffusion-advection equations modeling quenching types of singularities occurring in numerous applications. Our investigations particularly focus at cases where nonuniform spatial grids are utilized. Detailed derivations and analysis are accomplished. Easy-to-use and highly effective second-order schemes are acquired. Computational experiment
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Z., B. Rozovskii, M. V. Tretyakov, and G. E. Karniadakis. "A Multistage Wiener Chaos Expansion Method for Stochastic Advection-Diffusion-Reaction Equations." SIAM Journal on Scientific Computing 34, no. 2 (2012): A914—A936. http://dx.doi.org/10.1137/110849572.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Yang, Li, and Yanzhi Zhang. "Convergence of the spectral Galerkin method for the stochastic reaction–diffusion–advection equation." Journal of Mathematical Analysis and Applications 446, no. 2 (2017): 1230–54. http://dx.doi.org/10.1016/j.jmaa.2016.09.028.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

EL SAADI, NADJIA, and ALASSANE BAH. "NUMERICAL SIMULATIONS OF A NONLINEAR STOCHASTIC PARTIAL DIFFERENTIAL EQUATION MODELING PHYTOPLANKTON AGGREGATION." Journal of Biological Systems 23, no. 04 (2015): 1550032. http://dx.doi.org/10.1142/s0218339015500321.

Full text
Abstract:
In this paper, we are interested in the numerical simulation of a nonlinear stochastic partial differential equation (SPDE) arising as a model of phytoplankton aggregation. This SPDE consists of a diffusion equation with a chemotaxis term and a branching noise. We develop and implement a numerical scheme to solve this SPDE and present its numerical solutions for parameter values corresponding to real conditions in nature. Further, a comparison is made with two deterministic versions of the SPDE, that are advection–diffusion equations with linear and nonlinear reaction terms, to emphasize the e
APA, Harvard, Vancouver, ISO, and other styles
8

Zhang, Zhongqiang, Michael V. Tretyakov, Boris Rozovskii, and George E. Karniadakis. "Wiener Chaos Versus Stochastic Collocation Methods for Linear Advection-Diffusion-Reaction Equations with Multiplicative White Noise." SIAM Journal on Numerical Analysis 53, no. 1 (2015): 153–83. http://dx.doi.org/10.1137/130932156.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Drawert, Brian, Bruno Jacob, Zhen Li, Tau-Mu Yi, and Linda Petzold. "A hybrid smoothed dissipative particle dynamics (SDPD) spatial stochastic simulation algorithm (sSSA) for advection–diffusion–reaction problems." Journal of Computational Physics 378 (February 2019): 1–17. http://dx.doi.org/10.1016/j.jcp.2018.10.043.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Denaro, Giovanni, Davide Valenti, Bernardo Spagnolo, et al. "Dynamics of Two Picophytoplankton Groups in Mediterranean Sea: Analysis of the Deep Chlorophyll Maximum by a Stochastic Advection-Reaction-Diffusion Model." PLoS ONE 8, no. 6 (2013): e66765. http://dx.doi.org/10.1371/journal.pone.0066765.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Dissertations / Theses on the topic "Stochastic reaction-Advection-Diffusion"

1

Nguepedja, Nankep Mac jugal. "Modélisation stochastique de systèmes biologiques multi-échelles et inhomogènes en espace." Thesis, Rennes, École normale supérieure, 2018. http://www.theses.fr/2018ENSR0012/document.

Full text
Abstract:
Les besoins grandissants de prévisions robustes pour des systèmes complexes conduisent à introduire des modèles mathématiques considérant un nombre croissant de paramètres. Au temps s'ajoutent l'espace, l'aléa, les échelles de dynamiques, donnant lieu à des modèles stochastiques multi-échelles avec dépendance spatiale (modèles spatiaux). Cependant, l'explosion du temps de simulation de tels modèles complique leur utilisation. Leur analyse difficile a néanmoins permis, pour les modèles à une échelle, de développer des outils puissants: loi des grands nombres (LGN), théorème central limite (TCL)
APA, Harvard, Vancouver, ISO, and other styles
2

Pöschke, Patrick. "Influence of Molecular Diffusion on the Transport of Passive Tracers in 2D Laminar Flows." Doctoral thesis, Humboldt-Universität zu Berlin, 2018. http://dx.doi.org/10.18452/19526.

Full text
Abstract:
In dieser Arbeit betrachten wir das Strömungs-Diffusions-(Reaktions)-Problem für passive Markerteilchen, die in zweidimensionalen laminaren Strömungsmustern mit geringem thermischem Rauschen gelöst sind. Der deterministische Fluss umfasst Zellen in Form von Quadraten oder Katzenaugen. In ihnen tritt Rotationsbewegung auf. Einige der Strömungen bestehen aus wellenförmigen Bereichen mit gerader Vorwärtsbewegung. Alle Systeme sind entweder periodisch oder durch Wände begrenzt. Eine untersuchte Familie von Strömungen interpoliert kontinuierlich zwischen Reihen von Wirbeln und Scherflüssen.
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Stochastic reaction-Advection-Diffusion"

1

Zhang, Zhongqiang, and George Em Karniadakis. "Wiener chaos methods for linear stochastic advection-diffusion-reaction equations." In Numerical Methods for Stochastic Partial Differential Equations with White Noise. Springer International Publishing, 2017. http://dx.doi.org/10.1007/978-3-319-57511-7_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Hewson, J. C., A. R. Kerstein, and T. Echekki. "One-Dimensional Stochastic Simulation of Advection-Diffusion-Reaction Couplings in Turbulent Combustion." In IUTAM Symposium on Turbulent Mixing and Combustion. Springer Netherlands, 2002. http://dx.doi.org/10.1007/978-94-017-1998-8_9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

"SSAs for Reaction–Diffusion–Advection Processes." In Stochastic Modelling of Reaction–Diffusion Processes. Cambridge University Press, 2019. http://dx.doi.org/10.1017/9781108628389.008.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Stochastic reaction-Advection-Diffusion"

1

Karniadakis, George Em. Final Technical Report - Stochastic Analysis of Advection-Diffusion-reaction Systems with Applications to Reactive Transport in Porous Media - DE-FG02-07ER24818. Office of Scientific and Technical Information (OSTI), 2014. http://dx.doi.org/10.2172/1122803.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!