Dissertations / Theses on the topic 'Stochastic Reduced Order Model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Stochastic Reduced Order Model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Xie, Xuping. "Large Eddy Simulation Reduced Order Models." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/77626.
Full textPh. D.
Chabot, John Alva. "VALIDATING STEADY TURBULENT FLOW SIMULATIONS USING STOCHASTIC MODELS." Miami University / OhioLINK, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=miami1443188391.
Full textYuan, Mengfei. "Machine Learning-Based Reduced-Order Modeling and Uncertainty Quantification for "Structure-Property" Relations for ICME Applications." The Ohio State University, 2019. http://rave.ohiolink.edu/etdc/view?acc_num=osu1555580083945861.
Full textZavar, Moosavi Azam Sadat. "Probabilistic and Statistical Learning Models for Error Modeling and Uncertainty Quantification." Diss., Virginia Tech, 2018. http://hdl.handle.net/10919/82491.
Full textPh. D.
Griffiths, Laurence. "Reduced order model updating." Thesis, University of Bristol, 2014. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.685041.
Full textShrinivas, Srikrishna. "Reduced-order model identification for long-range prediction /." free to MU campus, to others for purchase, 2003. http://wwwlib.umi.com/cr/mo/fullcit?p1418064.
Full textLappo, Vladislav. "Real-time aero-icing simulations using reduced order model." Thesis, McGill University, 2010. http://digitool.Library.McGill.CA:8881/R/?func=dbin-jump-full&object_id=92384.
Full textKoc, Birgul. "Numerical Analysis for Data-Driven Reduced Order Model Closures." Diss., Virginia Tech, 2021. http://hdl.handle.net/10919/103202.
Full textDoctor of Philosophy
In many realistic applications, obtaining an accurate approximation to a given problem can require a tremendous number of degrees of freedom. Solving these large systems of equations can take days or even weeks on standard computational platforms. Thus, lower-dimensional models, i.e., reduced order models (ROMs), are often used instead. The ROMs are computationally efficient and accurate when the underlying system has dominant and recurrent spatial structures. Our contribution to reduced order modeling is adding a data-driven correction term, which carries important information and yields better ROM approximations. This dissertation's theoretical and numerical results show that the new ROM equipped with a closure term yields more accurate approximations than the standard ROM.
Ali, Naseem Kamil. "Thermally (Un-) Stratified Wind Plants: Stochastic and Data-Driven Reduced Order Descriptions/Modeling." PDXScholar, 2018. https://pdxscholar.library.pdx.edu/open_access_etds/4634.
Full textMoroz, Adam. "Reduced order modelling of bone resorption and formation." Thesis, De Montfort University, 2011. http://hdl.handle.net/2086/5409.
Full textCaraballo, Edgar J. "Reduced Order Model Development For Feedback Control Of Cavity Flows." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1225291592.
Full textDESHMUKH, DINAR V. "PHYSICS BASED REDUCED ORDER MODELS FOR FRICTIONAL CONTACTS." University of Cincinnati / OhioLINK, 2005. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1115997302.
Full textHaznedar, Baris. "Reduced order infinite horizon Model Predictive Control of sheet forming processes." Thesis, Georgia Institute of Technology, 2000. http://hdl.handle.net/1853/11222.
Full textSalmanoff, Jason. "A Finite Element, Reduced Order, Frequency Dependent Model of Viscoelastic Damping." Thesis, Virginia Tech, 1997. http://hdl.handle.net/10919/36518.
Full textInternally balanced model order reduction reduces the order of a state space model by considering the controllability/observability of each state. By definition, a model is internally balanced if its controllability and observability grammians are equal and diagonal. The grammians serve as a ranking of the controllability/observability of the states. The system can then be partitioned into most and least controllable/observable states; the latter can be statically reduced out of the system. The resulting model is smaller, but the transformed coordinates bear little resemblance to the original coordinates. A transformation matrix exists that transforms the reduced model back into original coordinates, and it is a subset of the transformation matrix leading to the balanced model. This whole procedure will be referred to as Yae's method within this thesis.
By combining GHM and Yae's method, a finite element code results that models nonproportional viscoelastic damping of a clamped-free, homogeneous, Euler-Bernoulli beam, and is of a size comparable to the original elastic finite element model. The modal data before reduction compares well with published GHM results, and the modal data from the reduced model compares well with both. The error between the impulse response before and after reduction is negligible. The limitation of the code is that it cannot model sandwich beam behavior because it is based on Euler-Bernoulli beam theory; it can, however, model a purely viscoelastic beam. The same method, though, can be applied to more sophisticated beam models. Inaccurate results occur when modes with frequencies beyond the range covered by the curve fit appear in the model, or when poor data are used. For good data, and within the range modeled by the curve fit, the code gives accurate modal data and good impulse response predictions.
Master of Science
Jarvis, Christopher Hunter. "Reduced Order Model Study of Burgers' Equation using Proper Orthogonal Decomposition." Thesis, Virginia Tech, 2012. http://hdl.handle.net/10919/31580.
Full textMaster of Science
Brendlinger, Jack W. "Development of Guidance Laws for a Reduced Order Dynamic Aircraft Model." Wright State University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=wright1516106170428761.
Full textHagerlind, Simon. "Empirical evaluation of a stochastic model for order book dynamics." Thesis, Uppsala universitet, Matematiska institutionen, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-181603.
Full textRodríguez, Cruz Yolanda Rocío [Verfasser]. "Model Order Reduction for Stochastic Systems / Yolanda Rocío Rodríguez Cruz." München : Verlag Dr. Hut, 2018. http://d-nb.info/1162767596/34.
Full textYuan, Tao. "Reduced order modeling for transport phenomena based on proper orthogonal decomposition." Texas A&M University, 2003. http://hdl.handle.net/1969.1/1470.
Full textZhou, Chao. "Model Uncertainty in Finance and Second Order Backward Stochastic Differential Equations." Palaiseau, Ecole polytechnique, 2012. https://pastel.hal.science/docs/00/77/14/37/PDF/Thesis_ZHOU_Chao_Pastel.pdfcc.
Full textThe main objective of this PhD thesis is to study some financial mathematics problems in an incomplete market with model uncertainty. In recent years, the theory of second order backward stochastic differential equations (2BSDEs for short) has been developed by Soner, Touzi and Zhang on this topic. In this thesis, we adopt their point of view. This thesis contains of four key parts related to 2BSDEs. In the first part, we generalize the 2BSDEs theory initially introduced in the case of Lipschitz continuous generators to quadratic growth generators. This new class of 2BSDEs will then allow us to consider the robust utility maximization problem in non-dominated models. In the second part, we study this problem for exponential utility, power utility and logarithmic utility. In each case, we give a characterization of the value function and an optimal investment strategy via the solution to a 2BSDE. In the third part, we provide an existence and uniqueness result for second order reflected BSDEs with lower obstacles and Lipschitz generators, and then we apply this result to study the problem of American contingent claims pricing with uncertain volatility. In the fourth part, we define a notion of 2BSDEs with jumps, for which we prove the existence and uniqueness of solutions in appropriate spaces. We can interpret these equations as standard BSDEs with jumps, under both volatility and jump measure uncertainty. As an application of these results, we shall study a robust exponential utility maximization problem under model uncertainty, where the uncertainty affects both the volatility process and the jump measure
Huang, Xinming. "Development of Reduced-Order Flame Models for Prediction of Combustion Instability." Diss., Virginia Tech, 2001. http://hdl.handle.net/10919/29763.
Full textPh. D.
Rai, Manish 1968. "Design and implementation of a reduced base model construction technique for stochastic activity networks." Thesis, The University of Arizona, 1990. http://hdl.handle.net/10150/277849.
Full textAntonelli, Jacopo. "Reduced order modeling of wind turbines in MatLab for grid integration and control studies." Thesis, Högskolan på Gotland, Institutionen för kultur, energi och miljö, 2012. http://urn.kb.se/resolve?urn=urn:nbn:se:hgo:diva-1865.
Full textGhosh, Rajat. "Transient reduced-order convective heat transfer modeling for a data center." Diss., Georgia Institute of Technology, 2013. http://hdl.handle.net/1853/50380.
Full textQin, Lihai. "Development of Reduced-Order Models for Lift and Drag on Oscillating Cylinders with Higher-Order Spectral Moments." Diss., Virginia Tech, 2004. http://hdl.handle.net/10919/29542.
Full textPh. D.
Fang, Chih. "A reduced-order meshless energy (ROME) model for the elastodynamics of mistuned bladed disks." Diss., Georgia Institute of Technology, 2002. http://hdl.handle.net/1853/12457.
Full textZigic, Dragan. "Homotopy methods for solving the optimal projection equations for the reduced order model problem." Thesis, This resource online, 1991. http://scholar.lib.vt.edu/theses/available/etd-11242009-020145/.
Full textMartin, Christopher Reed. "Reduced-Order Models for the Prediction of Unsteady Heat Release in Acoustically Forced Combustion." Diss., Virginia Tech, 2009. http://hdl.handle.net/10919/30238.
Full textPh. D.
Balabanov, Oleg. "Randomized linear algebra for model order reduction." Doctoral thesis, Universitat Politècnica de Catalunya, 2019. http://hdl.handle.net/10803/668906.
Full textCette thèse introduit des nouvelles approches basées sur l’algèbre linéaire aléatoire pour améliorer l’efficacité et la stabilité des méthodes de réduction de modèles basées sur des projections pour la résolution d’équations dépendant de paramètres. Notre méthodologie repose sur des techniques de projections aléatoires ("random sketching") qui consistent à projeter des vecteurs de grande dimension dans un espace de faible dimension. Un modèle réduit est ainsi construit de manière efficace et numériquement stable à partir de projections aléatoires de l’espace d’approximation réduit et des espaces des résidus associés. Notre approche permet de réaliser des économies de calcul considérables dans pratiquement toutes les architectures de calcul modernes. Par exemple, elle peut réduire le nombre de flops et la consommation de mémoire et améliorer l’efficacité du flux de données (caractérisé par l’extensibilité ou le coût de communication). Elle peut être utilisée pour améliorer l’efficacité et la stabilité des méthodes de projection de Galerkin ou par minimisation de résidu. Elle peut également être utilisée pour estimer efficacement l’erreur et post-traiter la solution du modèle réduit. De plus, l’approche par projection aléatoire rend viable numériquement une méthode d’approximation basée sur un dictionnaire, où pour chaque valeur de paramètre, la solution est approchée dans un sous-espace avec une base sélectionnée dans le dictionnaire. Nous abordons également la construction efficace (par projections aléatoires) de préconditionneurs dépendant de paramètres, qui peuvent être utilisés pour améliorer la qualité des projections de Galerkin ou des estimateurs d’erreur pour des problèmes à opérateurs mal conditionnés. Pour toutes les méthodes proposées, nous fournissons des conditions précises sur les projections aléatoires pour garantir des estimations précises et stables avec une probabilité de succès spécifiée par l’utilisateur. Pour déterminer la taille des matrices aléatoires, nous fournissons des bornes a priori ainsi qu’une procédure adaptative plus efficace basée sur des estimations a posteriori
Herath, Narmada Kumari. "Model order reduction for stochastic models of biomolecular systems with time-scale separation." Thesis, Massachusetts Institute of Technology, 2018. http://hdl.handle.net/1721.1/118083.
Full textCataloged from PDF version of thesis.
Includes bibliographical references (pages 177-183).
Biomolecular systems often involve reactions that take place on different time-scales, giving rise to 'slow' and 'fast' system variables. This property is widely used in the analysis of systems to obtain dynamical models with reduced dimensions. In deterministic systems, methods to obtain such reduced-order models are well defined by the singular perturbation or averaging techniques. However, model reduction of stochastic systems remains an ongoing area of research. In particular, existing model reduction methods for stochastic models of biomolecular systems lack rigorous error quantifications between the full and reduced dynamics. Furthermore, they only provide approximations for the slow variable dynamics, making the application of such methods to biomolecular systems difficult since the variables of interest are typically mixed (i.e., they encompass both fast and slow variables). In this thesis, we consider biomolecular systems modeled using the chemical Langevin equation (CLE) and the Linear Noise Approximation (LNA). Specifically, we consider biomolecular systems with linear propensity functions modeled by the CLE and systems with arbitrary propensity functions modeled by the LNA. For these systems, we obtain reduced-order models that approximate both the slow and fast variables under time-scale separation conditions. In particular, with suitable assumptions, we prove that the moments of the reduced-order models converge to those of the full systems as the time-scale separation becomes large. Our results further provide a rigorous justification for the accuracy of the stochastic total quasi-steady state approximation (tQSSA). We then consider two applications of these reduced-order models. In the first application, we analyze the trade-offs between modularity and signal noise in biomolecular networks. In the second application, we consider the application of the reduced-order LNA developed in this work to obtain reduced-order stochastic models for gene-regulatory networks.
by Narmada Kumari Herath.
Ph. D.
Grogan, Terence M. "Active damping of vibration in large space structures using a Karhunen-Loeve reduced order model." Thesis, Monterey, California. Naval Postgraduate School, 1989. http://hdl.handle.net/10945/26845.
Full textLarge space structures are difficult to control because of the high order of their mathematical models. The high order mathematical model makes the use of a reduced order model to control the structure desirable. The Karhunen-Loeve expansion along with Galerkin's method is used to generate a reduced order model. A control algorithm is achieved by applying linear quadratic regulator theory to the reduced order model. The Karhunen-Loeve basis functions or mode shapes must first be found to identify the reduced order model. Previous results have shown that in the limit as the structural damping approaches zero the Karhunen-Loeve mode shapes and natural mode shapes converge. Numerical techniques are applied to evaluate the structural damping required for convergence. Once the Karhunen-Loeve mode shapes are determined, the reduced order control model is applied to the full order system. The performance of various Karhunen-Loeve models is compared by measuring the modal energies in the controlled and uncontrolled modes. Keywords: Large space structure; Vibration damping. Theses. (JHD)
Shih, Shih-Ming. "Reduced-order model-reference adaptive system identification of large scale systems with discrete adaptation laws." Thesis, Massachusetts Institute of Technology, 1985. http://hdl.handle.net/1721.1/15253.
Full textMICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING.
Includes bibliographical references.
by Shih-Ming Shih.
Sc.D.
Richardson, Brian Ross. "A reduced-order model based on proper orthogonal decomposition for non-isothermal two-phase flows." [College Station, Tex. : Texas A&M University, 2008. http://hdl.handle.net/1969.1/ETD-TAMU-2623.
Full textDeshmukh, Rohit. "Model Order Reduction of Incompressible Turbulent Flows." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1471618549.
Full textMalik, Muhammad Haris. "Reduced order modeling for smart grids' simulation and optimization." Doctoral thesis, Universitat Politècnica de Catalunya, 2017. http://hdl.handle.net/10803/405730.
Full textCette these présente l'étude de la réduction de modeles pour les réseaux électriques et les réseaux de transmission. Un point de vue mathématique a été adopté pour la réduction de modeles. Les réseaux électriques sont des réseaux immenses et complexes, dont l'analyse et la conception nécessite la simulation et la résolution de grands modeles non-linéaires. Dans le cadre du développement de réseaux électriques intelligents (smart grids) avec une génération distribuée de puissance, l'analyse en temps réel de systemes complexes tels que ceux-ci nécessite des modeles rapides, fiables et précis. Dans la présente étude, nous proposons des méthodes de réduction de de modeles a la fois a priori et a posteriori, adaptées aux modeles dynamiques des réseaux électriques. Un accent particulier a été mis sur la dynamique transitoire des réseaux électriques, décrite par un modele oscillant nonlinéaire et complexe. La non-linéarité de ce modele nécessite une attention particuliere pour bénéficier du maximum d'avantages des techniques de réduction de modeles. lnitialement, des méthodes comme POD et LATIN ont été adoptées avec des degrés de succes divers. La méthode de TPWL, qui combine la POD avec des approximations linéaires multiples, a été prouvée comme étant la méthode de réduction de modeles la mieux adaptée pour le modele dynamique oscillant. Pour les lignes de transmission, un modele de parametres distribués en domaine fréquentiel est utilisé. Des modeles réduits de type PGD sont proposés pour le modele DP des lignes de transmission. Un probleme multidimensionnel entierement paramétrique a été formulé, avec les parametres électriques des lignes de transmission inclus comme coordonnées additionnelles de la représentation séparée. La méthode a été étendue pour étudier la solution du modele des lignes de transmission pour laquelle les parametres dépendent de la fréquence.
Esta tesis presenta un estudio de la reducción de modelos (MOR) para redes de transmisión y distribución de electricidad. El enfoque principal utilizado ha sido la dinámica transitoria y para la reducción de modelos se ha adoptado un punto de vista matemático. Las redes eléctricas son complejas y tienen un tamaño importante. Por lo tanto, el análisis y diseño de este tipo de redes mediante la simulación numérica, requiere la resolución de modelos no-lineales complejos. En el contexto del desarrollo de redes inteligentes, el objetivo es un análisis en tiempo real de sistemas complejos, por lo que son necesarios modelos rápidos, fiables y precisos. En el presente estudio se proponen diferentes métodos de reducción de modelos, tanto a priori como a posteriori, adecuados para modelos dinámicos de redes eléctricas. La dinámica transitoria de redes eléctricas, se describe mediante modelos dinámicos oscilatorios no-lineales. Esta no-linearidad del modelo necesita ser bien tratada para obtener el máximo beneficio de las técnicas de reducción de modelos. Métodos como la POD y la LATIN han sido inicialmente utilizados en esta problemática con diferentes grados de éxito. El método de TPWL, que combina la POD con múltiples aproximaciones lineales, ha resultado ser el mas adecuado para sistemas dinámicos oscilatorios. En el caso de las redes de transmisión eléctrica, se utiliza un modelo de parámetros distribuidos en el dominio de la frecuencia. Se propone reducir este modelo basándose en la PGD, donde los parámetros eléctricos de la red de transmisión son incluidos como coordenadas de la representación separada del modelo paramétrico. Este método es ampliado para representar la solución de modelos con parámetros dependientes de la frecuencia para las redes de transmisión eléctrica
Resseguier, Valentin. "Mixing and fluid dynamics under location uncertainty." Thesis, Rennes 1, 2017. http://www.theses.fr/2017REN1S004/document.
Full textThis thesis develops, analyzes and demonstrates several valuable applications of randomized fluid dynamics models referred to as under location uncertainty. The velocity is decomposed between large-scale components and random time-uncorrelated small-scale components. This assumption leads to a modification of the material derivative and hence of every fluid dynamics models. Through the thesis, the mixing induced by deterministic low-resolution flows is also investigated. We first applied that decomposition to reduced order models (ROM). The fluid velocity is expressed on a finite-dimensional basis and its evolution law is projected onto each of these modes. We derive two types of ROMs of Navier-Stokes equations. A deterministic LES-like model is able to stabilize ROMs and to better analyze the influence of the residual velocity on the resolved component. The random one additionally maintains the variability of stable modes and quantifies the model errors. We derive random versions of several geophysical models. We numerically study the transport under location uncertainty through a simplified one. A single realization of our model better retrieves the small-scale tracer structures than a deterministic simulation. Furthermore, a small ensemble of simulations accurately predicts and describes the extreme events, the bifurcations as well as the amplitude and the position of the ensemble errors. Another of our derived simplified model quantifies the frontolysis and the frontogenesis in the upper ocean. This thesis also studied the mixing of tracers generated by smooth fluid flows, after a finite time. We propose a simple model to describe the stretching as well as the spatial and spectral structures of advected tracers. With a toy flow but also with satellite images, we apply our model to locally and globally describe the mixing, specify the advection time and the filter width of the Lagrangian advection method, as well as the turbulent diffusivity in numerical simulations
Al, Akhras Hassan. "Automatic isogeometric analysis suitable trivariate models generation : Application to reduced order modeling." Thesis, Lyon, 2016. http://www.theses.fr/2016LYSEI047/document.
Full textThis thesis presents an effective method to automatically construct trivariate tensor-product spline models of complicated geometry and arbitrary topology. Our method takes as input a solid model defined by its triangulated boundary. Using cuboid decomposition, an initial polycube approximating the input boundary mesh is built. This polycube serves as the parametric domain of the tensor-product spline representation required for isogeometric analysis. The polycube's nodes and arcs decompose the input model locally into quadrangular patches, and globally into hexahedral domains. Using aligned global parameterization, the nodes are re-positioned and the arcs are re-routed across the surface in a way to achieve low overall patch distortion, and alignment to principal curvature directions and sharp features. The optimization process is based on one of the main contributions of this thesis: a novel way to design cross fields with topological (i.e., imposed singularities) and geometrical (i.e., imposed directions) constraints by solving only sparse linear systems. Based on the optimized polycube and parameterization, compatible B-spline boundary surfaces are reconstructed. Finally, the interior volumetric parameterization is computed using Coon's interpolation and the B-spline surfaces as boundary conditions. This method can be applied to reduced order modeling for parametric studies based on geometrical parameters. For models with the same topology but different geometries, this method allows to have the same representation: i.e., meshes (or parameterizations) with the same topology
Raghupathy, Arun Prakash. "Boundary-Condition-Independent Reduced-Order Modeling for Thermal Analysis of Complex Electronics Packages." University of Cincinnati / OhioLINK, 2009. http://rave.ohiolink.edu/etdc/view?acc_num=ucin1240536463.
Full textEftang, Jens Lohne. "Reduced basis methods for parametrized partial differential equations." Doctoral thesis, Norges teknisk-naturvitenskapelige universitet, Institutt for matematiske fag, 2011. http://urn.kb.se/resolve?urn=urn:nbn:no:ntnu:diva-12550.
Full textXia, Liang. "Towards optimal design of multiscale nonlinear structures : reduced-order modeling approaches." Thesis, Compiègne, 2015. http://www.theses.fr/2015COMP2230/document.
Full textHigh-performance heterogeneous materials have been increasingly used nowadays for their advantageous overall characteristics resulting in superior structural mechanical performance. The pronounced heterogeneities of materials have significant impact on the structural behavior that one needs to account for both material microscopic heterogeneities and constituent behaviors to achieve reliable structural designs. Meanwhile, the fast progress of material science and the latest development of 3D printing techniques make it possible to generate more innovative, lightweight, and structurally efficient designs through controlling the composition and the microstructure of material at the microscopic scale. In this thesis, we have made first attempts towards topology optimization design of multiscale nonlinear structures, including design of highly heterogeneous structures, material microstructural design, and simultaneous design of structure and materials. We have primarily developed a multiscale design framework, constituted of two key ingredients : multiscale modeling for structural performance simulation and topology optimization forstructural design. With regard to the first ingredient, we employ the first-order computational homogenization method FE2 to bridge structural and material scales. With regard to the second ingredient, we apply the method Bi-directional Evolutionary Structural Optimization (BESO) to perform topology optimization. In contrast to the conventional nonlinear design of homogeneous structures, this design framework provides an automatic design tool for nonlinear highly heterogeneous structures of which the underlying material model is governed directly by the realistic microstructural geometry and the microscopic constitutive laws. Note that the FE2 method is extremely expensive in terms of computing time and storage requirement. The dilemma of heavy computational burden is even more pronounced when it comes to topology optimization : not only is it required to solve the time-consuming multiscale problem once, but for many different realizations of the structural topology. Meanwhile we note that the optimization process requires multiple design loops involving similar or even repeated computations at the microscopic scale. For these reasons, we introduce to the design framework a third ingredient : reduced-order modeling (ROM). We develop an adaptive surrogate model using snapshot Proper Orthogonal Decomposition (POD) and Diffuse Approximation to substitute the microscopic solutions. The surrogate model is initially built by the first design iteration and updated adaptively in the subsequent design iterations. This surrogate model has shown promising performance in terms of reducing computing cost and modeling accuracy when applied to the design framework for nonlinear elastic cases. As for more severe material nonlinearity, we employ directly an established method potential based Reduced Basis Model Order Reduction (pRBMOR). The key idea of pRBMOR is to approximate the internal variables of the dissipative material by a precomputed reduced basis computed from snapshot POD. To drastically accelerate the computing procedure, pRBMOR has been implemented by parallelization on modern Graphics Processing Units (GPUs). The implementation of pRBMOR with GPU acceleration enables us to realize the design of multiscale elastoviscoplastic structures using the previously developed design framework inrealistic computing time and with affordable memory requirement. We have so far assumed a fixed material microstructure at the microscopic scale. The remaining part of the thesis is dedicated to simultaneous design of both macroscopic structure and microscopic materials. By the previously established multiscale design framework, we have topology variables and volume constraints defined at both scales
Braun, Mathias. "Reduced Order Modelling and Uncertainty Propagation Applied to Water Distribution Networks." Thesis, Bordeaux, 2019. http://www.theses.fr/2019BORD0050/document.
Full textWater distribution systems are large, spatially distributed infrastructures that ensure the distribution of potable water of sufficient quantity and quality. Mathematical models of these systems are characterized by a large number of state variables and parameter. Two major challenges are given by the time constraints for the solution and the uncertain character of the model parameters. The main objectives of this thesis are thus the investigation of projection based reduced order modelling techniques for the time efficient solution of the hydraulic system as well as the spectral propagation of parameter uncertainties for the improved quantification of uncertainties. The thesis gives an overview of the mathematical methods that are being used. This is followed by the definition and discussion of the hydraulic network model, for which a new method for the derivation of the sensitivities is presented based on the adjoint method. The specific objectives for the development of reduced order models are the application of projection based methods, the development of more efficient adaptive sampling strategies and the use of hyper-reduction methods for the fast evaluation of non-linear residual terms. For the propagation of uncertainties spectral methods are introduced to the hydraulic model and an intrusive hydraulic model is formulated. With the objective of a more efficient analysis of the parameter uncertainties, the spectral propagation is then evaluated on the basis of the reduced model. The results show that projection based reduced order models give a considerable benefit with respect to the computational effort. While the use of adaptive sampling resulted in a more efficient use of pre-calculated system states, the use of hyper-reduction methods could not improve the computational burden and has to be explored further. The propagation of the parameter uncertainties on the basis of the spectral methods is shown to be comparable to Monte Carlo simulations in accuracy, while significantly reducing the computational effort
Wang, Zhu. "Reduced-Order Modeling of Complex Engineering and Geophysical Flows: Analysis and Computations." Diss., Virginia Tech, 2012. http://hdl.handle.net/10919/27504.
Full textPh. D.
Truster, Nicholas Leigh. "A REDUCED-ORDER COMPUTATIONAL MODEL OF A TWO-PASS, CROSS-FLOW CONFORMAL HEAT EXCHANGER FOR AEROSPACE APPLICATIONS." Miami University / OhioLINK, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=miami1480535587051259.
Full textAuffredic, Jérémy. "A second order Runge–Kutta method for the Gatheral model." Thesis, Mälardalens högskola, Akademin för utbildning, kultur och kommunikation, 2020. http://urn.kb.se/resolve?urn=urn:nbn:se:mdh:diva-49170.
Full textLauzeral, Nathan. "Reduced order and sparse representations for patient-specific modeling in computational surgery." Thesis, Ecole centrale de Nantes, 2019. http://www.theses.fr/2019ECDN0062.
Full textThis thesis investigates the use of model order reduction methods based on sparsity-related techniques for the development of real-time biophysical modeling. In particular, it focuses on the embedding of interactive biophysical simulation into patient-specific models of tissues and organs to enhance medical images and assist the clinician in the process of informed decision making. In this context, three fundamental bottlenecks arise. The first lies in the embedding of the shape parametrization into the parametric reduced order model to faithfully represent the patient’s anatomy. A non-intrusive approach relying on a sparse sampling of the space of anatomical features is introduced and validated. Then, we tackle the problem of data completion and image reconstruction from partial or incomplete datasets based on physical priors. The proposed solution has the potential to perform scene registration in the context of augmented reality for laparoscopy. Quasi-real-time computations are reached by using a new hyperreduction approach based on a sparsity promoting technique. Finally, the third challenge concerns the representation of biophysical systems under uncertainty of the underlying parameters. It is shown that traditional model order reduction approaches are not always successful in producing a low dimensional representation of a model, in particular in the case of electrosurgery simulation. An alternative is proposed using a metamodeling approach. To this end, we successfully extend the use of sparse regression methods to the case of systems with stochastic parameters
Balmaseda, Aguirre Mikel. "Reduced order models for nonlinear dynamic analysis of rotating structures : Application to turbomachinery blades." Thesis, Lyon, 2019. http://www.theses.fr/2019LYSEI067.
Full textDans le présent travail, des modèles d’ordre réduits (ROM) indépendant des modèles ́eléments finis d’haute fidélité (FOM) ont ́eté d ́eveloppés pour l’etude de la dynamique non linéaire des structures en rotation. Les vibrations de la structure autour de l’équilibre précontraint induit par la rotation sont considérées comme non linéaires, améliorant l’approche linéarisée classique. Les forces généralisées non linéaires sont approximées par un polynôme d’ordre trois obtenu avec la procédure Stiffness Evaluation Procedure (STEP). Ici, une approche originale est proposée pour corriger les forces non linéaires à l’aide d’une base de forces non linéaires obtenue avec une décomposition orthogonale aux valeurs propres (POD). Ce modèle est nommé STEP avec Correction (StepC). Différents types de base réduite sont présentés et testés. Certaines de ces bases sont paramétrées en fonction de la vitesse de rotation, ce qui réduit considérablement le temps de construction du modèle réduit. Les résultats obtenus avec le modèle StepC ROM sont en bon accord avec le FOM et sont capables de reproduire le couplage en déplacement entre les dégrés de liberté de la structure. De plus, elles sont plus précises que les solutions ROM linéarisées classiques et que le modèle STEP ROM sans correction. Le modèle StepC ROM proposé offre le meilleur compromis entre précision et temps de construction du ROM
Brüderlin, Manuel Pedro [Verfasser], Marek [Akademischer Betreuer] Behr, and Kai-Uwe [Akademischer Betreuer] Schröder. "A procedure for reduced-order model based robust aeroelastic control / Manuel Pedro Brüderlin ; Marek Behr, Kai-Uwe Schröder." Aachen : Universitätsbibliothek der RWTH Aachen, 2019. http://d-nb.info/1193656699/34.
Full textSmith, Joshua Gabriel. "Loosely Coupled Hypersonic Airflow Simulation over a Thermally Deforming Panel with Applications for a POD Reduced Order Model." Miami University / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=miami1501161884638821.
Full textSinha, Aniruddha. "Development of reduced-order models and strategies for feedback control of high-speed axisymmetric jets." The Ohio State University, 2011. http://rave.ohiolink.edu/etdc/view?acc_num=osu1312886098.
Full textUrban, Ondřej. "Redukovaný model vírového proudění." Master's thesis, Vysoké učení technické v Brně. Fakulta strojního inženýrství, 2017. http://www.nusl.cz/ntk/nusl-316999.
Full text