Dissertations / Theses on the topic 'Stockage géologique du CO2'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Stockage géologique du CO2.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Chiquet, Pierre. "Mécanismes thermophysiques déterminant la sécurité du stockage géologique du CO2." Pau, 2006. http://www.theses.fr/2006PAUU3045.
Full textCO2 underground storage as an option for reducing greenhouse gases emissions consists of trapping industrial CO2 and injecting it into deep geological formations such as saline aquifers and hydrocarbons reservoirs. This study aims at assessing leakage processes and evaluating storage capacities. To this end, two leakage phenomena were considered, caprock capillary breakthrough and diffusional transport. The former involves interfacial properties of the brine/CO2/mineral system: brine/CO2 interfacial tension and rock wettability under dense CO2. Chapter one presents a series of IFT measurements performed at temperatures and pressures up to 45 MPa-110°C. Results show a great decrease of IFT with pressure in the 0-to-20 MPa range beyond what it tends to stabilize at values in the order of 25-30 mN. M-1. Chapter two deals with rock wettability. Dynamic contact angles were measured on muscovite mica and quartz up to 10 MPa. Results highlight an alteration of wettability with pressure that was accounted for by means of a DLVO based model. Direct capillary entry pressures on a clay stone sample are proposed in chapter three. Diffusion, is treated in chapter four. We used the Taylor dispersion method to measure D up to 40 MPa. Results indicate low values in the order of 2. 10-9 m2. S-1. Chapter five discuses the consequences of the previous parameters in terms of storage capacity
Issautier, Benoit. "Impact des hétérogénéités sédimentaires sur le stockage géologique du CO2." Thesis, Aix-Marseille 1, 2011. http://www.theses.fr/2011AIX10136.
Full textIn the CO2 storage context, heterogeneity has only been rarely considered in reservoir models to date. To address this key issue, the project aims at developing a workflow that manages the heterogeneity from the field observations up to the reservoir simulation. The characterisation of the Minjur Sandstone (a Triassic formation from Central Saudi Arabia) shows the crucial role of connectivity in the reservoir architecture, and the genetic link between the nature, location and connectivity of the sedimentary bodies in the sequence. Stemming from this study, a conceptual model was established and stochastically reproduced through an algorithm simulating models conditioned to a sedimentary history. Fifty scenarios were simulated, representing various connectivity degrees. Each of these scenarios is composed of two models, identical by their architecture but different in their internal sedimentary fill. This approach allows the study of the impact of the (a) reservoir bodies’ connectivity and (b) their internal sedimentary heterogeneity on the reservoir’s performances. The capacity estimates using a static calculation based on the available pore volumes reveals a mean capacity of 13 Mt (for a 25 x 25 km x 60 m semi finite aquifer at 1000m deep). The sedimentary heterogeneity (shaly deposits called oxbow lakes) is responsible for a 30% difference of capacity. The flow simulations confirm these results and show that the connectivity of the reservoir bodies creates a 23% capacity variation. Moreover, the heterogeneities tend to reduce the amount of CO2 able to reach the uppermost reservoir which may enhance the storage integrity
Dupraz, Sébastien. "Implication des microorganismes dans les processus de stockage géologique du CO2." Paris, Institut de physique du globe, 2008. http://www.theses.fr/2008GLOB0009.
Full textA first result of this thesis is the building and validation of a circulation reactor named BCC (Biomineralization Control Cell). The reactor has the functionality of a biological reactor and allows a monitoring of physico-chemical characteristics such as Eh, pH, electrical conductivity, spectrophotochemical parameters. It also has a capability of percolation through rock cores. It is a first step toward an analogical modeling of interactions between injected CO2 and deep biospheric components. Moreover, a new spectrophotochemical method for monitoring reduced sulfur species has been developed wich allows efficient monitoring of sulfate-reducing metabolisms. In the thesis, we have tested four metabolisms relevant to biomineralisation or biological assimilation of CO2: a reference ureolytic aerobic strain, Bacillus pasteurii, a sulfate-reducing bacterium, Desulfovibrio longus, a sulfate-reducing consortium (DVcons) and an homoacetogenic bacterium, Acetobacterium carbinolicum. In the case of Bacillus pasteurii, which is considered as a model for non photosynthetic prokaryotic carbonate biomineralization, we have demonstrated that the biological basification and carbonate biomineralization processes can be modelled acurately both analogically and numerically under conditions relevant to deep CO2storage, using a synthetic saline groundwater. We have shown that salinity has a positive effect on CO2 mineral trapping by this bacterium; we have measured the limits of the system in terms of CO2 pressure and we have shown that the carbonates that nucleate on intracellular calcium phosphates have specific carbon isotope signatures. The studied deep-subsurface strains (Desulfovibrio longus and Acetobacterium carbinolicum) as well as the sulfate-reducing consortium also have capabilities of converting CO2 into solid carbonates, much less efficent though than in the case of Bacillus pasteurii. However, once inoculated in synthetic saline groundwater and subjected to an H2/CO2 gas flow, Acetobacterium carbinolicum and the sulfate-reducing consortium show important capabilities of CO2 biological assimilation either as cellular biomass or as extra-cellular polymeric substances. These experiments also demonstrated the strong capabilites of H2 absorption by these bacterial systems, allowing a good quantitative measurement of this phenomenon in future studies about the fate of H2 in the subsurface
Guy, Nicolas. "Modélisation probabiliste de l'endommagement des roches : application au stockage géologique du CO2." Phd thesis, École normale supérieure de Cachan - ENS Cachan, 2010. http://tel.archives-ouvertes.fr/tel-00572783.
Full textLe, Campion Paul. "Impact d'un stockage géologique de CO2 sur les écosystèmes profonds des basaltes." Paris 7, 2014. http://www.theses.fr/2014PA077204.
Full textBasaltics rocks harbor diverse and active microbial populations when associated temperatures are consistent with their development. However, they are rarely considered in engineering operations as carbon capture and storage technology (CCS), white they can potentially alter the storage conditions and hence the fate at depth of the injected gas. During this PhD work the first monitoring cf the microbial diversity hosted in a deep basait aquifer (400-800 m depth) was carried out on a CCS pilot site at Hellisheidi in Iceland. Microbial communities have been described before gas injection and their evolution was monitored during two successive injections of 174. 6t of pure CO2 and 65t of CO2+112S+H2. Before the injections, phylogenetic affiliations suggest that most of the detected microorganisms are endemic to the aquifer. Metabolisms inferred for the OTUs identified are consistent with the geochemistry of wi ter, a result reinforced by statistical analysis, pointing out a potentiel link between the carbonated system and the structure of the microbial populations. Over the injections, analyses highlight variations in the composition of microbial communities that seem to be impacted only by the injection of pure CO2. Particularly, it records a "bloom" of a sequence affiliated to an autotrophic bacterium oxidazing Fe(II), Sideroxydans lithotrophicus. The stimulation of autotrophic metabolisms during the injection of pure CO2 updates the question of whether some of the CO2 was converted into biomass in the subsurface, hence providing an alternative way for CO2 storage
Ricci, Olivia. "Capture et stockage géologique du CO2 à partir de biomasse : quelles perspectives économiques ?" Thesis, Orléans, 2011. http://www.theses.fr/2011ORLE0506/document.
Full textIn a context of unbridled growth of global energy demand and environmental pressure in the fight againstglobal warming, this thesis studies one of the proposed technologies to reduce carbon dioxide (CO2)emissions: carbon capture and geological storage (CCS). We therefore consider the application of thistechnology to the production of bioenergies (BCCS) because this technology allows purifying theatmosphere while providing a clean energy alternative to fossil fuels. The first part of this work analyzesthe economic and environmental potential of BCCS. First, an economic and environmental assessment ofBCCS in the bioethanol production in France is conducted. Then, using the bottom-up optimization modelTIAM-FR, we study the global and regional potential of this technology in the electricity sector. Finally,the economic incentives that need to be provided to ensure BCCS deployment are highlighted. In thesecond part, a general equilibrium model is used to evaluate environmental policies. We construct thetheoretical model by introducing the CCS and BCCS as well as a wide range of economic instruments.The model is then calibrated to compare the effectiveness of environmental policy instruments at a globallevel and at a French level
Taquet, Noémie. "Monitoring géochimique de la géosphère et l'atmosphère : application au stockage géologique du CO2." Thesis, Université de Lorraine, 2012. http://www.theses.fr/2012LORR0252/document.
Full textThis study is based on the problematic of gas exchanges at the interface between the geosphere, biosphere, hydrosphere and atmosphere through the geochemical monitoring of gas applied to CO2 geological storage sites. Concerning the "Metrological" aspect, we developed and implemented an in situ continuous geochemical monitoring station, based on coupling FTIR/ Raman spectrometry for measuring soil gas (O2, N2, CO2, CH4 and H2O) close to the injection wells of Rousse 1 (CCS Total pilot, Lacq-Rousse, France). We also developed protocols to identify and quantify CO2, CH4, SO2, H2S in the atmosphere (plume) by passive remote sensing FTIR. On the "Monitoring" and "Modelling" aspects, the continuous recording of soil CO2 concentration during more than 7 seasonal cycles indicate that CO2 concentration in the soil was anti-correlated with changes in piezometric level of the groundwater. This correlation was used to model the limits of natural variability of CO2 content in the soil, which is a key to CCS sites monitoring. The main fluctuations in soil CO2 content was assigned to a dissolution/release process of CO2 by the perched water table, acting as a CO2 pump. The CO2 concentration at the near surface (+ 1 m) would be governed by changes of the soil CO2 content. FITR remote sensing measurement of atmospheric gases allowed for the first time to perform an experimental 3D simulation of CO2 layers on the injection site. This type of experimental simulation is a first step for the monitoring of gases in the atmosphere
Saber-Cherif, Walid. "Écoulements et rupture en milieu poreux déformable. Application au stockage géologique de CO2." Thesis, Paris 6, 2015. http://www.theses.fr/2015PA066535/document.
Full textUnderground carbon dioxyde (CO2) storage operation in deep geological formation like saline aquifers or gas reservoirs is considered to be a prospective solution to reduce the emission of greenhouse gases into the atmosphere. However CO2 sealing injection has to be assured for centuries. Once setting, the cement is a few centimeters thickness interface between the rock and the casing. This cementeous interface appears as the most critical point for the sealing and containment of CO2. A continuous stream of CO2 being injected into reservoir rock formation will cause in a region around the injection water desaturation and drying shrinkage of the reservoir and the cement paste and potentially hydraulic fracture. Therefore, the moisture balance with the CO2 reservoir induces water desaturation and drying shrinkage. Some local stresses are then expected because of the strain incompatibility between the cement and the steel casing and the high pressures levels. These stresses may result in a cracking process along the interface and in a secondary cracks network. In this context, we investigate how the poromechanical theory should be extended using a energy approach framework to describe the fracture mechanic induced by the fluid injection in a porous medium. The original idea of this approach consists in deriving the poro-mechanical equations introducing explicitly the multiphase flow. This model, aims at describing coupled flows in a damageable elastic porous medium, due to the combined influence of hydraulic and pressure gradients simultaneously imposed. The numerical implementation is based on a standard finite element discretization and adaptation of a eigenerosion model to simulate cracking
Tillier, Elodie. "Couplage réactions-transport pour la modélisation et la simulation du stockage géologique de CO2." Phd thesis, Université de Marne la Vallée, 2007. http://tel.archives-ouvertes.fr/tel-00206055.
Full textTillier, Élodie. "Couplage réactions-transport pour la modélisation et la simulation du stockage géologique de CO2." Université de Marne-la-Vallée, 2007. http://www.theses.fr/2007MARN0359.
Full textMorais, Sandy. "Applications des laboratoires géologiques sur puce pour les problématiques du stockage du CO2." Thesis, Bordeaux, 2016. http://www.theses.fr/2016BORD0403/document.
Full textCO2 geological storage in deep saline aquifers represents a mediation solution for reducing the anthropogenic CO2 emissions. Consequently, this kind of storage requires adequate scientific knowledge to evaluate injection scenarios, estimate reservoir capacity and assess leakage risks. In this context, we have developed and used high pressure/high temperature microfluidic tools to investigate the different mechanisms associated with CO2 geological storage in deep saline aquifers. The silicon-Pyrex 2D porous networks (Geological Labs On Chips) can replicate the reservoir p,T conditions (25 < T < 50°C, 50 < p < 10 MPa), geological and topological properties. This thesis manuscript first highlights the strategies developed during this work to fabricate the GLoCs and to access to global characteristics of our porous media such as porosity and permeability, which are later compared to numerical modelling results. The carbon dioxide detection in GLoCs mimicking p,T conditions of geological reservoirs by using the direct integration of optical fiber for IR spectroscopy is presented. I then detail the strategies for following the dissolution of carbonates in GLoCs with X-rays laminography experiments.Then, the manuscript focuses on the use of GLoCs to investigate each CO2 trapping mechanism at the pore scale. The direct optical visualization and image processing allow us to follow the evolution of the injected CO2/aqueous phase within the reservoir, including displacement mechanisms and pore saturation levels.Eventually, I present the ongoing works such as experiments with reactive brines and hydrates formations in porous media
Credoz, Anthony. "Réactivité des couvertures argileuses en présence de CO2 en conditions de stockage géologique profond : approche intégrée expérimentation-modélisation." Toulouse 3, 2009. http://thesesups.ups-tlse.fr/1747/.
Full textThis study offers a multi-scale vision of complex clayey caprocks reactivity and evolution. These formations are identified for the CO2 containment and sealing into the deep underground reservoir. From the experimental scale on purified clay minerals to integrative modeling at large space and time scales, the strategy developped allowed to identify the main geochemical processes, to check the good agreement between experiment and modeling, and to stress the operational impacts on long-term caprocks integrity. Carbonated cement alteration is likely to open caprock porosity and to create preferential reactive pathway for reactive fluid flow. Clay minerals alteration, including the illitization process, reduces the clay fraction volume but considerably limits the porosity increase. The illitization process in acidic conditions determined experimentally and by modeling at small and large scale, is coupled with silica precipitation. On the fundamental side, new kinetic parameters were determined for clay minerals and highlights new structural transformations. On the operational side, this study contributes to the acquisition of qualitative data (long-term reactive pathways of clayey caprocks, coupled carbonates/clays reactivity) and quantitative data (CO2 penetration distance into the caprock) to improve the performance and safety assessment of CO2 capture and geological storage
Haeberlein, Florian. "Méthodes de décomposition de domaine espace temps pour le transport réactif --- Application au stockage géologique de CO2." Phd thesis, Université Paris-Nord - Paris XIII, 2011. http://tel.archives-ouvertes.fr/tel-00634507.
Full textPortier, Sandrine. "Solubilité de co2 dans les saumures des bassins sédimentaires : Application au stockage de co2 (gaz à effet de serre)." Université Louis Pasteur (Strasbourg) (1971-2008), 2005. https://publication-theses.unistra.fr/public/theses_doctorat/2005/PORTIER_Sandrine_2005.pdf.
Full textNikoosokhan, Saeid. "Stockage géologique du dioxyde de carbone dans les veines de charbon : du matériau au réservoir." Phd thesis, Université Paris-Est, 2012. http://pastel.archives-ouvertes.fr/pastel-00787962.
Full textBrochard, Laurent. "Poromécanique et adsorption : application au gonflement du charbon lors du stockage géologique du carbone." Phd thesis, Université Paris-Est, 2011. http://pastel.archives-ouvertes.fr/pastel-00672319.
Full textLanglais, Carole. "Impacts géochimiques de la présence d’oxygène sur les saumures en conditions de stockage géologique de CO2 : caractérisation de solubilités." Thesis, Pau, 2013. http://www.theses.fr/2013PAUU3034/document.
Full textTOTAL has chosen the path of geological storage of CO2 in Béarn flue gases from driver oxycombustion which are injected into a depleted natural gas reservoir. However, the implementation of this technology requires knowledge of physical processes and physico-chemical interactions between the phases from capture to storage, especially as the injected CO2 flow is not pure. It may contain a few percent of oxygen. The impact of the injection of a gas mixture (CO2 + O2) on reservoir rock and in the presence of coverage of brine is studied. An experimental pilot was developed and instrumented to acquire thermodynamic data (solubility and density) and kinetics of degradation of solids essential for modeling and simulations of thermodynamic and reactive three-phase system (gas-brine-rock) in storage conditions (T <150°C and P <200 bar)
Jobard, Emmanuel. "Modélisation expérimentale du stockage géologique du CO2 : étude particulière des interfaces entre ciment de puits, roche reservoir et roche couverture." Thesis, Université de Lorraine, 2013. http://www.theses.fr/2013LORR0013/document.
Full textIn the framework of the CO2 storage, it is crucial to ensure the integrity of the solicited materials in order to guarantee the permanent confinement of the sequestrated fluids. Using experimental simulation the purpose of this work is to study the mechanisms which could be responsible for the system destabilization and could lead CO2 leakage from the injection well. The first experimental model, called COTAGES allows studying the effects of the thermal destabilisation caused by the injection of a fluid at 25°C in a hotter reservoir (submitted to the geothermal gradient). This device allows demonstrating an important matter transfer from the cold area (30°C) toward the hot area (100°C). These results highlight the importance of the injection temperature on the injectivity properties and on the possible petrophysical evolutions of the near well. The second model, called ?Sandwich?, allow studying the behaviour of the interface between caprock (COX argillite) and well cement. Indeed, interfaces between the different rock and the well materials represent a weakness area (differential reactivity, fracturing?). Batch experiments carried out with this device in presence of CO2 show the fracturing of the interface caused by the early carbonation of the cement. The third experimental model, called MIRAGES is an innovative device which allows injecting continuously CO2 in a core sample. Samples made of Lavoux limestone and well cement reproduce the injection well at 1/20 scale. Results show a partial filling of the inter-oolithic porosity close to the injection well, and also the carbonation of the cement according to an assemblage of calcite/aragonite
Chahal, Radwan. "Capteurs optiques en fibres de verre de chalcogénure dopées terres rares appliqués à la surveillance du stockage géologique de CO2." Thesis, Rennes 1, 2015. http://www.theses.fr/2015REN1S066/document.
Full textThe increase of CO2 emissions causes global warming harmful to ecological balances in earth. In this context, CO2 storage in geological formations is an interesting way to limit the consequences of these emissions. However, this solution requires continuous monitoring to detect possible leaks at storage area. The presented work involves the development of an optical fiber sensor based on chalcogenide glasses for the CO2 gas detection operating in the infrared. This detection is based on a luminescent phenomenon, acts as a remote source and partly absorbed in the presence of CO2. The development of these fiber optic asked important work in materials science and spectroscopic characterization. A prototype was manufactured and successfully used in the field during measurement campaigns in situ
Ricardo, Rhenals Garrido David. "Impact de l'interaction CO2 supercritique/H2O sur la structure poreuse et les propriétés de transport d'un analogue de roche de couverture des sites de stockage géologique du CO2." Ecole nationale d'ingénieurs (Saint-Etienne), 2014. http://www.theses.fr/2014ENISE027.
Full textCO₂geological storage is considered as a technique which reduces large quantities of CO₂rejeted in the atmosphere because of many human activities. The effectiveness of this technique is mainly related to the storage capacity as well as its safety. The safety of this operation is primarily based on the conservation of petro-physical properties of the caprock, which prevents CO₂migration towards the surface. However, when CO₂reaches the reservoir / caprock interface due to buoyancy effects, the interaction between interstitial fluid and injected fluid creates a serie of geochemical reactions affecting the properties of containment of the caprock, which is generally characterized by low transport properties. This work aims to evaluate the geochemical impact of supercritical CO₂/H₂O interaction on the porous structure and transport properties by using a combined experimental and modeling approach. Batch experiments at representatives storage geological conditions have conducted for 6. 87 months. The assessment changes of the porous structure and the transport properties of the samples before and after degradation have been conducted by gas adsorption techniques. Porous structure and transport properties analysis have been conducted by using classical thermodynamics models and probabilistic approaches. The results suggest an overall increase of the porous volume of the samples during all degradation experiment. Otherwise, the serults obtained by the probabilistic approach suggest that the increase of the samples porous volume was not correlated with a permeability increase. The geochemical modeling interpretation of the degradation experiments suggests that a combination of dissolution and precipitation reactions was the primarily cause of this phenomenon. Finally, the evolution of the porous volume of our samples has been correctly predicted by geochemical modeling suggesting that the increase of the porous volume was mainly consequence of calcite dissolution
Charrière, Delphine. "Caractérisation de la sorption de gaz sur les charbons. Application au stockage géologique du dioxyde de carbone dans les veines de charbon." Thesis, Toulouse, INPT, 2009. http://www.theses.fr/2009INPT026G/document.
Full textThe CO2 and CH4 sorption onto coals has been characterized in laboratory in order to study the feasibility of CO2 geological storage in coal seams. The diffusion and sorption of CO2 and CH4 on coals of Lorraine and Gardanne basins have been performed from a gravimetric method until a pressure of 5 MPa and for temperatures from 283 to 333 K. The kinetics of sorption depends on the nature of gas, the grain size of coal, the gas pressure and the temperature. It can be represented by a unipore model based on Fick's law. The CO2 diffusion coefficient on coal is higher than that of CH4 and is about 10–12 m2 s–1. At equilibrium, the temperature, pressure, nature of gas, composition of coal and water content are parameters that influence the sorption capacity of coals. The coal of Lorraine basin has a greater capacity for sorption of CO2 (1.6 mmol g–1, ~ 36 m3 t–1) than that of coal of Gardanne basin. The model of Dubinin-Astakhov based on a pore volume filling, has a best fit of sorption data that Dubinin-Radushkevich and Langmuir models. Finally, the different mechanisms of water sorption on coal have been identified and can better interpret the influence of moisture on the gas sorption capacity. From all results, an assessment of capacity storage is discussed. This indicates the need for further studies in order to improve the permeability of the coal seams across the storage site for better gas injectivity
Rubert, Yolaine. "Contribution à la connaissance des migrations de CO2 naturel dans le Bassin du Sud-Est de la France : enseignements pour le stockage géologique du CO2 dans les réservoirs sédimentaires." Phd thesis, Université d'Orléans, 2009. http://tel.archives-ouvertes.fr/tel-00452660.
Full textRubert, Yolaine. "Contribution à la connaissance des migrations de CO2 naturel dans le Bassin du S-E de la France : enseignements pour le stockage géologique du CO2 dans les réservoirs sédimentaires." Phd thesis, Université d'Orléans, 2009. http://tel.archives-ouvertes.fr/tel-00410996.
Full textMangane, Papa Ousmane. "Caractérisation des changements dans les propriétés de réservoir carbonaté induits par une modification dans la structure des pores lors d'une injection de CO2 : application au stockage géologique de CO2." Thesis, Montpellier 2, 2013. http://www.theses.fr/2013MON20003/document.
Full textGeological storage of CO2 is one of diverse technologies being explored to reduce atmospheric carbon from industrial processes (i.e. fossil fuel combustion). One of the specific features of CO2 injection is the possibility of geochemical reactions (dissolution – precipitation) between mobile reactive brine (e.g. formation water enriched in CO2) and the host rock during the spatial and temporal evolution of CO2. That leads to modifications in the pore structure which in turn change the flow dynamics of the reservoir (e.g. the permeability k). Then, theses structural modifications can largely control the injectivity, so that the pressure field in the reservoir and also the CO2 propagation. Accordingly, it is crucial to explore the changes in the reservoir properties (e.g. structural and hydrodynamic) induced during a CO2 injection and specially the relationships between them (e.g. k or reactive surface-Sr versus porosity- , k versus rock heterogeneity), for developing predictive modelling tools of the transport and reaction processes occurring during a CO2 injection and reliable risk assessment. In the case of carbonate rocks, the application of the predictive models of transport and reaction is still challenging, because of their high heterogeneity so that the incertitude in the reaction kinetics of carbonate minerals. From this perspective, we realized brine-enriched in CO2 percolation experiments through carbonate rock samples in thermodynamic conditions expected during CO2 injection in deep reservoirs (T = 100°C et P =12 MPa). The permeability changes k(t) is monitored during the experiments and the porosity variation is calculated from chemical analyses of the sampled outlet fluids, using ICP-EAS. The pore structure modifications are investigated from high resolution X ray micro tomography images acquired from the synchrotron of Grenoble (ESRF). Depending to the dissolution regime, controlled by the reservoir rock fabric and the chemical composition of the brine (e.g. PCO2), we observed that a modification of pore structure can either improve (atypical result in dissolution context) or impair the value of the permeability k. Keywords: CO2 geological storage, transport, geochemical reactions, pore structure, hydrodynamic properties, brine enriched in CO2 percolation experiments, X ray microtomography
Sissman, Olivier. "Séquestration minérale du CO2 dans les basaltes et les roches ultrabasiques : impact des phases secondaires silicatées sur le processus de carbonatation." Paris, Institut de physique du globe, 2013. http://www.theses.fr/2013GLOB0001.
Full textBouquet, Sarah. "Étude des interférences entre injections multiples de CO2 dans un aquifère salin profond à l'échelle industrielle." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2013. http://pastel.archives-ouvertes.fr/pastel-00960619.
Full textLiu, Na. "Microfluidique supercritique pour la compréhension des systèmes CO2 / eau sous pression et en température : Application à la gestion durable de la filière CO2." Phd thesis, Université Sciences et Technologies - Bordeaux I, 2013. http://tel.archives-ouvertes.fr/tel-00986265.
Full textNdjaka, Ange. "THERMOPHYSICAL PROCESSES AND REACTIVE TRANSPORT MECHANISMS INDUCED BY CO2 INJECTION IN DEEP SALINE AQUIFERS." Electronic Thesis or Diss., Pau, 2022. http://www.theses.fr/2022PAUU3003.
Full textCO2 storage in deep saline aquifers has been recognised as one of the most promising ways to mitigate atmospheric CO2 emissions and thus respond to the challenges of climate change. However, the injection of CO2 into the porous medium considerabely disturbs its thermodynamic equilibrium. The near-well injection zone is particularly impacted with a strong geochemical reactivity associated with intense heat exchanges. This has a major impact on injectivity of the reservoir and the integrity of the storage. In addition to these effects, there is the added complexity of the presence of two immiscible phases: brine (wetting fluid) and CO2 (non-wetting fluid). These effects lead to highly coupled Thermo-Hydro-Mechanical-Chemical (THMC) processes, whose interpretations have not yet been completed nor formally implemented into the numerical models.This thesis work, combining experimental measurements and numerical modelling, focuses on the study of the coupling between the thermal gradients and the diffusive reactive transport processes taking place in the deep saline aquifers, particularly in the near-well injection zone. We studied the exchanges between a cold anhydrous CO2 phase flowing in high permeability zones, and a hot salty aqueous phase trapped in the porosity of the rock. The strategy of the study starts with a simple approach in a free medium without CO2 flow, in order to study the reactivity of saline solutions of different chemical compositions, and to evaluate the impact of a thermal gradient on this reaction network.We have developed an experimental cell that allow to superimpose 2 to 3 layers of solution of different concentration and chemical composition. The analysis of the light scattered by the non-equilibrium fluctuations of concentration and temperature allows to obtain the diffusion coefficients of salts in water. Our results are in good agreement with literature values. Regarding the study of diffusive reactive transport, the analysis of the contrast of the images allowed us to highlight the fact that the precipitation of minerals, obtained by superimposing two aqueous layers of reactive, is accompanied by a convective instability that fades with time. Numerical modelling of the experimental results with PHREEQC using a heterogeneous multicomponent diffusion approach has allowed us to account for these convective instabilities. Different temperature gradients were applied to the reactive system, while keeping a mean temperature of 25 °C. The experimental observations and numerical interpretations swhow that the temperature gradient has no significant influence on the behaviour of the system. Subsequently, we numerically studied the desiccation process (evaporation of water) at the interface between a brine trapped in the rock porosity and the CO2 flowing in a draining pore structure, simulating the conditions of the Dogger aquifer of the Paris basin. A model coupling the evaporation of water in the CO2 stream and the heterogeneous multicomponent diffusion of salts predicts the appearance of a mineral assemblage at the evaporation front, mainly composed by halite and anhydrite. Modelling this phenomenon at the reservoir scale would requires taking into account the evaporation rate as a function of the CO2 injection rate and the change in porosity at the interface.This thesis work has made it possible to highlight several physicochemical, thermophysical and diffusive transport phenomena at phase interfaces. This opens up new perspectives for improving numerical approaches and large-scale modelling, in particular of near-well injection of CO2 and geological storage reservoirs, and supports future industrial developments and technologies for the ecological transition
Bernachot, Isabelle. "Utilisation des isotopes stables du chlore pour le traçage des processus générés par l'injection de CO2 au sein d'un réservoir géologique." Thesis, Sorbonne Paris Cité, 2017. http://www.theses.fr/2017USPCC016/document.
Full textCO2 injection in a reservoir leads to physicochemical processes which can have harmful consequences on the reservoir integrity due to porosity and permeability alteration. In this work, we propose to test the possibility that stable chlorine isotopes could be used as a geochemical tool to assess these effects. Indeed, chloride is a conservative and a major component of reservoir brines, and it is already known that several processes can modify the ratio of its two stable isotopes δ37Cl (diffusion, ionic filtration, salt precipitation or phase change). To test this possibility, several types of experiments were performed to investigate the effects generated by a CO2 injection on Cl-isotopes. Autoclave experiments have shown that Cl can be solubilized in CO2SC, but the amounts would be too low to modify the isotopic signal of brines in case of any fractionation process. Reactive brine migration experiments by advection (ICARE1 percolation apparatus in Montpellier University) and diffusion (diffusion cell developed at IFPEN) were also conducted. No δ37Cl was observed during percolation (conservative advective transport) and the effects of diffusion remain to be investigated with regard to the evolution of rock porosity and permeability. Drying and salt precipitation experiments on porous media have shown that Cl concentrations and δ37Cl values can give information about transport processes during water evaporation. These experimental results allowed us to identify the processes capable of modifying the δ37Cl signal, and that Cl-isotopes can be of use for the monitoring of CO2 storage site
Saliya, Kanssoune. "Modélisation des couplages chimio-poromécaniques appliquée au stockage de CO2 dans le charbon." Thesis, Université de Lorraine, 2014. http://www.theses.fr/2014LORR0102/document.
Full textThe geological storage of CO2 in aquifers reservoirs such as limestone and sandstone, coal is a possible way to reduce greenhouse gas emission into the atmosphere. However, the injection of CO2 may modify petrophysical (porosity and permeability), mineralogical (transformations) and mechanical (deformations, strength) properties of reservoir rocks (limestone, sandstone, coal). In the case of coal, the injection of CO2 can also induce matrix swelling due to adsorption processes. The focus of this thesis is to translate in terms of phenomenological models, the behaviors and chemo-poromechanical coupling of reservoir rocks of coal type. In this work, we focused particularly on the study of CO2 injection into coal. For this, two models of homogenized coal porosity have been developed by taking into account the adsorption phenomenon, known to be the main mechanism of production or sequestration of CO2 in many coal reservoirs. The first model allows the study of the poroelastic behavior of coal in the case of a single injection of CO2, and the second model allows the study of the poroelastic behavior of coal in the case of an injection of CO2 with methane CH4 recovery. The adsorption process is classically modelled using Langmuir’s isotherm (for one gas in the first model and for two gases in the second model). The implementation of these models in Code_Aster (a fully coupled Thermo-Hydro-Mechanical analysis code for structures calculations, developed by Electricity of France - EDF) allowed us to make numerical simulations of CO2 storage in coal. For a single injection of CO2 into coal (first model), the coal matrix behaved in two different ways: it swells (resulting in the decrease of coal porosity) when the adsorption phenomenon is taken into account and shrinks (resulting in the increase of coal porosity) otherwise. Being in good agreement with the results in specialized literature in this field, it shows the ability of the model to predict the poroelastic behaviour of coal to CO2 injection. Also with the first model, we studied particularly through numerical simulations the influence of coal’s hydro-mechanical properties (Biot’s coefficient, bulk modulus), Langmuir’s adsorption parameters and the initial liquid pressure in rock mass during CO2 injection in coal. In the case of methane recovery (second model), a coupling of Code_Aster and a reactive transport code, HYTEC (Hydrological Transport coupled with Equilibrium Chemistry, developed by Mines Paris Tech) was needed to handle the above calculation of partial pressures of the two gases (CO2 and CH4) at each time step. Digital development work on the two computers codes (Code_Aster and HYTEC) was then necessary. This thesis proposed a method of coupling between the two codes whose techniques are widely described in the manuscript
Rillard, Jean. "CO2 perturbation in aquifers : reaction kinetics and metals behavior." Thesis, Lyon 1, 2013. http://www.theses.fr/2013LYO10033/document.
Full textThe aim of this thesis was to investigate hydrogeochemical perturbation induced by CO2 in natural aquifers. In a first step, we used chemical data from natural CO2-rich hydrothermal water. We studied variation of fluid chemical composition as a function of CO2 content in order to evaluate reactivity of minerals composing the initial reservoir. Fluid chemical analyses showed decrease in pH, and systematic enrichment in alkalinity and major cations correlated to increase in CO2 content. Chemical reaction was studied by kinetic approach to estimate variation of mineral reactive surface area as function of CO2 perturbation. Results showed that mineral reactive surface area could varied by two to four orders of magnitude as a function of CO2 perturbation. In a second step a field experiment of injection of water saturated with CO2 in aquifer has been carried out. Analysis of groundwater composition before and after injection allowed to study the impact of CO2 perturbation on water-rock interaction processes. A particular focus was made on dissolved metals behavior. Results showed a decrease in pH (from 7.3 to 5.7), involved with enrichment in alkalinity by a factor two, and by approximately one order of magnitude for dissolved metals (Fe, Mn, Zn) and by a factor two for As. Saturation index showed that dissolution of metals oxide such as ferrihydrite was correlated to iron release. These results showed that, in our field experimental conditions, CO2 perturbation induced an enrichment in dissolved elements with more significant effect on dissolved metals. These results highlight the importance of proper physic-chemical characterization of fluid and reservoir rock and in-situ kinetic of reaction in the eventual option of Co2 geological storage
Bouquet, Sarah. "Étude des interférences entre injections multiples de CO2 dans un aquifère salin profond à l'échelle industrielle." Electronic Thesis or Diss., Paris, ENMP, 2013. http://www.theses.fr/2013ENMP0059.
Full textThis thesis studies the regional-scale response of an aquifer system to a massive CO2 injection. Industrial-scale CO2 injections into deep saline aquifers affect natural groundwater systems by generating short-term to medium-term pressure gradient perturbations. To evaluate contamination risks and interference risks between injection projects or other uses of underground space, modelling studies become necessary. The geological parameters of underground formations are also to be taken into consideration as they certainly influence the injection reponse. But, saline aquifers are generally poorly-characterized which adds uncertainties to an already complex system. This thesis aims to explore uncertainties in pressure perturbations and CO2 migration predictions, and their consequences in terms of CO2 storage feasibility studies. Firstly, modelling and geological uncertainties have been tested on 2D conceptual models. This step, based on simpler models than 3D ones, allows a fast uncertainties discrimination and save computational time. Hundreds of stochastic realizations are generated to define the influence of permeability spatial variability. To limit the number of flow simulations, selection procedures of realizations are applied and tested. Selections are derived from fast-calculations methods called "`proxy-response"'. Secondly, once these methods have been 2D tested and validated, and once a number of uncertainties have been eliminated, these methods and related ones are applied to the underground system 3D modelling. The 3D models have been built based on available data from an existing Paris Basin hydrogeological model. Several injection scenarios have been considered and tested. Permeability spatial variability and pore compressibility are the two main parameters chosen to evaluate the injection response. This last step allows a better definition of interference risks between the major uncertainties from geological parameters and injection-related physical parameters
Regnault, Olivier. "Etude de la réactivité de minéraux purs en présence de CO2 supercritique. Mesure de la cinétique carbonatation de la portlandite." Paris, ENMP, 2008. http://pastel.archives-ouvertes.fr/pastel-00004063.
Full textHe efficiency of geological CO2 storage will rely on trapping mechanisms and good sealing properties of the caprock and the eventual ac wells on the long term. A series of experiments has been devised to observe and quantify the reactivity of portlandite with supercritical CO2 The portlandite has been chosen as a key component of calcium-rich cement for its interest in borehole cement degradation. Initial carbona rates have been measured under different conditions: pressure 160 bar, temperatures 80, 120, and 200° C and with various amount of water SEM observations show that the reacting fluid state (absence or presence of liquid phase) controls strongly the carbonation behaviour an reaction path. A specific geochemical model has been developed in order to account for the particular conditions of our experiments. The results (portlandite carbonation rate and water-poor geochemical system modelling techniques) should be useful to simulate wellbor degradation
Takla, Issam. "Comportement Thermo-Hydro-Mécanique d’un ciment pétrolier sous l’effet du CO2." Thesis, Lille 1, 2010. http://www.theses.fr/2010LIL10037/document.
Full textAmong all proposed solutions for reducing the emission of greenhouse effect gases, geological sequestration of CO2 is still the best solution because of its high storage capacity and low cost. This storage of CO2 is an expected solution by oil industry: using the petroleum wells as geological reservoirs is a very important and new research field. Durability of such storage has an importance to be predicted. The main objective of this study is to obtain experimental characterisation of the effect of CO2 and chemical degradation by acid fluids on the multiaxial mechanical behaviour and on transport properties in oilwell cement under high temperature (90°C). This study is integrated in a general project “REGASEQ “ for the sequestration of acid gases (type CO2 and H2S) in oil reservoirs developed by TOTAL E&P
Jacquemet, Nicolas. "Durabilité des matériaux de puits pétroliers dans le cadre d'une séquestration géologique de dioxyde de carbone et d'hydrogène sulfuré." Phd thesis, Université Henri Poincaré - Nancy I, 2006. http://tel.archives-ouvertes.fr/tel-00084391.
Full textVarloteaux, Clément. "Modélisation multi-échelles des mécanismes de transport réactif : impact sur les propriétés pétrophysiques des roches lors du stockage du CO2." Phd thesis, Université Pierre et Marie Curie - Paris VI, 2012. http://tel.archives-ouvertes.fr/tel-00809288.
Full textDiouf, Abdou khadre. "Approches numériques et expérimentales pour l’étude des écoulements dans les laboratoires géologiques sur puce (GLoCs)." Thesis, Bordeaux, 2017. http://www.theses.fr/2017BORD0951/document.
Full textThis thesis work is included within the ANR CGS µLab projet, which aims to understand thefundamental mechanisms involved in the deep storage processes of CO2 from on-chip geological laboratories(GLoCs - geological labs on chip) to reproduce the pressure and temperature conditionsof deep geological environments. Besides experimental understanding, the contribution of numericalmodeling approaches appears essential in order to define models allowing to predict in particularthe maximum storage capacities based on the characteristics of the reservoirs (porosity, permeability,temperature, pressure, geochemistry), and the injection process (flow rate, composition). In thiscontext, this work has two main goals : (i) to associate experimental imaging and numerical modelingto simulate non-reactive flows in model porous media on chip ; and (ii) to follow experimentally thestructural evolution of a 3D porous medium undergoing a reactive flow. In order to address to thesegoals, the approach we have proposed is divided into two parts. In the first part, we carried out the3D modeling of the permeabilities of GLoCs by taking volume averaging. To do this, we first verifiedthe behavior of a GLoC according to its number of plots rows by studying a diffusion problem ona nested mesh that we have implemented from a GLoC binary image to reduce computation time.Then, we updated our permeability code, which solves the closure problem of flow, by analyticallycalculating in 3D the stability criterion that takes into account the anisotropy of GLoC geometry. Wethen processed the 2D digital images of the GLoCs before proceeding with the generation of their3D representative elementary volumes. Finally, we have simulated the permeabilities of GLoCs beforecomparing them with the experimental results and those obtained with the PHOENICS software. In asecond part, we have developed an experimental set-up to recreate 3D reactive porous media within amicrofluidic channel (fixed packed bed of calcium carbonate - CaCO3 microparticles). Using the X-raylaminography of the ESRF line ID19, we have observed on reconstructed 2D images the dissolutionphenomena occurring during the successive injection of constant volumes of non-equilibrium solution.This proof of concept has opened new possibilities for using this methodology to acquire kinetic dataon reactive front phenomena in porous media
Assayag, Nelly. "Traçage isotopique des sources, puits et de la réactivité du C02 dans les réservoirs géologiques." Paris, Institut de physique du globe, 2006. http://www.theses.fr/2006GLOB0014.
Full textThe aim of this research works consisted in studying the behaviour of the carbonate system (dissolved inorganic carbon: DIC) following a CO2 injection (artificial or natural), in geological reservoirs. One part of the study consisted in improving an analytical protocol for the measurementof delta13CDIC and DIC, using a continuous flow mass spectrometer. As a first study, we have focused our attention on the Pavin Lake (Massif Central,France). Owing to its limnologic characteristics (meromictic lake) and a deep volcanic CO2contribution, it can be viewed as a natural analogue of reservoir storing important quantitiesof CO2 in the bottom part. Isotopic measurements (delta18O, delta13CDIC) allowed to better constrainthe dynamics of the lake (stratification, seasonal variations), the magnitudes of biologicalactivities (photosynthesis, organic matter decay, methane oxidation, methanogenesis), carbonsources (magmatic, methanogenetic), and the hydrological budgets (sublacustrine inputs). The second study was conducted on the Lamont-Doherty test well site (NY, USA). Itincludes an instrumental borehole which cuts through most of the section of the Palisades silland into the Newark Basin sediments. Single well push-pull tests were performed: a testsolution containing conservative tracers and a reactive tracer (CO2) was injected at apermeable depth interval located in basaltic and metasedimentary rocks. After an incubationperiod, the test solution/groundwater mixture was extracted from the hydraulically isolatedzone. Isotopic measurements (delta18O, delta13CDIC) confronted to chemical data (major elements)allowed to investigate the extent of in-situ CO2-water-rock interactions: essentially calcite dissolution and at a lesser extend silicate dissolution. . . And for one of the test, CO2 degassing
Sin, Irina. "Modélisation numérique d’écoulement diphasique compressible et transport réactif en milieux poreux - Applications à l'étude de stockage de CO2 et de réservoir de gaz naturel." Electronic Thesis or Diss., Paris, ENMP, 2015. http://www.theses.fr/2015ENMP0058.
Full textHuman activity in the subsurface has rapidly been expanding and diversifying (waste disposal, new mining technologies, high-frequency storage of energy), while the public and regulatory expectations keep growing. The assessment of each step of underground operations requires careful safety and environmental impact evaluations. They rely on elaborate simulators and multiphysics modeling. With its process-based approach, reactive transport simulation provides an effective way to understand and predict the behavior of such complex systems at different time and spatial scale.This work aims at incorporating a compressible multiphase flow into conventional reactive transport framework by an operator splitting approach. A multiphase flow module is developed in the HYTEC reactive transport software. A new approach is then developed to fully couple multiphase multicomponent compressible flow, the complex thermodynamic description of the fluid properties, with existing reactive transport codes. The method is implemented in HYTEC. Some validation is provided, before application to the simulation of underground storage of CO2 and associated impurities
Sáinz-García, Álvaro. "Dynamique de stockage souterrain de gaz : aperçu à partir de modèles numériques de dioxyde de carbone et d'hydrogène." Thesis, Toulouse 3, 2017. http://www.theses.fr/2017TOU30187/document.
Full textClimate change mitigation is one of the major challenges of our time. The anthropogenic greenhouse gases emissions have continuously increased since industrial revolution leading to global warming. A broad portfolio of mitigation technologies has to be implemented to fulfill international greenhouse gas emissions agreements. Some of them comprises the use of the underground as a storage of various substances. In particular, this thesis addresses the dynamics of carbon dioxide (CO2) and hydrogen (H2) underground storage. Numerical models are a very useful tool to estimate the processes taking place at the subsurface. During this thesis, a solute transport in porous media module and various multiphase flow formulations have been implemented in COMSOL Multiphysics (Comsol, 2016). These numerical tools help to progress in the understanding of the migration and interaction of fluids in porous underground storages. Three models that provide recommendations to improve the efficiency, monitoring and safety of the storages are presented in this manuscript: two in the context of carbon capture and storage (CCS) and one applied to underground hydrogen storage (UHS). Each model focus on a specific research question: Multiphase model on CCS. The efficiency and long-term safety of underground CO2 storage depend on the migration and trapping of the buoyant CO2 plume. The wide range of temporal and spatial scales involved poses challenges in the assessment of the trapping mechanisms and the interaction between them. In this chapter a two-phase dynamic numerical model able to capture the effects of capillarity, dissolution and convective mixing on the plume migration is applied to a syncline-anticline aquifer structure. In anticline aquifers, the slope of the aquifer and the distance of injection to anticline crest determine the gravity current migration and, thus, the trapping mechanisms affecting the CO2. The anticline structure halts the gravity current and promotes free-phase CO2 accumulation beneath the anticline crest, stimulating the onset of convection and, thus, accelerating CO2 dissolution. Variations on the gravity current velocity due to the anticline slope can lead to plume splitting and different free-phase plume depletion time is observed depending on the injection location. Injection at short distances from the anticline crest minimizes the plume extent but retards CO2 immobilization. On the contrary, injection at large distances from anticline crest leads to large plume footprints and the splitting of the free-phase plume. The larger extension yields higher leakage risk than injection close to aquifer tip; however, capillary trapping is greatly enhanced, leading to faster free-phase CO2 immobilization. Reactive transport model on convective mixing in CCS. Dissolution of carbon-dioxide into formation fluids during carbon capture and storage (CCS) can generate an instability with a denser CO2-rich fluid located above the less dense native aquifer fluid. This instability promotes convective mixing, enhancing CO2 dissolution and favouring the storage safety
Pacini-Petitjean, Claire. "Réactivité des hydrocarbures en réponse à une injection de CO2/O2 dans des conditions de réservoirs pétroliers déplétés : modélisations expérimentale et numérique." Thesis, Université de Lorraine, 2015. http://www.theses.fr/2015LORR0020/document.
Full textThe geological storage of CO2 (CO2 Capture-Storage – CCS) and the Enhanced Oil Recovery (EOR) by CO2 injection into petroleum reservoirs could limit CO2 atmospheric accumulation. However, CO2 can be associated with oxygen. To predict the hydrocarbon evolution under these conditions involves the study of oxidation mechanisms. Oxidation experiment and kinetic detailed modeling were carried out with pure compounds. The comparison between experimental and modeling results led to the construction of a hydrocarbon oxidation kinetic model and emphasized the parameters leading to auto ignition. The good agreement between our experiments and modeling are promising for the development of a tool predicting the critical temperature leading to auto-ignition and the evolution of hydrocarbon composition, to estimate the stability of a petroleum system in CO2 injection context
Brochard, Laurent. "Poromechanics and adsorption : application to coal swelling during carbon geological storage." Thesis, Paris Est, 2011. http://www.theses.fr/2011PEST1067/document.
Full textPas de résumé en anglais
Peuble, Steve. "Caractérisation expérimentale des processus d’hydratation et de carbonatation des roches basiques et ultra-basiques." Thesis, Montpellier 2, 2014. http://www.theses.fr/2014MON20017/document.
Full textSince the mid-90s, in situ mineralization of CO2 has been considered as a safe and efficient solution to mitigate its anthropogenic emissions to the atmosphere. It is to recover the CO2 emitted by some industries and trap it in the mineral form (carbonates) in mafic and ultramafic aquifers (e.g. basalts and peridotites). The carbonation of CO2 has been widely described in natural systems where it occurs through a series of complex chemical reactions coupled to the transport of reactive species in the fluid. Numerous experiments have been conducted in batch reactors over the past fifteen years to better understand the physico-chemical parameters controlling the carbonation of (ultra-)mafic rocks. But few studies have further characterized the coupling reactive-transport processes during the injection and in situ mineralization of CO2 in these rocks.This work aims to meet 3 main objectives: (i) characterize changes in reaction paths during the injection of CO2 in (ultra-)mafic systems, (ii) measure the feedbacks effects of chemical reactions on the hydrodynamic rock properties and (iii) quantify the efficiency and sustainability of such processes over long time periods. It is based on the development of experimental protocols to (i) reproduce the injection of CO2 into (ultra-)mafic rocks and (ii) characterize the reactions using a series of geochemical and analytical tools from the atomic to the centimetric scale. Three series of reactive percolation experiments have been performed on (ultra-)mafic aggregates from relatively simple (olivines from San Carlos and Hawaii) to more complex samples (basalts from Stapafell) under in situ P-T-containment conditions (Ptot=10-25 MPa; T=180-185°C; Pcont=15-28 MPa).The results allowed us to differentiate several reactions paths in these systems depending on the fluid transport, rock porosity, local hydrodynamic properties, mineralogy and/or local changes in the fluid composition. Mass balance calculations have revealed an efficient mineralization of CO2 in the samples. It is controlled by the chemical and the hydrodynamic properties of the rock at the pore scale. But some reactions associated with the alteration of (ultra-)mafic rocks (e.g. hydration) have negative feedbacks effects on the reservoir rock properties (porosity and permeability) that may compromise the sustainability of CO2 storage in natural aquifers in the long term.These new supporting data will allow numerical models to better simulate the carbonation of (ultra-)mafic rocks knowing the hydrodynamic properties and the structural heterogeneities of the reservoir. They also suggest that a better control of some injection parameters, such as the flow injection rate and the injected fluid composition (e.g. pCO2), would improve the rate and yield of CO2 mineralization in these systems
Humez, Pauline. "Traçage des intrusions de CO2 dans les aquifères d'eau douce par les méthodes multi-isotopiques." Phd thesis, Ecole Nationale Supérieure des Mines de Paris, 2012. http://pastel.archives-ouvertes.fr/pastel-00797525.
Full textRodriguez, Machine Carla Thais. "Raman spectroscopic study of CO2 capture and separation by semi-clathrate hydrates crystallization and investigation of exchange processes in hydrates." Electronic Thesis or Diss., Université de Lille (2018-2021), 2021. http://www.theses.fr/2021LILUR003.
Full textNowadays, fossil fuels are constantly burnt to fulfill the increasing human and industrial demand in energy, and as a consequence, large quantities of greenhouse gases such as carbon dioxide (CO2) are released in the atmosphere and contribute to global warming. It is therefore pressing to develop efficient post-combustion CO2 mitigation techniques that are also efficient and environment-friendly, and as such, Carbon Capture and Storage (CCS) technologies involving the Hydrate-Based Separation Process (HBSP) have attracted a lot of attention. HBSP consists in encapsulating small gas molecules (e.g. CO2, nitrogen (N2), methane (CH4)) within crystalline ice-like compounds known as clathrate hydrates or hydrates. Previous works have shown that promoters like tetra-n-butyl ammonium bromide (TBAB) considerably improves the guest-gas trapping mechanism in semi-clathrate hydrate (sc). Hence, while HBSP proves to be a suitable technique for selective CO2 capture and energy recovery, advancing the fundamental understanding of processes at play is still needed before large-scale practical applications can be routinely considered. This work aims to better comprehend CO2 separation and capture processes using sc-hydrate technology, while also exploring exchange processes in hydrates to open a perspective towards industrial applications.First, the guest distribution in the hydrate phases of CO2¬-based clathrate hydrates as a function of parameters (initial composition, p, T) is revisited and elucidated by ex-situ high-resolution Raman spectroscopy. Up to now, there is a gap in the literature regarding the discrimination of the contribution of the small and large cages in CO2-based hydrates, mainly due to the Fermi resonance effect. So far, only a single study has attempted to distinguish these contributions in CO2-clathrates, however with a questionable interpretation. One of the novelties of the present work is to revisit the vibrational properties of CO2-clathrates to identify distinct frequency shifts depending on the structural environment of CO2 molecules, thereby improving our knowledge of CO2 encapsulation mechanisms in hydrates. High-resolution Raman analysis and neutron diffraction analyses are additionally performed in CO2-based TBAB-semi-clathrates for characterization purposes.Second, the influence of two different formation protocols (quick and slow crystallization protocols, commonly used in hydrate formation) on the encapsulation mechanisms, the structure, and the selectivity of CO2+N2-TBAB compounds is investigated by in-situ Raman spectroscopy. A new dissociation point (pressure and temperature) is obtained and our results highlight that slow hydrates formation rates exert a variable performance on CO2 selectivity at temperatures far from the dissociation point, while a better performance is observed when approaching dissociation. Similarly, separation factors reach their greatest values close to the dissociation, depending however on the sc crystal structure formed. Surface morphology variation is monitored by optical microscopy and exhibits a continuous transformation with temperature, starting from a rough surface coated with polygonal or stacked shaped crystals to the formation of columnar TBAB-sc crystals near dissociation. Moreover, the influence of the formation kinetics on CO2 separation and selectivity is explored.Finally, a potential application of CO2 separation and capture by HBSP is addressed through the investigation of the exchange mechanism when exposing CO2 clathrate hydrates to N2 gas. Even though CO2 and N2 hydrates crystallize in structure sI and sII, respectively, it is a CO2-N2 mixed hydrate with a preferential occupation of the small cages by N2 molecules that forms upon N2 injection. The exchange kinetics is analyzed from the perspective of methane recovery from CO2 and CO2+N2 injections
Sin, Irina. "Modélisation numérique d’écoulement diphasique compressible et transport réactif en milieux poreux - Applications à l'étude de stockage de CO2 et de réservoir de gaz naturel." Thesis, Paris, ENMP, 2015. http://www.theses.fr/2015ENMP0058/document.
Full textHuman activity in the subsurface has rapidly been expanding and diversifying (waste disposal, new mining technologies, high-frequency storage of energy), while the public and regulatory expectations keep growing. The assessment of each step of underground operations requires careful safety and environmental impact evaluations. They rely on elaborate simulators and multiphysics modeling. With its process-based approach, reactive transport simulation provides an effective way to understand and predict the behavior of such complex systems at different time and spatial scale.This work aims at incorporating a compressible multiphase flow into conventional reactive transport framework by an operator splitting approach. A multiphase flow module is developed in the HYTEC reactive transport software. A new approach is then developed to fully couple multiphase multicomponent compressible flow, the complex thermodynamic description of the fluid properties, with existing reactive transport codes. The method is implemented in HYTEC. Some validation is provided, before application to the simulation of underground storage of CO2 and associated impurities
Renner, Marie. "The Emergence of Carbon Capture and Storage Techniques in the Power Sector." Thesis, Paris 10, 2015. http://www.theses.fr/2015PA100045/document.
Full textThis thesis analyses the techno-economic and social conditions required for the emergence of Carbon Capture and Storage (CCS) techniques in the power sector, in compliance with CCS role in long-term mitigation scenarios. The research combines two complementary approaches: the positive one deals with the economic and social determinants necessary to trigger CCS investments, and addresses two significant issues: (1) for which CO2 price is it worth investing in CCS plants, and (2) when is CCS use socially optimal? The normative approach gives recommendations on how CCS can best be deployed as part of a least cost approach to climate change mitigation. Notably, recommendations are provided about the optimal combination of CCS policy supports that should be implemented. This Ph.D. dissertation is composed of four chapters. The first two chapters embrace the investor’s vision and highlight the determinants necessary for CCS commercial emergence. The last two chapters embrace the public decision-makers’ vision. Based on the fact that, although cost-effective, one technology may not be deployed because of social acceptance issues, Chapter 3 deals with CCS public acceptance and optimal pollution. Chapter 4 goes further and addresses the optimal CCS investment under ambiguity by providing a decision criterion with simulations on the European Union’s 2050 Energy Roadmap
Humez, Pauline. "Traçage des intrusions de CO2 dans les aquifères d'eau douce par les méthodes multi-isotopiques." Electronic Thesis or Diss., Paris, ENMP, 2012. http://www.theses.fr/2012ENMP0049.
Full textThis study deals with the impact of CO2 leakages out of geological storage into overlying freshwater aquifers. Compared to other existing studies, the major added value of this study lies, on the one hand, in the research of new monitoring tools and isotopic approach in the context of CCS aiming at early and sensitive detection of CO2 leakage and, on the other hand, in the application of these tools at the (limited) laboratory scale as well as at field scale. In order to test these tools, solid and liquid materials were sampled out of the major strategic drinking water Albian aquifer in the Paris Basin (France). We have then precisely characterized and used them within a batch experiment. This experiment yields interesting results which help understanding and constraining precisely the water-rock-CO2 interactions as well as the isotopic responses. A real scale application of the method was then performed in Norway. It was an opportunity to develop this isotopic program and to track the isotopic evolution composition, while differentiating the natural processes and the system response tothe CO2 injection. When applied to the detection of CO2 leakage context, the two case studies open the way for choosing the “best” isotopic tools as indirect indicators of CO2 presence in these specific systems. The efficiency of these isotopic tools comes from the recording of the CO2 footprint all along the water-rock-CO2 interactions. Using such tools imposes a rigorous methodology, which is tackled inthis manuscript. Furthermore, future application will require adapting to the specifics of a proposed site
Yang, Wei. "Interactions de radionucléides et de CO2 avec les argiles : mécanismes à élucider à l’échelle nanométrique." Thesis, Lille 1, 2014. http://www.theses.fr/2014LIL10027/document.
Full textIn order to predict and regulate the environmental impact of human activities such as uranium mining and radioactive waste disposal, it is necessary to understand the behavior of actinides in the environment because their interaction with clay mineral is an important factor to control the migration of radionuclide in the environment. The behavior of actinides in the soil is mainly the surface adsorption interactions, which change the forms of radioactive elements and reduces the mobility of actinides in the natural systems. Therefore, it is important to search how the actinides interact with clay mineral such as the fundamental process of surface precipitation. Uranium is the predominant heavy metal content of the final waste in the nuclear fuel cycle (>95% UO2). In addition, uranium is a major contaminant in the soil, subsurface and groundwater as a result of human activity. Under standard environmental conditions, the most stable chemical form of U(VI) is the uranyl ion UO22+, which is potentially very mobile and readily complexates with organic and inorganic matter. On the other hand, Carbon dioxide is an important greenhouse gas, warming the earth’s surface to a higher temperature by reducing outward radiation. However, problems may occur when the atmospheric concentration of greenhouse gases increases. Amounts of carbon dioxide were produced since the industrial revolution, which is behind the significant global warming and rising sea level. Clay minerals are of great practical importance here, in storage of carbon dioxide due to its hydraulic permeability and ability to retain mobile species. We have chosen kaolinite and montmorillonite as prototypes of clay minerals of 1:1 and 2:1. Classical Monte Carlo (MC) and molecular dynamics (MD) methods have been used in this work in order to understand the adsorption behaviour of radionuclide and carbon dioxide in clays surface. In this thesis, we will investigate –first- the adsorption of uranyl on kaolinite surface by means of Monte Carlo and Molecular Dynamics simulation methods. Several adsorption sites have been modeled by considering surface defects in order to have inner or outer-sphere complexes. Then, the adsorptions of uranyl species onto Montmorillonite surfaces in the presence of different counterions will be performed. Interaction energy between Montmorillonite sheets and work of adhesion between the radionuclide and MMT surface will be discussed as well. Finally, we will study the adsorption behavior of carbon dioxide in MMT, and investigate at the same time thermodynamics, structural and dynamical properties
Neuville, Nadine. "Étude et modélisation de l'alteration physico-chimique de matériaux de cimentation des puits pétroliers." Phd thesis, École Nationale Supérieure des Mines de Paris, 2008. http://pastel.archives-ouvertes.fr/pastel-00563859.
Full text