Journal articles on the topic 'Stomatal conductance model'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 journal articles for your research on the topic 'Stomatal conductance model.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.
Leuning, R. "Modelling Stomatal Behaviour and and Photosynthesis of Eucalyptus grandis." Functional Plant Biology 17, no. 2 (1990): 159. http://dx.doi.org/10.1071/pp9900159.
Full textAnderegg, William R. L. "Quantifying seasonal and diurnal variation of stomatal behavior in a hydraulic-based stomatal optimization model." Journal of Plant Hydraulics 5 (December 22, 2018): e001. http://dx.doi.org/10.20870/jph.2018.e001.
Full textBuchholcerová, Anna, Peter Fleischer, Dušan Štefánik, Svetlana Bičárová, and Veronika Lukasová. "Specification of Modified Jarvis Model Parameterization for Pinus cembra." Atmosphere 12, no. 11 (2021): 1388. http://dx.doi.org/10.3390/atmos12111388.
Full textSun, Ruifeng, Juanjuan Ma, Xihuan Sun, Shijian Bai, Lijian Zheng, and Jiachang Guo. "Study on a Stomatal Conductance Model of Grape Leaves in Extremely Arid Areas." Sustainability 15, no. 10 (2023): 8342. http://dx.doi.org/10.3390/su15108342.
Full textYun, Kyungdahm, Dennis Timlin, and Soo-Hyung Kim. "Coupled Gas-Exchange Model for C4 Leaves Comparing Stomatal Conductance Models." Plants 9, no. 10 (2020): 1358. http://dx.doi.org/10.3390/plants9101358.
Full textLi, Qianyu, Shawn P. Serbin, Julien Lamour, Kenneth J. Davidson, Kim S. Ely, and Alistair Rogers. "Implementation and evaluation of the unified stomatal optimization approach in the Functionally Assembled Terrestrial Ecosystem Simulator (FATES)." Geoscientific Model Development 15, no. 11 (2022): 4313–29. http://dx.doi.org/10.5194/gmd-15-4313-2022.
Full textHan, Tuo, Qi Feng, Tengfei Yu, Xiaomei Yang, Xiaofang Zhang, and Kuan Li. "Characteristic of Stomatal Conductance and Optimal Stomatal Behaviour in an Arid Oasis of Northwestern China." Sustainability 14, no. 2 (2022): 968. http://dx.doi.org/10.3390/su14020968.
Full textBauerle*, William L., and Joe E. Toler. "Stomatal Control by Both Abscisic Acid in the Bulk Leaf Tissue and Leaf Environment: A Test of a Model of Stomatal Conductance to Leaf Environment Coupled with an Abscisic Acid-based Model." HortScience 39, no. 4 (2004): 855B—855. http://dx.doi.org/10.21273/hortsci.39.4.855b.
Full textMcCaughey, J. Harry, and Antonio Iacobelli. "Modelling stomatal conductance in a northern deciduous forest, Chalk River, Ontario." Canadian Journal of Forest Research 24, no. 5 (1994): 904–10. http://dx.doi.org/10.1139/x94-119.
Full textLombardozzi, D., S. Levis, G. Bonan, and J. P. Sparks. "Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance." Biogeosciences Discussions 9, no. 4 (2012): 4245–83. http://dx.doi.org/10.5194/bgd-9-4245-2012.
Full textLombardozzi, D., S. Levis, G. Bonan, and J. P. Sparks. "Predicting photosynthesis and transpiration responses to ozone: decoupling modeled photosynthesis and stomatal conductance." Biogeosciences 9, no. 8 (2012): 3113–30. http://dx.doi.org/10.5194/bg-9-3113-2012.
Full textBonan, G. B., M. Williams, R. A. Fisher, and K. W. Oleson. "Modeling stomatal conductance in the earth system: linking leaf water-use efficiency and water transport along the soil–plant–atmosphere continuum." Geoscientific Model Development 7, no. 5 (2014): 2193–222. http://dx.doi.org/10.5194/gmd-7-2193-2014.
Full textBonan, G. B., M. Williams, R. A. Fisher, and K. W. Oleson. "Modeling stomatal conductance in the Earth system: linking leaf water-use efficiency and water transport along the soil-plant-atmosphere continuum." Geoscientific Model Development Discussions 7, no. 3 (2014): 3085–159. http://dx.doi.org/10.5194/gmdd-7-3085-2014.
Full textDe Kauwe, M. G., J. Kala, Y. S. Lin, et al. "A test of an optimal stomatal conductance scheme within the CABLE Land Surface Model." Geoscientific Model Development Discussions 7, no. 5 (2014): 6845–91. http://dx.doi.org/10.5194/gmdd-7-6845-2014.
Full textGrossnickle, Steven C., and John H. Russell. "Gas exchange processes of yellow-cedar (Chamaecyparis nootkatensis) in response to environmental variables." Canadian Journal of Botany 69, no. 12 (1991): 2684–91. http://dx.doi.org/10.1139/b91-337.
Full textNguyen, Thuy Huu, Matthias Langensiepen, Jan Vanderborght, Hubert Hüging, Cho Miltin Mboh, and Frank Ewert. "Comparison of root water uptake models in simulating CO<sub>2</sub> and H<sub>2</sub>O fluxes and growth of wheat." Hydrology and Earth System Sciences 24, no. 10 (2020): 4943–69. http://dx.doi.org/10.5194/hess-24-4943-2020.
Full textDe Kauwe, M. G., J. Kala, Y. S. Lin, et al. "A test of an optimal stomatal conductance scheme within the CABLE land surface model." Geoscientific Model Development 8, no. 2 (2015): 431–52. http://dx.doi.org/10.5194/gmd-8-431-2015.
Full textXue, Runjia, Wenjun Zuo, Zhaowen Zheng, et al. "Interpreting Controls of Stomatal Conductance across Different Vegetation Types via Machine Learning." Water 16, no. 16 (2024): 2251. http://dx.doi.org/10.3390/w16162251.
Full textMcMurtrie, Ross E., Richard J. Norby, Belinda E. Medlyn, et al. "Why is plant-growth response to elevated CO2 amplified when water is limiting, but reduced when nitrogen is limiting? A growth-optimisation hypothesis." Functional Plant Biology 35, no. 6 (2008): 521. http://dx.doi.org/10.1071/fp08128.
Full textLloyd, J., T. Trochoulias, and R. Ensbey. "Stomatal Responses and Whole-Tree Hydraulic Conductivity of Orchard Macadamia integrifolia Under Irrigated and Non-Irrigated Conditions." Functional Plant Biology 18, no. 6 (1991): 661. http://dx.doi.org/10.1071/pp9910661.
Full textLiao, Qi, Risheng Ding, Taisheng Du, Shaozhong Kang, Ling Tong, and Shuai Li. "Salinity-specific stomatal conductance model parameters are reduced by stomatal saturation conductance and area via leaf nitrogen." Science of The Total Environment 876 (June 2023): 162584. http://dx.doi.org/10.1016/j.scitotenv.2023.162584.
Full textWehr, Richard, Róisín Commane, J. William Munger, et al. "Dynamics of canopy stomatal conductance, transpiration, and evaporation in a temperate deciduous forest, validated by carbonyl sulfide uptake." Biogeosciences 14, no. 2 (2017): 389–401. http://dx.doi.org/10.5194/bg-14-389-2017.
Full textBUCKLEY, T. N., K. A. MOTT, and G. D. FARQUHAR. "A hydromechanical and biochemical model of stomatal conductance." Plant, Cell & Environment 26, no. 10 (2003): 1767–85. http://dx.doi.org/10.1046/j.1365-3040.2003.01094.x.
Full textQu, Mingnan, Saber Hamdani, Wenzhen Li, et al. "Rapid stomatal response to fluctuating light: an under-explored mechanism to improve drought tolerance in rice." Functional Plant Biology 43, no. 8 (2016): 727. http://dx.doi.org/10.1071/fp15348.
Full textLiu, Ke, Yujie Wang, Troy S. Magney, and Christian Frankenberg. "Non-steady-state stomatal conductance modeling and its implications: from leaf to ecosystem." Biogeosciences 21, no. 6 (2024): 1501–16. http://dx.doi.org/10.5194/bg-21-1501-2024.
Full textGowdy, Mark, Bruno Suter, Philippe Pieri, et al. "Variety-specific response of bulk stomatal conductance of grapevine canopies to changes in net radiation, atmospheric demand, and drought stress." OENO One 56, no. 2 (2022): 205–22. http://dx.doi.org/10.20870/oeno-one.2022.56.2.5435.
Full textLombardozzi, Danica L., Melanie J. B. Zeppel, Rosie A. Fisher, and Ahmed Tawfik. "Representing nighttime and minimum conductance in CLM4.5: global hydrology and carbon sensitivity analysis using observational constraints." Geoscientific Model Development 10, no. 1 (2017): 321–31. http://dx.doi.org/10.5194/gmd-10-321-2017.
Full textMartin, Marion J., Peter K. Farage, Steve W. Humphries, and Steve P. Long. "Can the stomatal changes caused by acute ozone exposure be predicted by changes occurring in the mesophyll? A simplification for models of vegetation response to the global increase in tropospheric elevated ozone episodes." Functional Plant Biology 27, no. 3 (2000): 211. http://dx.doi.org/10.1071/pp99132.
Full textMäkelä, Jarmo, Jürgen Knauer, Mika Aurela, et al. "Parameter calibration and stomatal conductance formulation comparison for boreal forests with adaptive population importance sampler in the land surface model JSBACH." Geoscientific Model Development 12, no. 9 (2019): 4075–98. http://dx.doi.org/10.5194/gmd-12-4075-2019.
Full textGao, Qiong, Mei Yu, Xinshi Zhang, Hongmei Xu, and Yongmei Huang. "Modelling seasonal and diurnal dynamics of stomatal conductance of plants in a semiarid environment." Functional Plant Biology 32, no. 7 (2005): 583. http://dx.doi.org/10.1071/fp04092.
Full textTUZET, A., A. PERRIER, and R. LEUNING. "A coupled model of stomatal conductance, photosynthesis and transpiration." Plant, Cell & Environment 26, no. 7 (2003): 1097–116. http://dx.doi.org/10.1046/j.1365-3040.2003.01035.x.
Full textAphalo, P. "An Analysis of Ball's Empirical Model of Stomatal Conductance." Annals of Botany 72, no. 4 (1993): 321–27. http://dx.doi.org/10.1006/anbo.1993.1114.
Full textSchultz, Hans R. "Extension of a Farquhar model for limitations of leaf photosynthesis induced by light environment, phenology and leaf age in grapevines (Vitis vinifera L. cvv. White Riesling and Zinfandel)." Functional Plant Biology 30, no. 6 (2003): 673. http://dx.doi.org/10.1071/fp02146.
Full textK.Kalaichelvi. "Physiological Efficiency of Weeds in Rice Fallow Fields." International Journal of Plant & Soil Science 36, no. 5 (2024): 323–28. http://dx.doi.org/10.9734/ijpss/2024/v36i54530.
Full textGreen, S. R., T. M. Mills, and B. E. Clothier. "Seasonal Water Use of a Kiwifruit Vine: Measurements and a Model." HortScience 32, no. 3 (1997): 446G—447. http://dx.doi.org/10.21273/hortsci.32.3.446g.
Full textLombardozzi, D. L., M. J. B. Zeppel, R. A. Fisher, and A. Tawfik. "Observed nighttime conductance alters modeled global hydrology and carbon budgets." Geoscientific Model Development Discussions 8, no. 12 (2015): 10339–63. http://dx.doi.org/10.5194/gmdd-8-10339-2015.
Full textRanawana, S. R. W. M. C. J. K., K. H. M. Siddique, J. A. Palta, K. Stefanova, and H. Bramley. "Stomata coordinate with plant hydraulics to regulate transpiration response to vapour pressure deficit in wheat." Functional Plant Biology 48, no. 9 (2021): 839. http://dx.doi.org/10.1071/fp20392.
Full textHoshika, Yasutomo, Elena Paoletti, and Kenji Omasa. "Parameterization of Zelkova serrata stomatal conductance model to estimate stomatal ozone uptake in Japan." Atmospheric Environment 55 (August 2012): 271–78. http://dx.doi.org/10.1016/j.atmosenv.2012.02.083.
Full textWang, Shusen. "Evaluation of Water Stress Impact on the Parameter Values in Stomatal Conductance Models Using Tower Flux Measurement of a Boreal Aspen Forest." Journal of Hydrometeorology 13, no. 1 (2012): 239–54. http://dx.doi.org/10.1175/jhm-d-11-043.1.
Full textPiayda, A., M. Dubbert, C. Rebmann, et al. "Drought impact on carbon and water cycling in a Mediterranean <i>Quercus suber</i> L. woodland during the extreme drought event in 2012." Biogeosciences 11, no. 24 (2014): 7159–78. http://dx.doi.org/10.5194/bg-11-7159-2014.
Full textPiayda, A., M. Dubbert, C. Rebmann, et al. "Drought impact on carbon and water cycling in a Mediterranean <i>Quercus suber</i> L. woodland during the extreme drought event in 2012." Biogeosciences Discussions 11, no. 7 (2014): 10365–417. http://dx.doi.org/10.5194/bgd-11-10365-2014.
Full textAllen, Leon H., Mary P. Brakke, and James W. Jones. "SIMULATION OF TRANSPIRATION OF CITRUS GOVERNED BY LEAF CONDUCTANCE." HortScience 27, no. 6 (1992): 609d—609. http://dx.doi.org/10.21273/hortsci.27.6.609d.
Full textHu, Meng, Shao Zhong Kang, Tai Sheng Du, and Ling Tong. "Another View of Gas Exchange Model: Reflection of Leaf Surface Air to Stomatal Conductance." Advanced Materials Research 113-116 (June 2010): 14–17. http://dx.doi.org/10.4028/www.scientific.net/amr.113-116.14.
Full textKala, J., M. G. De Kauwe, A. J. Pitman, et al. "Implementation of an optimal stomatal conductance model in the Australian Community Climate Earth Systems Simulator (ACCESS1.3b)." Geoscientific Model Development Discussions 8, no. 7 (2015): 5235–64. http://dx.doi.org/10.5194/gmdd-8-5235-2015.
Full textGong, Cheng, Yadong Lei, Yimian Ma, Xu Yue, and Hong Liao. "Ozone–vegetation feedback through dry deposition and isoprene emissions in a global chemistry–carbon–climate model." Atmospheric Chemistry and Physics 20, no. 6 (2020): 3841–57. http://dx.doi.org/10.5194/acp-20-3841-2020.
Full textEwers, B. E., R. Oren, K. H. Johnsen, and J. J. Landsberg. "Estimating maximum mean canopy stomatal conductance for use in models." Canadian Journal of Forest Research 31, no. 2 (2001): 198–207. http://dx.doi.org/10.1139/x00-159.
Full textBarbour, Margaret M., Lucas A. Cernusak, David Whitehead та ін. "Nocturnal stomatal conductance and implications for modelling δ18O of leaf-respired CO2 in temperate tree species". Functional Plant Biology 32, № 12 (2005): 1107. http://dx.doi.org/10.1071/fp05118.
Full textde la Torre Llorente, Daniel. "Comparison of Several Models for Calculating Ozone Stomatal Fluxes on a Mediterranean Wheat Cultivar (Triticum durumDesf. cv. Camacho)." Scientific World JOURNAL 7 (2007): 1634–48. http://dx.doi.org/10.1100/tsw.2007.243.
Full textAnav, Alessandro, Chiara Proietti, Laurent Menut, Stefano Carnicelli, Alessandra De Marco, and Elena Paoletti. "Sensitivity of stomatal conductance to soil moisture: implications for tropospheric ozone." Atmospheric Chemistry and Physics 18, no. 8 (2018): 5747–63. http://dx.doi.org/10.5194/acp-18-5747-2018.
Full textGibert, Caroline, Michel Génard, Gilles Vercambre, and Françoise Lescourret. "Quantification and modelling of the stomatal, cuticular and crack components of peach fruit surface conductance." Functional Plant Biology 37, no. 3 (2010): 264. http://dx.doi.org/10.1071/fp09118.
Full text