To see the other types of publications on this topic, follow the link: Strain energy methods.

Dissertations / Theses on the topic 'Strain energy methods'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 28 dissertations / theses for your research on the topic 'Strain energy methods.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Cai, Renye. "Original strain energy density functions for modeling of anisotropic soft biological tissue." Thesis, Bourgogne Franche-Comté, 2017. http://www.theses.fr/2017UBFCA003/document.

Full text
Abstract:
Cette thèse a porté sur la construction de densités d'énergie de déformation permettant de décrire le comportement non linéaire de matériaux anisotropes tels que les tissus biologiques souples (ligaments, tendons, parois artérielles etc.) ou les caoutchoucs renforcés par des fibres. Les densités que nous avons proposées ont été élaborées en se basant sur la théorie mathématique des polynômes invariants et notamment sur le théorème de Noether et l'opérateur de Reynolds. Notre travail a concerné deux types de matériaux anisotropes, le premier avec une seule famille de fibre et le second avec quatre familles. Le concept de polyconvexité a également été étudié car il est notoire qu'il joue un rôle important pour s'assurer de l'existence de solutions. Dans le cas d'un matériau comportant une seule famille de fibre, nous avons démontré qu'il était impossible qu'une densité polynomiale de degré quelconque puisse prédire des essais de cisaillement avec un chargement parallèle puis perpendiculaire à la direction des fibres. Une densité polynomiale linéaire combinée avec une fonction puissance a permis de contourner cet obstacle. Dans le cas d'un matériau comportant quatre familles de fibre, une densité polynomiale a permis de prédire correctement des résultats d'essai en traction bi-axiale extraits de la littérature. Les deux densités proposées ont été implémentées avec la méthode des éléments finis et en langage C++ dans le code de calcul universitaire FER. Pour se faire, une formulation lagrangienne totale a été adoptée. L'implémentation a été validée par des comparaisons avec des solutions analytiques de référence que nous avons exhibée dans le cas de chargements simples conduisant à des déformations homogènes. Des exemples tridimensionnels plus complexes, impliquant des déformations non-homogènes, ont également été étudiés
This thesis has focused on the construction of strain energy densities for describing the non-linear behavior of anisotropic materials such as biological soft tissues (ligaments, tendons, arterial walls, etc.) or fiber-reinforced rubbers. The densities we have proposed have been developed with the mathematical theory of invariant polynomials, particularly the Noether theorem and the Reynolds operator. Our work involved two types of anisotropic materials, the first with a single fiber family and the second with a four-fiber family. The concept of polyconvexity has also been studied because it is well known that it plays an important role for ensuring the existence of solutions. In the case of a single fiber family, we have demonstrated that it is impossible for a polynomial density of any degree to predict shear tests with a loading parallel and then perpendicular to the direction of the fibers. A linear polynomial density combined with a power-law function allowed to overcome this problem. In the case of a material made of a four-fiber family, a polynomial density allowed to correctly predict bi-axial tensile test data extracted from the literature. The two proposed densities were implemented in C++ language in the university finite element software FER by adopting a total Lagrangian formulation. This implementation has been validated by comparisons with reference analytical solutions exhibited in the case of simple loads leading to homogeneous deformations. More complex three-dimensional examples, involving non-homogeneous deformations, have also been studied
APA, Harvard, Vancouver, ISO, and other styles
2

Stašević, Milenko. "Prilog procene veka konstrukcije tornja postrojenja za istraživanje nafte i gasa." Phd thesis, Univerzitet u Novom Sadu, Fakultet tehničkih nauka u Novom Sadu, 2014. http://www.cris.uns.ac.rs/record.jsf?recordId=85356&source=NDLTD&language=en.

Full text
Abstract:
Predmet ove doktorske disertacije je definisanje metoda i procedureza procenu veka konstrukcije tornja postrojenja za istraživanje naftei gasa. Dati su rezultati eksperimentalnih istraživanja radi analizeotpornosti prema prslinama pri statičkom i pri promenljivomopterećenju eksploatisanog i novog materijala konstrkcije tornjapostrojenja za istraživanje nafte i gasa.
The topic of this doctoral dissertation is definition methods and proceduries for ananalysis of an assessmen life of construction derrick plant for investigation oiland gas. The results of experimental investigation performed for the analysisof crack resistance under static and under variable loading eksploatacionand new of materials of construction derrick plant for investigation oil and gas.
APA, Harvard, Vancouver, ISO, and other styles
3

黃小華 and Siu-wah Wong. "Predicition of fatigue crack propagation using strain energy density method." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 1989. http://hub.hku.hk/bib/B31209506.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wong, Siu-wah. "Predicition of fatigue crack propagation using strain energy density method /." [Hong Kong : University of Hong Kong], 1989. http://sunzi.lib.hku.hk/hkuto/record.jsp?B12751601.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Vijayaraghavan, Rajesh. "Statistical estimation of strain energy release rate of delaminated composites." Morgantown, W. Va. : [West Virginia University Libraries], 2006. https://eidr.wvu.edu/etd/documentdata.eTD?documentid=4965.

Full text
Abstract:
Thesis (M.S.)--West Virginia University, 2006.
Title from document title page. Document formatted into pages; contains xv, 133 p. : ill. (some col.). Includes abstract. Includes bibliographical references (p. 126-133).
APA, Harvard, Vancouver, ISO, and other styles
6

Hossain, Bhuiyan Md Emran. "Dynamic Modeling and Analysis of Strain Energy Deployment of an Origami Flasher." University of Toledo / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=toledo1501870672129919.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Stephenson, Grant B. "Evaluation of the strain energy density method of notch stress concentration calculations in the plastic range." Thesis, Monterey, Calif. : Springfield, Va. : Naval Postgraduate School ; Available from National Technical Information Service, 1996. http://handle.dtic.mil/100.2/ADA311044.

Full text
Abstract:
Thesis (Degree of Aeronautical and Astronautical Engineer) Naval Postgraduate School, March 1996.
Thesis advisor(s): G.H. Lindsey. "March 1996." Includes bibliographical references. Also available online.
APA, Harvard, Vancouver, ISO, and other styles
8

Treifi, Muhammad. "Fractal-like finite element method and strain energy approach for computational modelling and analysis of geometrically V-notched plates." Thesis, University of Manchester, 2013. https://www.research.manchester.ac.uk/portal/en/theses/fractallike-finite-element-method-and-strain-energy-approach-for-computational-modelling-and-analysisof-geometrically-vnotched-plates(93e63366-8eef-4a29-88a4-0c89cf13ec1f).html.

Full text
Abstract:
The fractal-like finite element method (FFEM) is developed to compute stress intensity factors (SIFs) for isotropic homogeneous and bi-material V-notched plates. The method is semi-analytical, because analytical expressions of the displacement fields are used as global interpolation functions (GIFs) to carry out a transformation of the nodal displacements within a singular region to a small set of generalised coordinates. The concept of the GIFs in reducing the number of unknowns is similar to the concept of the local interpolation functions of a finite element. Therefore, the singularity at a notch-tip is modelled accurately in the FFEM using a few unknowns, leading to reduction of the computational cost.The analytical expressions of displacements and stresses around a notch tip are derived for different cases of notch problems: in-plane (modes I and II) conditions and out-of-plane (mode III) conditions for isotropic and bi-material notches. These expressions, which are eigenfunction series expansions, are then incorporated into the FFEM to carry out the transformation of the displacements of the singular nodes and to compute the notch SIFs directly without the need for post-processing. Different numerical examples of notch problems are presented and results are compared to available published results and solutions obtained by using other numerical methods.A strain energy approach (SEA) is also developed to extract the notch SIFs from finite element (FE) solutions. The approach is based on the strain energy of a control volume around the notch-tip. The strain energy may be computed using commercial FE packages, which are only capable of computing SIFs for crack problems and not for notch problems. Therefore, this approach is a strong tool for enabling analysts to compute notch SIFs using current commercial FE packages. This approach is developed for comparison of the FFEM results for notch problems where available published results are scarce especially for the bi-material notch cases.A very good agreement between the SEA results and the FFEM results is illustrated. In addition, the accuracy of the results of both procedures is shown to be very good compared to the available results in the literature. Therefore, the FFEM as a stand-alone procedure and the SEA as a post-processing technique, developed in this research, are proved to be very accurate and reliable numerical tools for computing the SIFs of a general notch in isotropic homogeneous and bi-material plates.
APA, Harvard, Vancouver, ISO, and other styles
9

Hall, Braydon Day. "The Dynamic Analysis of a Composite Overwrapped Gun Barrel with Constrained Viscoelastic Damping Layers Using the Modal Strain Energy Method." DigitalCommons@USU, 2013. https://digitalcommons.usu.edu/etd/1972.

Full text
Abstract:
The effects of a composite overwrapped gun barrel with viscoelastic damping layers are investigated. Interlaminar stresses and constrained layer damping effects are described. The Modal Strain Energy method is developed for measuring the extent to which the barrel is damped. The equations of motion used in the finite element analysis are derived. The transient solution process is outlined. Decisions for selected parameters are discussed. The results of the finite element analyses are presented using the program written in FORTRAN. The static solution is solved with a constant internal pressure resulting in a calculated loss factor from the Modal Strain Energy Method. The transient solution is solved using the Newmark-Beta method and a variable internal pressure. The analyses conclude that strategically placed viscoelastic layers dissipate strain energy more effectively than a thick single viscoelastic layer. The optimal angle for maximizing the coefficient of mutual influence in a composite cylinder is not necessarily the optimal angle when viscoelastic layers are introduced between layers.
APA, Harvard, Vancouver, ISO, and other styles
10

Holycross, Casey M. "A multiscale analysis and extension of an energy based fatigue life prediction method for high, low, and combined cycle fatigue." The Ohio State University, 2016. http://rave.ohiolink.edu/etdc/view?acc_num=osu1462572899.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Scott-Emuakpor, Onome Ejaro. "Development of a novel energy-based method for multi-axial fatigue strength assessment." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1196280356.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Matthes, Annika. "Die Dehydro-Diels-Alder-Reaktion (DDA-Reaktion) als neue Methode zur Darstellung von Naphthalenophanen : ein neuer Zugang zu gespannten Ringsystemen und zur asymmetrischen Synthese von Biarylen." Phd thesis, Universität Potsdam, 2013. http://opus.kobv.de/ubp/volltexte/2013/6526/.

Full text
Abstract:
Die Dissertation beschreibt die Herstellung von ringförmigen Verbindungen (Naphthalenophanen) mit Hilfe der Dehydro-Diels-Alder-Reaktion, wobei immer Enantiomerenpaare auftreten. Es wird der diastereoselektive Aufbau von Naphthalenophanen und der enantiomeren reine Aufbau von Biarylen untersucht. Desweiteren werden die physikalischen Eigenschaften der erhaltenen Verbindungen, wie die Phosphoreszenz, Trennbarkeit der entstehenden Enantiomere und die Ringspannung beschrieben.
The dissertation describes the synthesis of cyclic compounds (Naphthalenophanes) using the Dehydro-Diels-Alder reaction. The diastereoselective assembling of Naphthalenophanes and the development of pure enantiomeres were researched. All synthesised products are pairs of enantiomeres. Furthermore the physical properties like the phosphorescence, separability of the enantiomeres and the ring strain energy were specified.
APA, Harvard, Vancouver, ISO, and other styles
13

Xu, Yingjie. "Prediction of properties and optimal design of microstructure of multi-phase and multi-layer C/SiC composites." Phd thesis, Université de Technologie de Belfort-Montbeliard, 2011. http://tel.archives-ouvertes.fr/tel-00625953.

Full text
Abstract:
Carbon fiber-reinforced silicon carbide matrix (C/SiC) composite is a ceramic matrixcomposite (CMC) that has considerable promise for use in high-temperature structuralapplications. In this thesis, systematic numerical studies including the prediction of elasticand thermal properties, analysis and optimization of stresses and simulation ofhigh-temperature oxidations are presented for the investigation of C/SiC composites.A strain energy method is firstly proposed for the prediction of the effective elastic constantsand coefficients of thermal expansion (CTEs) of 3D orthotropic composite materials. Thismethod derives the effective elastic tensors and CTEs by analyzing the relationship betweenthe strain energy of the microstructure and that of the homogenized equivalent model underspecific thermo-elastic boundary conditions. Different kinds of composites are tested tovalidate the model.Geometrical configurations of the representative volume cell (RVC) of 2-D woven and 3-Dbraided C/SiC composites are analyzed in details. The finite element models of 2-D wovenand 3-D braided C/SiC composites are then established and combined with the stain energymethod to evaluate the effective elastic constants and CTEs of these composites. Numericalresults obtained by the proposed model are then compared with the results measuredexperimentally.A global/local analysis strategy is developed for the determination of the detailed stresses inthe 2-D woven C/SiC composite structures. On the basis of the finite element analysis, theprocedure is carried out sequentially from the homogenized composite structure of themacro-scale (global model) to the parameterized detailed fiber tow model of the micro-scale(local model). The bridge between two scales is realized by mapping the global analysisresult as the boundary conditions of the local tow model. The stress results by global/localmethod are finally compared to those by conventional finite element analyses.Optimal design for minimizing thermal residual stress (TRS) in 1-D unidirectional C/SiCcomposites is studied. The finite element models of RVC of 1-D unidirectional C/SiCIIcomposites with multi-layer interfaces are generated and finite element analysis is realized todetermine the TRS distributions. An optimization scheme which combines a modifiedParticle Swarm Optimization (PSO) algorithm and the finite element analysis is used toreduce the TRS in the C/SiC composites by controlling the multi-layer interfaces thicknesses.A numerical model is finally developed to study the microstructure oxidation process and thedegradation of elastic properties of 2-D woven C/SiC composites exposed to air oxidizingenvironments at intermediate temperature (T<900°C). The oxidized RVC microstructure ismodeled based on the oxidation kinetics analysis. The strain energy method is then combinedwith the finite element model of oxidized RVC to predict the elastic properties of composites.The environmental parameters, i.e., temperature and pressure are studied to show theirinfluences upon the oxidation behavior of C/SiC composites.
APA, Harvard, Vancouver, ISO, and other styles
14

Daghbouj, Nabil. "Implantation ionique d'hydrogène et d'hélium à basse énergie dans le silicium monocristallin." Thesis, Toulouse 3, 2016. http://www.theses.fr/2016TOU30018/document.

Full text
Abstract:
L'implantation d'hydrogène à forte dose est utilisée dans le procédé Smart Cut(tm) afin de transférer des couches de silicium assez épaisses (>200 nm) sur un autre substrat. En utilisant l'implantation à très basse énergie, la co-implantation d'H et d'He pour des doses totales bien plus faibles que celles requises lorsque l'hydrogène est implanté seul ouvre la voie à un transfert de couches beaucoup plus minces (< 50 nm). Cependant, les phénomènes mis en jeu ainsi que les mécanismes responsables de l'interaction, près de la surface libre du wafer, entre l'H et l'He, et les interstitiels et les lacunes qu'ils génèrent, restent à ce jour largement incompris. Dans ce travail, nous avons tout d'abord déterminé l'effet de la réduction des énergies d'implantation d'H et d'He sur la formation et le développement, lors d'un recuit, des cloques qui se forment à partir de micro-fissures en l'absence d'un raidisseur collé à la plaque implantée. Une approche basée sur la comparaison entre les caractéristiques dimensionnelles des cloques obtenues expérimentalement et la simulation par éléments finis, nous a permis de déterminer la pression et la quantité d'He et d'H2 hébergées dans ces cloques. En comparant ces résultats avec les doses d'ions implantées, nous avons pu mettre en évidence l'absence d'exo-diffusion d'He et d'H lors d'un recuit quelle que soit la distance entre la surface et les profils d'ions implantés, qui montre une forte efficacité des cloques à préserver les molécules. Nous avons pu identifier, puis expliquer, la différence en efficacité de coalescence des cloques en fonction de leurs positions en profondeur en la reliant à la variation de l'augmentation d'énergie élastique des cloques par rapport à leur surface. Nous avons ensuite étudié le rôle du dommage ionique, c'est-à-dire des défauts résultants de la co-implantation d'He et d'H, sur la formation et l'évolution thermique de la microstructure du silicium implanté. Cette étude a été menée soit en fonction de l'ordre d'implantation, soit en fonction de la position nominale en profondeur du profil d'He par rapport au profil d'H, soit en fonction du ratio entre les doses d'implantation d'He et d'H. Nous avons montré que la distribution en profondeur de l'H n'est jamais affectée par la co-implantation d'He. L'He est toujours piégé dans la zone où le dommage est maximal. Lorsque le dommage est maximal dans la zone du profil d'H, l'He y diffuse et y est piégé dans des nano-bulles et/ou des microfissures. Mais si le dommage généré dans la zone où est distribué l'He est supérieur à celui généré autour du profil d'H, l'He reste piégé en dehors du profil d'H dans des nano-bulles. L'He contenue dans des nano-bulles, quelle que soit leur distribution en profondeur, ne contribue pas à la pressurisation des cloques ce qui ralenti la coalescence des cloques. Finalement, nous avons pu proposer différents scénarii permettant de rendre compte des similarités et des différences mises en évidence tant avant recuit qu'après recuit, à basse ou plus haute température selon le type d'implantation réalisé
The high dose hydrogen ion implantation is used in the Smart Cut (tm) process to transfer relatively thick (i.e. >200 nm) Si layers from a donor substrate onto a host material. Hydrogen and helium co-implantation at low energies for a much lower total fluence opens the way for transferring extremely thinner (i.e. <50 nm) layers. However, the phenomena and the mechanisms responsible for the interaction, close to a wafer surface, between H, He, silicon interstitials and vacancies they generate remain poorly understood. First, we studied the effect of reducing the ion energies during both H and He implantations onto the formation and the development of blisters during annealing. Blisters were formed from the micro-cracks since a stiffener was not bonded to the implanted wafer. An approach, based on the comparison between experimentally obtained size characteristics of blisters with the finite element method simulations, allowed us to deduce the pressure inside blister cavities and the fraction of the implanted fluences used to pressurize them. We showed that even when implanted at very low energy, H and He atoms do not exo-diffuse out of the implanted region during annealing. We were able to identify, and then relate the efficiency of blister coalescence to a variation in the elastic energy of blisters as a function of their depth position. In a second part, we studied the role of the damage, produced by He and H coimplantation, on the formation and the thermal evolution of the microstructure of the implanted silicon. These investigations were realized as a function of either the order of co-implantation, or the nominal position of the He profile with respect to the H one, or the ratio between He and H fluences. We showed that the H depth distribution was never affected by He co-implantation. Helium was always trapped at the depth where the damage was maximum. When the damage was highest within the H profile, He diffused and was trapped there in the nano-bubbles and /or the blister cavities. However, when the damage was higher within the He profile than within the H one, He remained trapped in the nano-bubbles outside the H profile. Helium contained in the nano-bubbles, whatever their depth distribution, did not contribute to a pressurization of blister cavities that slowed down their coalescence. Finally, we have proposed various scenarios accounting for the similarities and the differences evidenced both before and after annealing at low or higher temperatures depending on the type of realized implantation
APA, Harvard, Vancouver, ISO, and other styles
15

Shih, Hoi Wai. "Damage assessment in structures using vibration characteristics." Queensland University of Technology, 2009. http://eprints.qut.edu.au/30319/.

Full text
Abstract:
Changes in load characteristics, deterioration with age, environmental influences and random actions may cause local or global damage in structures, especially in bridges, which are designed for long life spans. Continuous health monitoring of structures will enable the early identification of distress and allow appropriate retrofitting in order to avoid failure or collapse of the structures. In recent times, structural health monitoring (SHM) has attracted much attention in both research and development. Local and global methods of damage assessment using the monitored information are an integral part of SHM techniques. In the local case, the assessment of the state of a structure is done either by direct visual inspection or using experimental techniques such as acoustic emission, ultrasonic, magnetic particle inspection, radiography and eddy current. A characteristic of all these techniques is that their application requires a prior localization of the damaged zones. The limitations of the local methodologies can be overcome by using vibration-based methods, which give a global damage assessment. The vibration-based damage detection methods use measured changes in dynamic characteristics to evaluate changes in physical properties that may indicate structural damage or degradation. The basic idea is that modal parameters (notably frequencies, mode shapes, and modal damping) are functions of the physical properties of the structure (mass, damping, and stiffness). Changes in the physical properties will therefore cause changes in the modal properties. Any reduction in structural stiffness and increase in damping in the structure may indicate structural damage. This research uses the variations in vibration parameters to develop a multi-criteria method for damage assessment. It incorporates the changes in natural frequencies, modal flexibility and modal strain energy to locate damage in the main load bearing elements in bridge structures such as beams, slabs and trusses and simple bridges involving these elements. Dynamic computer simulation techniques are used to develop and apply the multi-criteria procedure under different damage scenarios. The effectiveness of the procedure is demonstrated through numerical examples. Results show that the proposed method incorporating modal flexibility and modal strain energy changes is competent in damage assessment in the structures treated herein.
APA, Harvard, Vancouver, ISO, and other styles
16

Dossou, Dossouvi. "Fatigue thermique d'un polycarbonate : modèle de prédiction de durée de vie d'éprouvettes entaillées." Vandoeuvre-les-Nancy, INPL, 1996. http://www.theses.fr/1996INPL135N.

Full text
Abstract:
Le polycarbonate est de plus en plus utilisé en ingénierie à cause de ses bonnes propriétés mécaniques. Il n'existe pas de procédure de dimensionnement bien établie pour tenir compte de la présence d'une concentration locale de déformation ou de contrainte dans une structure soumise à un chargement cyclique. Nous proposons un modèle de prévision de la durée de vie d'éprouvettes entaillées d'un polycarbonate en fatigue thermique. Le banc d'essai de fatigue thermique conçu est constitué d'un bâti assurant le maintien de l'éprouvette, d'un système de chauffage et de refroidissement, d'une unité de mesure et de régulation de la température, d'un système extensometrique ainsi que d'une unité informatique permettant la réalisation des cycles thermiques et l'asservissement précis des équipements. Des essais en traction isotherme sont réalisés pour déterminer les lois de comportement de notre polycarbonate dans l'intervalle de température des cycles thermiques. Les essais de cyclage thermique sur des éprouvettes lisses permettent de déterminer les lois de fatigue du matériau en terme d'énergie de déformation dissipée. L’analyse par la méthode des éléments finis permet de déterminer les coefficients de concentration de contrainte et la densité d'énergie de déformation dissipée en fond d'entaille. Notre modèle est obtenu en combinant la loi de fatigue du matériau et la loi d'évolution de la densité d'énergie de déformation dissipée en fond d'entaille en fonction du coefficient de concentration de contrainte. Ce modèle simple peut être utilisé pour déterminer la résistance à la fatigue d'autres matériaux et sous différents modes de sollicitation
APA, Harvard, Vancouver, ISO, and other styles
17

Lin, Y. "Optimum design for sustainable 'green' overlays : controlling flexural failure." Thesis, Coventry University, 2014. http://curve.coventry.ac.uk/open/items/b5ba73e5-9cb8-4a0b-ac99-c53b3c3e54ed/1.

Full text
Abstract:
The target of the ‘Green Overlays’ research was a cost effective, minimal disruption, sustainable and environmentally friendly alternative to the wholesale demolition, removal and complete reconstruction of the existing structural concrete pavement. The important problem of flexural resistance for strengthening concrete pavements with structural overlays has been scrutinised. A new mix design method for steel fibre reinforced, roller compacted, polymer modified, bonded concrete overlay has been proposed. The mixes developed were characterized of high flexural strength and high bond strength with the old concrete substrate. ‘Placeability’ and ‘compactability’ of the mix were two dominant issues during laboratory investigation. An innovative approach for establishing the relationship between Stress and Crack Face Opening Displacement for steel fibre reinforced concrete beams under flexure was developed. In addition, a new and simple method for calculating the interfacial Strain Energy Release Rate of both, a two-dimensional specimen and a three-dimensional model of the overlay pavement system were developed. This method can be readily and easily used by practicing engineers. Finally, a new test specimen and its loading configuration for measuring interfacial fracture toughness for concrete overlay pavements were established. The interfacial fracture toughness of a composite concrete beam, consisted of steel fibre-reinforced roller compacted polymer modified concrete bonded on conventional concrete and undergoing flexure, was assessed. In summary, this thesis presents four key findings: A new mix design method for steel fibre-reinforced roller compacted polymer modified concrete bonded on conventional concrete. A new method for establishing the fibre bridging law by an inverse analysis approach. A new, simplified method for calculating strain energy release rate at the interface of a composite beam. A new, innovative technique for calculating strain energy release rate at the interface of an overlaid pavement. The thesis contains a plethora of graphs, data-tables, examples and formulae, suitable for future researchers.
APA, Harvard, Vancouver, ISO, and other styles
18

Lan, Mengyu. "Developments in Extended Finite Element Methods for Extraction of Strain Energy Release Rates and Computational Nanomechanics for SWCNT Aggregates." Thesis, 2013. https://doi.org/10.7916/D8V69RSP.

Full text
Abstract:
In the first part, a new analytical approach, within the extended finite element (XFEM) framework, is proposed to compute Strain Energy Release Rates (SERRs) directly from Irwin's integral. Crack tip enrichment functions in XFEM allow for evaluation of integral quantities in closed form (for some crack configurations studied) and therefore results in an accurate and efficient method. The effects of high order enrichments, mesh refinement and the integration limits of Irwin's integral are examined in benchmark numerical examples. The results indicate that high order enrichment functions have significant effect on the convergence, in particular when the integral limits are finite. When the integral limits tend to zero, simpler SERR expressions are obtained and high order terms vanish. Nonetheless, these terms contribute indirectly via coefficients of first order terms. The analytical formulation is then extended to cracks in arbitrary orientations. Several benchmark examples are investigated including off-center cracks, inclined cracks and crack growth problems. On all these problems, the method is shown to work well, giving accurate results. Moreover, due to its analytical nature, no special postprocessing is required which leads to a fast approach to obtain Strain Energy Release Rates. Thus it is concluded that this method may provide a good alternative to the popular J-integral method. In the second part of the thesis, the stress-strain behavior of short single walled carbon nanotube (SWCNT) aggregates is investigated by a novel incremental constrained minimization approach. An AIREBO potential is used to model the interactions within and between CNTs. The idea is to homogenously disperse SWCNTs in the computational cell at random positions and orientations following spherical uniform distributions, and incrementally deform the cell while restraining the movement of atoms at the ends of nanotubes. The stress-strain response of the system is obtained in each loading direction and it is shown to converge to an isotropic behavior (a similar response in all directions) as the number of CNTs in the system increases. In addition, it is shown that the Young's modulus of the system increases linearly with the CNT aggregates density and the method agrees well with results obtained from molecular dynamics simulations running at near zero degrees kelvin, which are obtained at only a fraction of the CPU time required for MD methods.
APA, Harvard, Vancouver, ISO, and other styles
19

Grant, Michael. "New modelling and simulation methods to support clean marine propulsion." Thesis, 2021. http://hdl.handle.net/1828/13308.

Full text
Abstract:
The marine industry has increased its adoption of pure-electric, diesel-electric, and other non-traditional propulsion architectures to reduce ship emissions and fuel consumption. While these technologies can improve performance, the design of a propulsion system becomes challenging, given that no single technology is superior across all vessel types. Furthermore, even identical ships with different operating patterns may be better suited to different propulsion technologies. Addressing this problem, previous research has shown that if key elements of a vessel's operational pro file are known, simulation and optimization techniques can be employed to evaluate multiple propulsion architectures and result in a better propulsion system design and energy management strategy for a given vessel. While these studies have demonstrated the performance improvements that can be achieved from optimizing clean marine propulsion systems, they rely on vessel operational profiles obtained through physical measurement from existing ships. From a practical point of view, the optimization of a vessel's propulsion system needs to occur prior to a vessel's construction and thus precludes physical measurement. To this end, this thesis introduces a marine simulation platform for producing vessel operational profiles which enable propulsion system optimization during the ship design process. Core subsystem modules are constructed for simulating ship motions in 3 degrees of freedom and result in operational profile time-series, including propulsion power. Data is acquired from a benchmark vessel to validate the simulation. Results show the proposed approach strikes a balance between speed, accuracy, and complexity compared with other available tools.
Graduate
APA, Harvard, Vancouver, ISO, and other styles
20

Li, Ran. "Non-Destructive Damage Evaluation Based on Element Strain Energies." Thesis, 2013. http://hdl.handle.net/1969.1/149568.

Full text
Abstract:
The objective of this thesis is to develop a nondestructive evaluation method that could accurately locate and size damage in structures. The method is to be based on pre-damage and post-damage strain energies of beam and column elements. The method should apply to 1-D as well as 2-D and 3-D structures with single or multiple damage locations. To achieve the objectives listed above, the following four tasks are addressed: (1) the development of the theoretical foundations of the nondestructive evaluation theory; (2) the validation of the accuracy of the theory using exact structural deformational data generated from the static analysis of F. E. models in SAP2000; (3) the validation of the practical feasibility of the theory using approximated structural deformational data generated from the modal analyses of F.E. models in SAP2000; and (4) the application of the methodology to an existing structure. The numerical simulations of damage indicate that the proposed NDE method can clearly locate damage in the structures and provide an accurate quantitative value of damage severities, even when only a few lower frequencies and mode shapes are known. The field data analysis results indicate that the developed NDE method can locate damage and provide conservative values for damage severity estimations.
APA, Harvard, Vancouver, ISO, and other styles
21

Doca, Thiago de Carvalho Rodrigues. "Energy wear methods for dual-mortar contact analysis of frictional problems at finite inelastic strains." Tese, 2013. https://repositorio-aberto.up.pt/handle/10216/72807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

Doca, Thiago de Carvalho Rodrigues. "Energy wear methods for dual-mortar contact analysis of frictional problems at finite inelastic strains." Doctoral thesis, 2014. https://repositorio-aberto.up.pt/handle/10216/72807.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Wang, Jeng-Chan, and 王彰謙. "Determination of Pre-consolidation Pressure with Log Total Strain Energy Density –Log Vertical Effective Stress Method." Thesis, 2005. http://ndltd.ncl.edu.tw/handle/08282114988045241625.

Full text
Abstract:
碩士
逢甲大學
土木工程所
93
Accurately predicting the maximum preconsolidation pressures for compressible clay strata is helpful to understand their stress histories and behaviors after applying loads. Thus, via the results of consolidation tests, many methods can be found in the literature for predicting the maximum preconsolidation pressure. Following those methods addressed in the literature, a modified one is proposed in this thesis. Then, the accuracy for each method is evaluated by utilizing some test results that the maximum preconsolidation pressures were known. Finally, consolidation test results for a brown clay performed during this study and sixteen others obtained from the literature are used to investigate the deviation for the predicted results from different methods. Results from this thesis indicate that the author’s method can produce better result. The reason for the above is that the effect of the over-swelling by absorbing water after fully unloading while sampling is less when the author’s method was adopted.
APA, Harvard, Vancouver, ISO, and other styles
24

Chang, Chi-Min, and 張期閔. "Development of Strain Energy-Based Analytical Model and Needle Shape Parameter Optimization Method for Multi-Layer Probe Card Design." Thesis, 2011. http://ndltd.ncl.edu.tw/handle/13003243027568759798.

Full text
Abstract:
博士
國立中正大學
機械系
99
Wafer testing in the semiconductor industry is generally per-formed using a multi-layer probe card. In the present study, Castiglia-no’s second theorem is used to derive analytical formulae for the con-tact force and scrub mark length generated during the probing test. The formulations are then integrated with a multi-objective program-ming algorithm in order to optimize the probe needle parameters in such a way as to ensure a uniform contact force and a minimum scrub mark length. The validity of the analytical model is confirmed by comparing the solutions obtained for the contact force and scrub mark length with the equivalent results obtained from finite element (FE) simulations. The effectiveness of the analytical model and optimiza-tion procedure is demonstrated by optimizing the needle parameters of a commercial four-layer probe card. It is shown that the optimized probe card not only produces a more uniform contact force than the original probe card, but also yields a shorter and more uniform scrub mark length. Finally, to propose a more complete tool in design of probe card, this research found out prediction formula of probe scrub depth by using contact mechanics and experiment.
APA, Harvard, Vancouver, ISO, and other styles
25

Wu, Yan-Han, and 吳彥瀚. "Application of Method Processing and Strain Gauges to study the Wave Energy Converter Conversion Efficiency of a Double-hinged Flapper with A Hydraulic Cylinder." Thesis, 2015. http://ndltd.ncl.edu.tw/handle/70227259460112808028.

Full text
Abstract:
碩士
國立臺灣海洋大學
河海工程學系
103
In this paper, the Double-hinged Flapper with a hydraulic cylinder and six changable tube hinges and one fixed bottom hinge was experimentally studied for the effects of changeable hinges on conversion efficiency of wave power. The results were compared with those of a bottom-hinged flapper with a hydraulic cylinder. The power conversion efficiency was derived by multiplying angular velocity and the torque measured at the bottom hinge. The resulting power conversion efficiency was analyzed on its relation with incident wave power, wave steepness and Ursell number. Experimental tests adopted image methods to derive the rotating angles and and angular velocity of each changeable hinge. The Potplayer software was adopted to simplify analysis process. The strain gauges were applied at the ottom hinge to measure torque. The measured data were all processed with low-frequency filters to delete oscillating noisesa. Then, data of the angular velocity and torque were further synchronized to derive captured power. The joint distribution of wave heights and periods of the northeast monsoon from October 2013 to March 2014 were analyzed for selecting the five wave conditions with highest occurrence probability. The test data were claculated by Goda’s equivelent deep water-wave method and a scale of a ratio of 1/20 for experimental setups of a small-scale wave basin of 0.5 m in depth. The results clearly illustrate that the power conversion efficiencies are decreasing with increasing incident wave power and Ursell number. The highest power conversion efficiencies for the changeable hinge at the fourth and third positions are found to be about 35% and 21%, respectively. Comparisons with bottom-hinged flapper, the power conversion efficiencies of the Double-hinged flapper are found to be improved by about 2-5%.
APA, Harvard, Vancouver, ISO, and other styles
26

Muscolino, G., and Alessandro Palmeri. "Response of beams resting on viscoelastically damped foundation to moving oscillators." 2006. http://hdl.handle.net/10454/604.

Full text
Abstract:
The response of beams resting on viscoelastically damped foundation under moving SDoF oscillators is scrutinized through a novel state-space formulation, in which a number of internal variables is introduced with the aim of representing the frequency-dependent behaviour of the viscoelastic foundation. A suitable single-step scheme is provided for the numerical integration of the equations of motion, and the Dimensional Analysis is applied in order to define the dimensionless combinations of the design parameters that rule the responses of beam and moving oscillator. The effects of boundary conditions, span length and number of modes of the beam, along with those of the mechanical properties of oscillator and foundation, are investigated in a new dimensionless form, and some interesting trends are highlighted. The inaccuracy associated with the use of effective values of stiffness and damping for the viscoelastic foundation, as usual in the present state-of-practice, is also quantified.
APA, Harvard, Vancouver, ISO, and other styles
27

Zhao, Ruogang. "The Development and Application of Tools to Study the Multiscale Biomechanics of the Aortic Valve." Thesis, 2012. http://hdl.handle.net/1807/33866.

Full text
Abstract:
Calcific aortic valve disease (CAVD) is one of the most common causes of cardiovascular disease in North America. Mechanical factors have been closely linked to the pathogenesis of CAVD and may contribute to the disease by actively regulating the mechanobiology of valve interstitial cells (VICs). Mechanical forces affect VIC function through interactions between the VIC and the extracellular matrix (ECM). Studies have shown that the transfer of mechanical stimulus during cell-ECM interaction depends on the local material properties at hierarchical length scales encompassing tissue, cell and cytoskeleton. In this thesis, biomechanical tools were developed and applied to investigate hierarchical cell-ECM interactions, using VICs and valve tissue as a model system. Four topics of critical importance to understanding VIC-ECM interactions were studied: focal biomechanical material properties of aortic valve tissue; viscoelastic properties of VICs; transduction of mechanical deformation from the ECM to the cytoskeletal network; and the impact of altered cell-ECM interactions on VIC survival. To measure focal valve tissue properties, a micropipette aspiration (MA) method was implemented and validated. It was found that nonlinear elastic properties of the top layer of a multilayered biomaterial can be estimated by MA by using a pipette with a diameter smaller than the top layer thickness. Using this approach, it was shown that the effective stiffness of the fibrosa layer is greater than that of the ventricularis layer in intact aortic valve leaflets (p<0.01). To characterize the viscoelastic properties of VICs, an inverse FE method of single cell MA was developed and compared with the analytical half-space model. It was found that inherent differences in the half-space and FE models of single cell MA yield different cell viscoelastic material parameters. However, under particular experimental conditions, the parameters estimated by the half-space model are statistically indistinguishable from those predicted by the FE model. To study strain transduction from the ECM to cytoskeleton, an improved texture correlation algorithm and a uniaxial tension release device were developed. It was found that substrate strain fully transfers to the cytoskeletal network via focal adhesions in live VICs under large strain tension release. To study the effects of cell-ECM interactions on VIC survival, two mechanical stimulus systems that can simulate the separate effects of cell contraction and cell monolayer detachment were developed. It was found that cell sheet detachment and disrupted cell-ECM signaling is likely responsible for the apoptosis of VICs grown in culture on thin collagen matrices, leading to calcification. The studies presented in this thesis refine existing biomechanical tools and provide new experimental and analytical tools with which to study cell-ECM interactions. Their application resulted in an improved understanding of hierarchical valve biomechanics, mechanotransduction, and mechanobiology.
APA, Harvard, Vancouver, ISO, and other styles
28

Mullan, Sean. "Tidal sedimentology and geomorphology in the central Salish Sea straits, British Columbia and Washington State." Thesis, 2017. https://dspace.library.uvic.ca//handle/1828/8943.

Full text
Abstract:
Intra-archipelago waterways, including tidal strait networks, present a complex set of barriers to, and conduits for sediment transport between marine basins. Tidal straits may also be the least well understood tide-dominated sedimentary environment. To address these issues, currents, sediment transport pathways, and seabed sedimentology & geomorphology were studied in the central Salish Sea (Gulf and San Juan Islands region) of British Columbia, Canada and Washington State, USA. A variety of data types were integrated: 3D & 2D tidal models, multibeam bathymetry & backscatter, seabed video, grab samples, cores and seismic reflection. This dissertation included the first regional sediment transport modelling study of the central Salish Sea. Lagrangian particle dispersal simulations were driven by 2D tidal hydrodynamics (~59-days). It was found that flood-tide dominance through narrow intra-archipelago connecting straits resulted in the transfer of sediment into the inland Strait of Georgia, an apparent sediment sink. The formative/maintenance processes at a variety of seabed landforms, including a banner bank with giant dunes, were explained with modelled tides and sediment transport. Deglacial history and modern lateral sedimentological and morphological transitions were also considered. Based on this modern environment, adjustments to the tidal strait facies model were identified. In addition, erosion and deposition patterns across the banner bank (dune complex) were monitored with 8-repeat multibeam sonar surveys (~10 years). With these data, spatially variable bathymetric change detection techniques were explored: A) a cell-by-cell probabilistic depth uncertainty-based threshold (t-test); and B) coherent clusters of change pixels identified with the local Moran's Ii spatial autocorrelation statistic. Uncertainty about volumetric change is a considerable challenge in seabed change research, compared to terrestrial studies. Consideration of volumetric change confidence intervals tempers interpretations and communicates metadata. Techniques A & B may both be used to restrict volumetric change calculations in area, to exclude low relative bathymetric change signal areas.
Graduate
2018-12-07
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography