Dissertations / Theses on the topic 'Stress tolerance'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the top 50 dissertations / theses for your research on the topic 'Stress tolerance.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.
Khan, Asif Ali. "Breeding maize for stress tolerance." Thesis, University of Liverpool, 1999. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.366240.
Full textAlexandre, Ana Isabel Pereira. "Temperature stress tolerance in chickpea rhizobia." Doctoral thesis, Universidade de Évora, 2010. http://hdl.handle.net/10174/11582.
Full textParalkar, Urvi Pradeep. "RELATIONSHIP BETWEEN TOLERANCE OF AMBIGUITY, TOLERANCE OF UNCERTAINTY, AND COPING WITH ACADEMIC STRESS." OpenSIUC, 2019. https://opensiuc.lib.siu.edu/theses/2522.
Full textSheen, Tamsin, and n/a. "Osmotic and desiccation stress-tolerance of Serratia entomophila." University of Otago. Department of Microbiology & Immunology, 2008. http://adt.otago.ac.nz./public/adt-NZDU20081208.114925.
Full textAkhtar, Lal Hussain. "Tissue culture and stress tolerance in Gossypium species." Thesis, Bangor University, 1996. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.296184.
Full textHowden, Reuben. "Tolerance to orthostatic stress and human cardiovascular control." Thesis, De Montfort University, 2002. http://hdl.handle.net/2086/4812.
Full textAhmed, Helal Uddin. "Mapping stress tolerance genetic loci in Arabidopsis thaliana." Thesis, University of Newcastle Upon Tyne, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.246628.
Full textNeudeck, Michelle Joan. "Tolerance of Planktothrix agardhii to nitrogen depletion." Bowling Green State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1522329471601801.
Full textMACHADO, VERONICA MIQUELIN. "EFFECT OF ELASTIC-PLASTIC STRESS IN THE DEFECT TOLERANCE UNDER STRESS CORROSION CRACKING." PONTIFÍCIA UNIVERSIDADE CATÓLICA DO RIO DE JANEIRO, 2016. http://www.maxwell.vrac.puc-rio.br/Busca_etds.php?strSecao=resultado&nrSeq=33679@1.
Full textCOORDENAÇÃO DE APERFEIÇOAMENTO DO PESSOAL DE ENSINO SUPERIOR
PROGRAMA DE EXCELENCIA ACADEMICA
Corrosão sob tensão (SCC), que consiste na iniciação e propagação de trincas devido ao efeito combinado de tensões mecânicas e o ambiente corrosivo, é um dano potencial para estruturas e componentes. Além do mais, SCC pode ser explicado por diferentes mecanismos dependendo do par material ambiente corrosivo considerado, o que dificulta o uso de um modelo geral para predizer o comportamento de trincas em SCC. Sendo assim, projetos frequentemente utilizam um critério conservativo que desqualifica materiais susceptíveis à SCC sem analisar de maneira apropriada a influência dos campos de tensão que a induzem. O objetivo deste trabalho é avaliar o efeito de tensões elastoplásticas na corrosão sob tensão. Esta abordagem mecânica considera que todos os efeitos corrosivos envolvidos na corrosão sob tensão podem ser apropriadamente quantificados pelas tradicionais resistências do material à iniciação e propagação de trincas para um ambiente corrosivo específico. Corpos de prova de flexão em Alumínio fragilizados por Gálio líquido serão utilizados para prever o efeito de tensões residuais induzidas por deformações plásticas na iniciação de trincas por corrosão sob tensão. Além disso, uma análise quantitativa baseada no comportamento de trincas não propagantes a partir de entalhes será usada para estimar a tensão necessária para iniciar e propagar trincas em corpos de prova entalhados em aço AISI 4140 sujeitos à corrosão por sulfeto de hidrogênio em ambiente aquoso. O comportamento de trincas curtas e a carga máxima suportada pelos corpos de prova entalhados são analisadas considerando campos de tensões lineares elástico e elastoplásticos através do modelo proposto que será validado através de dados experimentais.
Stress Corrosion Cracking (SCC), which consist in the initiation and propagation of cracks due to the combined attack of mechanical stresses and a corrosive environment is a potential danger for structures and components. Moreover, SCC can be explained by different mechanisms depending on the metal environmental pair, what makes difficult to create a generalized analytical approach to predict the crack behavior in SCC. Therefore, projects often use an over-conservative design criteria that disqualify a material susceptible to SCC without properly evaluate the influence of the stress fields that drive them. The aim of this work is to evaluate the effect of elastic-plastic stress in SCC. This mechanical approach assumes that all chemical effects involved in SCC problems can be appositely described and quantified by traditional material resistances to crack initiation and propagation at under specific environment. Aluminum bending specimens in Gallium environment are used to predict the effect of the residual stress induced by plastic deformation in the crack initiation under SCC conditions. Furthermore, a quantitative analysis based on the non-propagating crack behavior departing from notch tips are used to calculate the necessary stress to initiate and propagate SCC in AISI 4140 steel notched specimens under aqueous hydrogen sulfide environment. The non-propagating crack behavior and the maximum load supported by notched specimens are analyzed under linear elastic and elastic-plastic stress field through the proposed model that will be validated by experimental data.
Green, Andrew Justin. "Abiotic stress tolerance from the tertiary gene pool of common wheat." Diss., Kansas State University, 2016. http://hdl.handle.net/2097/32746.
Full textDepartment of Agronomy
Allan K. Fritz
Heat and drought stress are two of the most significant abiotic stresses limiting wheat production in the Great Plains and worldwide. Introgression of novel tolerance genes from wild relatives is a strategy which presents promise. This study examined both heat and drought tolerance from the tetraploid species Aegilops geniculata (U[superscript g]U[superscript g]M[superscript g]M[superscript g]). Additional screening for heat tolerance was conducted with the US genome species Aegilops peregrina (Hack) and Aegilops kotschyi (Boiss). A comprehensive screening system for drought tolerance was also constructed to evaluate wheat and its wild relatives. Previous reports suggested that Ae. geniculata accession TA2899 was moderately tolerant to heat stress. It had also previously been used to develop a full set of wheat-Ae. geniculata chromosome addition lines in a Chinese Spring background. To identify the chromosome(s) carrying the heat tolerance, all addition lines, as well as wheat check genotypes, were screened for post-anthesis heat tolerance in two growth chamber experiments. No chromosome addition lines were significantly different (p<0.05) from Chinese Spring, and none were found to have superior performance to the positive check cultivars. Forty-five accessions of Ae. peregrina and its close relative, Ae. kotschyi were screened in a post-anthesis heat experiment. A follow-up experiment compared the genotypes in a split-plot temperature treatment with heat and optimal growth chambers. Many accessions were similar to the control genotypes for grain fill duration, and some exceeded the wheat controls for relative chlorophyll index values on Day 12 and Day 16. TA1889 and TA1904, both Ae. peregrina accessions originating from Israel, had a higher grain fill duration across experiments than the best wheat control, and warrant further investigation. Previous reports suggested drought tolerance in Ae. geniculata. After preliminary screenings, six genotypes were selected for advanced screening and compared with three wheat cultivars. The advanced greenhouse screening system was conducted in 152cm tall PVC growth tubes. The experiment measured multiple plant responses, and had a datalogging system automatically collecting water content and matric potential of the growth media. Multiple accessions warranted further investigation, and showed potentially different modes of drought tolerance, with varying levels of stomatal resistance, biomass, and osmotic adjustment.
Gass, Thomas Gass Thomas. "Tolerance of soybean to low temperature stress during flowering /." [S.l.] : [s.n.], 1994. http://e-collection.ethbib.ethz.ch/show?type=diss&nr=10771.
Full textHelaly, Alaa el-Din A. "Molecular studies on plants to enhance their stress tolerance." [S.l.] : [s.n.], 2005. http://deposit.ddb.de/cgi-bin/dokserv?idn=974309494.
Full textKrell, Andreas. "Salt stress tolerance in the psychrophilic diatom Fragilariopsis cylindrus." [S.l.] : [s.n.], 2006. http://deposit.ddb.de/cgi-bin/dokserv?idn=980889235.
Full textHelaly, Alaa El-din A. "Molecular studies on plants to enhance their stress tolerance." Phd thesis, Universität Potsdam, 2004. http://opus.kobv.de/ubp/volltexte/2005/242/.
Full textProline accumulation increased more strongly in leaves and roots of AtSTO1 overexpression lines than in tissues of wild-type and RNAi lines when treated with 200 mM NaCl, exposed to cold stress or when watering was prevented for one day or two weeks. Also, soluble sugar content increased to higher levels under salt, cold and drought stress in AtSTO1 overexpression lines when compared to wild-type and RNAi lines. The increase in soluble sugar content was detected in AtSTO1 overexpression lines after long-term (2 weeks) growth of plants under these stresses. Anthocyanins accumulated in leaves of AtSTO1 overexpression lines when exposed to long term salt stress (200 mM NaCl for 2 weeks) or to 4°C for 6 and 8 weeks. Also, anthocyanin content was increased in flowers of AtSTO1 overexpression plants kept at 4°C for 8 weeks. Taken together these data indicate that overexpression of AtSTO1 enhances abiotic stress toleranc via a more pronounced accumulation of compatible solutes under stress.
Umweltstress wie zum Beispiel Trockenheit, Salz und niedrige Temperaturen beeinflussen in erheblichem Maße das pflanzliche Wachstum und haben einen negativen Einfluss auf Ertragsleistungen. Untersuchungen zur Verbesserung der Stresstoleranz und des Ernteertrages von Kulturpflanzen sind daher von großer Bedeutung. Pflanzen passen sich Umweltveränderungen durch physiologische und entwicklungsabhängige Prozesse an. In den letzten Jahren wurden zahlreiche Gene identifiziert, die als Reaktion von Umweltstress in der Pflanze aktiviert werden. Salzstress bewirkt negative Veränderungen des pflanzlichen Wasserstatus, die auf veränderte K+/Na+-Verhältnisse und Na+- und Cl--Konzentrationen zurückzuführen sind. Neben Veränderungen in der Bewässerungspraxis spielt heute die Züchtung salztoleranter Pflanzen und die biotechnologische Verbesserung von Kulturpflanzen eine zunehmend wichtige Rolle.
Im Rahmen der Doktorarbeit wurde ein bisher wenig untersuchtes Gen, welches AtSTO1 genannt wird, anhand der Modellpflanze Ackerschmalwand (lat. Arabidopsis thaliana) analysiert. Das Gen wird durch Umweltstress, insbesondere durch Kälte, aktiviert. Es wurden gentechnisch veränderte Pflanzen hergestellt, die eine verstärkte Aktivität des AtSTO1-Gens aufweisen. Diese Pflanzen zeigten bei Vorliegen von hohen Salzkonzentration ein im Vergleich zu unveränderten Pflanzen verbessertes Wachstum. Diese Stimulation des pflanzlichen Wachstums unter Salzstress-Bedingungen war begleitet von einer vermehrten Bildung bestimmter chemischer Substanzen, die die Pflanzen in die Lage versetzen, mit dem Stress besser fertig zu werden. Dazu gehört beispielsweise die Aminosäure Prolin, deren Konzentration in den gentechnisch veränderten Pflanzen nach Stressbehandlung stärker erhöht ist, als in den unveränderten Kontrollpflanzen oder in Pflanzen, die eine reduzierte AtSTO1-Aktivität besaßen. Auch die Gehalte einiger Zucker waren in den gentechnisch modifizierten Pflanzen unter Stress erhöht. Insgesamt hat sich gezeigt, dass AtSTO1 eine wichtige Aufgabe in der Stressantwort spielt. Weitere Untersuchungen sollten es ermöglichen, auch bei Kulturpflanzen, wie etwa Reis, die Stresstoleranz durch Veränderung verwandter Gene zu erhöhen.
-----------
vollständiger Name des Autors: Abdallah Helaly, Alaa El-Din
Tyrrell, John William. "Stress tolerance of transgenic alfalfa overexpressing glutathione reductase transgenes." Thesis, National Library of Canada = Bibliothèque nationale du Canada, 1998. http://www.collectionscanada.ca/obj/s4/f2/dsk2/ftp01/MQ31872.pdf.
Full textMa, Wai-lung, and 馬惠龍. "The role of stress tolerance on marine invasive mussels." Thesis, The University of Hong Kong (Pokfulam, Hong Kong), 2013. http://hdl.handle.net/10722/196040.
Full textpublished_or_final_version
Biological Sciences
Master
Master of Philosophy
Smith, Hilary April. "Evolution of Reproduction and Stress Tolerance in Brachionid Rotifers." Diss., Georgia Institute of Technology, 2012. http://hdl.handle.net/1853/52145.
Full textWatmough, Shaun A. "Adaptation to pollution stress in trees : metal tolerance traits." Thesis, Liverpool John Moores University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.260825.
Full textO'Neil, John Daniel. "A molecular investigation of stress tolerance in aspergillus nidulans." Thesis, University of Wolverhampton, 2003. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.273927.
Full textJakkamsetty, Chamundeshwari, and Chaitanya Medapudi. "Stress tolerance of encapsulated yeast used for bioethanol production." Thesis, Högskolan i Borås, Akademin för textil, teknik och ekonomi, 2016. http://urn.kb.se/resolve?urn=urn:nbn:se:hb:diva-9745.
Full textKuzovkina-Eischen, Yulia A. "Stress Tolerance and Horticultural Evaluation of the Genus Salix." The Ohio State University, 2003. http://rave.ohiolink.edu/etdc/view?acc_num=osu1047496264.
Full textPeyton, Justin Tyler. "Genomic Platforms and Molecular Physiology of Insect Stress Tolerance." The Ohio State University, 2015. http://rave.ohiolink.edu/etdc/view?acc_num=osu1440175145.
Full textSouth, Kaylee. "Improving abiotic and biotic stress tolerance in floriculture crops." The Ohio State University, 2020. http://rave.ohiolink.edu/etdc/view?acc_num=osu1595499762154056.
Full textBrígido, Clarisse Cordeiro. "Tolerance of chickpea mesorhizobia to acid and salt stress." Doctoral thesis, Universidade de Évora, 2012. http://hdl.handle.net/10174/14546.
Full textPATEL, VIJAY LAXMAN. "ARABIDOPSIS HSP21 AND MSRB1/MSRB2 IN PLANT STRESS TOLERANCE." Thesis, The University of Arizona, 2008. http://hdl.handle.net/10150/192201.
Full textPeththa, Thanthrige Nipuni. "Dissecting the molecular mechanisms of AtBAG4-mediated stress tolerance." Thesis, Queensland University of Technology, 2022. https://eprints.qut.edu.au/235369/1/Nipuni%2BPeththa%2BThanthrige%2BThesis%283%29.pdf.
Full textGroli, Eder Licieri <1988>. "Dissecting the Heat-Stress Tolerance QTLome in Durum Wheat." Doctoral thesis, Alma Mater Studiorum - Università di Bologna, 2020. http://amsdottorato.unibo.it/9090/1/Groli_Eder%20Licieri_Tesi.pdf.
Full textEakes, Donald Joseph. "Moisture stress conditioning, potassium nutrition, and tolerance of Salvia splendens 'Bonfire' to moisture stress." Diss., Virginia Polytechnic Institute and State University, 1989. http://hdl.handle.net/10919/54350.
Full textPh. D.
Barker, Clive. "The survival of Listeria monocytogenes during acid stress." Thesis, University of Reading, 2000. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.342154.
Full textDewey, Daniel Wade. "Physiological and genetic control of water stress tolerance in zoysiagrass." Texas A&M University, 2005. http://hdl.handle.net/1969.1/3172.
Full textPahkala, Maarit. "Evolutionary ecology of ultraviolet-B radiation stress tolerance in amphibians." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2001. http://publications.uu.se/theses/91-554-5081-4/.
Full textMohammady-D, Shahram. "Inheritance of tolerance to water-stress in wheat (Triticum aestivum)." Thesis, University of Newcastle Upon Tyne, 2002. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.250130.
Full textPanaretou, Barry. "The plasma membrane in the tolerance of yeast to stress." Thesis, University College London (University of London), 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.437063.
Full textMoore, Thomas. "Are barley dwarfing genes important in tolerance to abiotic stress?" Thesis, University of East Anglia, 2012. https://ueaeprints.uea.ac.uk/42362/.
Full textRajab, Salem Mohamed Ahmed. "The role of HvBWMK1 in barley tolerance to abiotic stress." Thesis, Heriot-Watt University, 2013. http://hdl.handle.net/10399/2830.
Full textChilufya, Jedaidah, Kousha Mohensi, and Aruna Kilaru. "The Role of Anandamide in Biotic Stress Tolerance in Mosses." Digital Commons @ East Tennessee State University, 2015. https://dc.etsu.edu/etsu-works/4843.
Full textManuel, Theodore Llewellyn. "Effect of soil nutrient status on stress tolerance in Proteaceae." Bachelor's thesis, University of Cape Town, 1988. http://hdl.handle.net/11427/25615.
Full textElnitsky, Michael A. "Tolerance and Physiological Response to Environmental Stress in Antarctic Arthropods." Miami University / OhioLINK, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=miami1216152581.
Full textLi, Aiqing. "Identification Of Proteins Associated With Insect Diapause And Stress Tolerance." The Ohio State University, 2008. http://rave.ohiolink.edu/etdc/view?acc_num=osu1211487603.
Full textTeets, Nicholas Mario. "Cellular and Molecular Mechanisms of Environmental Stress Tolerance in Insects." The Ohio State University, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=osu1354542991.
Full textJanislampi, Kaerlek W. "Effect of Silicon on Plant Growth and Drought Stress Tolerance." DigitalCommons@USU, 2012. https://digitalcommons.usu.edu/etd/1360.
Full textKarim, Sazzad. "Exploring plant tolerance to biotic and abiotic stresses /." Uppsala : Dept. of Plant Biology and Forest Genetics, Swedish University of Agricultural Sciences, 2007. http://epsilon.slu.se/200758.pdf.
Full textADAMO, GIUSY MANUELA. "Evolution of copper tolerance in yeast cells." Doctoral thesis, Università degli Studi di Milano-Bicocca, 2012. http://hdl.handle.net/10281/29458.
Full textBonomo, Jeanne M. "Metabolic engineering tolerance to amino acid related stress in Escherichia coli." Diss., Connect to online resource, 2005. http://wwwlib.umi.com/cr/colorado/fullcit?p3190379.
Full textAl-Quraan, Nisreen Singh Narendra K. "Role of Arabidopsis thaliana calmodulin isoforms in tolerance to abiotic stress." Auburn, Ala, 2008. http://repo.lib.auburn.edu/EtdRoot/2008/SUMMER/Biological_Sciences/Dissertation/Al-quraan_Nisreen_3.pdf.
Full textMeek, Haley. "Seed Coat Pigment Variation and UV Stress Tolerance in Lupinus perennis." Bowling Green State University / OhioLINK, 2018. http://rave.ohiolink.edu/etdc/view?acc_num=bgsu1542386060563396.
Full textGoy, Jo M. "Aging Is a Determinant in Anoxia Stress Tolerance in Caenorhabditis Elegans." Thesis, University of North Texas, 2013. https://digital.library.unt.edu/ark:/67531/metadc271821/.
Full textJohnson, Stephanie. "The mechanisms of drought stress tolerance in the crop Sorghum bicolor." Thesis, Durham University, 2016. http://etheses.dur.ac.uk/11426/.
Full textMyers, Jonathan Andrew. "Seedling carbohydrate storage, survival, and stress tolerance in a neotropical forest." [Gainesville, Fla.] : University of Florida, 2005. http://purl.fcla.edu/fcla/etd/UFE0009262.
Full textSiriwardena, P. P. G. S. N. "Tolerance and early life stages of Tilapia (Cichlidae:Tilapiini) to metal stress." Thesis, University of Stirling, 1993. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.384838.
Full text