Academic literature on the topic 'Stripe rust'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Stripe rust.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Stripe rust"

1

Lan, C. X., R. P. Singh, J. Huerta-Espino, V. Calvo-Salazar, and S. A. Herrera-Foessel. "Genetic Analysis of Resistance to Leaf Rust and Stripe Rust in Wheat Cultivar Francolin#1." Plant Disease 98, no. 9 (September 2014): 1227–34. http://dx.doi.org/10.1094/pdis-07-13-0707-re.

Full text
Abstract:
Leaf rust and stripe rust are important diseases of wheat and can be controlled by growing resistant varieties. We investigated the genetic basis of resistance to both rusts in 198 F5 recombinant inbred lines derived from a cross between ‘Avocet’ and ‘Francolin#1’. The population was phenotyped in greenhouse and field, and genotyped with known gene-associated molecular markers. Seedling resistance of Francolin#1 to leaf and stripe rusts was attributed to the loosely linked genes Lr16 and YrF, respectively, with a recombination frequency of 0.36. Field segregation indicated that adult plant resistance (APR) to leaf and stripe rusts was conferred by three and five additive genes, respectively. Among them, Lr46/Yr29 was associated with resistance to both rusts in Francolin#1, Lr16 reduced field leaf rust severity by 8 to 9%, and YrF contributed to 10 to 25% reductions in stripe rust severity. The Lr16 region was also associated with a 5 to 16% reduction in stripe rust severity, which is likely due to its linkage with YrF or another unidentified stripe rust APR gene. Significant additive effects on stripe rust were detected between YrF and Yr29. We conclude that APR in Francolin#1 to leaf and stripe rusts involves a combination of seedling and APR genes.
APA, Harvard, Vancouver, ISO, and other styles
2

Navabi, A., J. P. Tewari, R. P. Singh, B. McCallum, A. Laroche, and K. G. Briggs. "Inheritance and QTL analysis of durable resistance to stripe and leaf rusts in an Australian cultivar, Triticum aestivum 'Cook'." Genome 48, no. 1 (February 1, 2005): 97–107. http://dx.doi.org/10.1139/g04-100.

Full text
Abstract:
An F4-derived F6 recombinant inbred line population (n = 148) of a cross between the durable stripe (yellow) rust (caused by Puccinia striiformis) and leaf (brown) rust (caused by Puccinia triticina) resistant cultivar, Triticum aestivum 'Cook', and susceptible genotype Avocet-YrA was phenotyped at several locations in Canada and Mexico under artificial epidemics of leaf or stripe rusts and genotyped using amplified fragment length polymorphism (AFLP) and microsatellite markers. Durable adult plant resistance to stripe and leaf rusts in 'Cook' is inherited quantitatively and was based on the additive interaction of linked and (or) pleiotropic slow-rusting genes Lr34 and Yr18 and the temperature-sensitive stripe rust resistance gene, YrCK, with additional genetic factors. Identified QTLs accounted for 18% to 31% of the phenotypic variation in leaf and stripe rust reactions, respectively. In accordance with the high phenotypic associations between leaf and stripe rust resistance, some of the identified QTLs appeared to be linked and (or) pleiotropic for both rusts across tests. Although a QTL was identified on chromosome 7D with significant effects on both rusts at some testing locations, it was not possible to refine the location of Lr34 or Yr18 because of the scarcity of markers in this region. The temperature-sensitive stripe rust resistance response, conditioned by the YrCK gene, significantly contributed to overall resistance to both rusts, indicating that this gene also had pleiotropic effects.Key words: wheat, rust diseases, Puccinia striiformis, Puccinia triticina, durable resistance, leaf-tip necrosis, QTL analysis.
APA, Harvard, Vancouver, ISO, and other styles
3

Liu, Weizhen, James Kolmer, Sheri Rynearson, Xianming Chen, Liangliang Gao, James A. Anderson, M. Kathryn Turner, and Michael Pumphrey. "Identifying Loci Conferring Resistance to Leaf and Stripe Rusts in a Spring Wheat Population (Triticum aestivum) via Genome-Wide Association Mapping." Phytopathology® 109, no. 11 (November 2019): 1932–40. http://dx.doi.org/10.1094/phyto-04-19-0143-r.

Full text
Abstract:
A previous genome-wide association study (GWAS) for leaf rust (caused by Puccinia triticina) resistance identified 46 resistance quantitative trait loci (QTL) in an elite spring wheat leaf rust resistance diversity panel. With the aim of characterizing the pleiotropic resistance sources to both leaf rust and stripe rust (caused by P. striiformis f. sp. tritici), stripe rust responses were tested in five U.S. environments at the adult-plant stage and to five U.S. races at the seedling stage. The data revealed balanced phenotypic distributions in this population except for the seedling response to P. striiformis f. sp. tritici race PSTv-37. GWAS for stripe rust resistance discovered a total of 21 QTL significantly associated with all-stage or field resistance on chromosomes 1B, 1D, 2B, 3B, 4A, 5A, 5B, 5D, 6A, 6B, 7A, and 7B. Previously documented pleiotropic resistance genes Yr18/Lr34 and Yr46/Lr67 and tightly linked genes Yr17-Lr37 and Yr30-Sr2-Lr27 were also detected in this population. In addition, stripe rust resistance QTL Yrswp-2B.1, Yrswp-3B, and Yrswp-7B colocated with leaf rust resistance loci 2B_3, 3B_t2, and 7B_4, respectively. Haplotype analysis uncovered that Yrswp-3B and 3B_t2 were either tightly linked genes or the same gene for resistance to both stripe and leaf rusts. Single nucleotide polymorphism markers IWB35950, IWB74350, and IWB72134 for the 3B QTL conferring resistance to both rusts should be useful in incorporating the resistance allele(s) in new cultivars.
APA, Harvard, Vancouver, ISO, and other styles
4

Kharouf, Shoula, Shadi Hamzeh, and Mohamad Fawaehz Azmeh. "Races Identification of Wheat Rusts in Syria during the 2019 Growing Season." Arab Journal for Plant Protection 39, no. 1 (March 2021): 1–13. http://dx.doi.org/10.22268/ajpp-39.1.001013.

Full text
Abstract:
Kharouf, Sh., Sh. Hamzeh and M.F. Azmeh. 2021. Races Identification of Wheat Rusts in Syria during the 2019 Growing Season. Arab Journal of Plant Protection, 39(1): 1-13. Wheat rust diseases, caused by Puccinia striiformis f. sp. tritici (stripe or yellow rust), P. triticina f. sp. tritici (leaf or brown rust) and P. graminis f. sp. tritici (stem or black rust) are important factors affecting both durum and bread wheat production in Syria. Considerable losses were caused by these diseases, especially stripe rust, estimated at more than one million metric tons, in the 2010 season, out of 5 million anticipated production. Therefore, it is essential to monitor and follow the movement of these three rust physiological races. In the 2019 growing season, 165 wheat fields were surveyed, and 312 samples were collected and characterized. Ten races of stripe rust were identified in ten locations, of which, four represent new record in Syria, namely the races 16E154, 69E150, 264E46 and 258E64. In addition, four races of leaf rust were identified in four locations, one of which (BKLP) is a new record in Syria. In addition, three previously recorded stem rust races were identified from three different locations. It should be mentioned that the newly recorded races of stripe rust are able to overcome resistance genes Yr1 and Yr5, on which the resistance of durum wheat cultivars such as "Cham3" depended, with a disease severity of 40S recorded in the same locations. It is also worth noting that the stripe rust race 462E128 (warrior) was not detected in the isolates studied. Likewise, the stem rust race Ug99 was also not identified, and because of the aggressiveness of this race, continuous inspection through field surveys accompanied with pathogenicity tests is essential during the coming seasons. Keywords: Stripe (yellow) rust, Leaf (brown) rust, stem (black) rust, race identification, wheat, Syria
APA, Harvard, Vancouver, ISO, and other styles
5

Zhang, Peipei, Xing Li, Takele-Weldu Gebrewahid, Hexing Liu, Xianchun Xia, Zhonghu He, Zaifeng Li, and Daqun Liu. "QTL Mapping of Adult-Plant Resistance to Leaf and Stripe Rust in Wheat Cross SW 8588/Thatcher using the Wheat 55K SNP Array." Plant Disease 103, no. 12 (December 2019): 3041–49. http://dx.doi.org/10.1094/pdis-02-19-0380-re.

Full text
Abstract:
Wheat leaf rust (caused by Puccinia triticina) and stripe rust (caused by Puccinia striiformis f. sp. tritici) cause large production losses in many regions of the world. The objective of this study was to identify quantitative trait loci (QTL) for resistance to leaf rust and stripe rust in a recombinant inbred line population derived from a cross between wheat cultivars SW 8588 and Thatcher. The population and parents were genotyped with the Wheat 55K SNP Array and SSR markers and phenotyped for leaf rust severity at Zhoukou in Henan Province and Baoding in Hebei Province. Stripe rust responses were also evaluated at Chengdu in Sichuan Province, and at Baoding. Seven and six QTL were detected for resistance to leaf rust and stripe rust, respectively. Four QTL on chromosomes 1BL, 2AS, 5AL, and 7BL conferred resistance to both rusts. The QTL on 1BL and 2AS were identified as Lr46/Yr29 and Lr37/Yr17, respectively. QLr.hebau-2DS from Thatcher, identified as Lr22b that was previously thought to be ineffective in China, contributed a large effect for leaf rust resistance. QLr.hebau-5AL/QYr.hebau-5AL, QLr.hebau-3BL, QLr.hebau-6DS, QYr.hebau-4BS, and QYr.hebau-6DS are likely to be new QTL, but require further validation. Kompetitive allele-specific PCR (KASP) markers for QLr.hebau-2DS and QLr.hebau-5AL/QYr.hebau-5AL were successfully developed and validated in a diverse wheat panel from Sichuan Province, indicating their usefulness under different genetic backgrounds. These QTL and their closely linked SNP and SSR markers will be useful for fine mapping, candidate gene discovery, and marker-assisted selection in breeding for durable resistance to both leaf and stripe rusts.
APA, Harvard, Vancouver, ISO, and other styles
6

William, H. M., R. P. Singh, J. Huerta-Espino, G. Palacios, and K. Suenaga. "Characterization of genetic loci conferring adult plant resistance to leaf rust and stripe rust in spring wheat." Genome 49, no. 8 (August 1, 2006): 977–90. http://dx.doi.org/10.1139/g06-052.

Full text
Abstract:
Leaf (brown) and stripe (yellow) rusts, caused by Puccinia triticina and Puccinia striiformis, respectively, are fungal diseases of wheat (Triticum aestivum) that cause significant yield losses annually in many wheat-growing regions of the world. The objectives of our study were to characterize genetic loci associated with resistance to leaf and stripe rusts using molecular markers in a population derived from a cross between the rust-susceptible cultivar 'Avocet S' and the resistant cultivar 'Pavon76'. Using bulked segregant analysis and partial linkage mapping with AFLPs, SSRs and RFLPs, we identified 6 independent loci that contributed to slow rusting or adult plant resistance (APR) to the 2 rust diseases. Using marker information available from existing linkage maps, we have identified additional markers associated with resistance to these 2 diseases and established several linkage groups in the 'Avocet S' × 'Pavon76' population. The putative loci identified on chromosomes 1BL, 4BL, and 6AL influenced resistance to both stripe and leaf rust. The loci on chromosomes 3BS and 6BL had significant effects only on stripe rust, whereas another locus, characterized by AFLP markers, had minor effects on leaf rust only. Data derived from Interval mapping indicated that the loci identified explained 53% of the total phenotypic variation (R2) for stripe rust and 57% for leaf rust averaged across 3 sets of field data. A single chromosome recombinant line population segregating for chromosome 1B was used to map Lr46/Yr29 as a single Mendelian locus. Characterization of slow-rusting genes for leaf and stripe rust in improved wheat germplasm would enable wheat breeders to combine these additional loci with known slow-rusting loci to generate wheat cultivars with higher levels of slow-rusting resistance.Key words: Puccinia triticina, Puccinia striiformis, Triticum aestivum, bulked segregant analysis, single chromosome recombinant lines, linkage mapping, adult plant resistance.
APA, Harvard, Vancouver, ISO, and other styles
7

Rioux, Sylvie, Benjamin Mimee, Annie-Ève Gagnon, and Sarah Hambleton. "First report of stripe rust (Puccinia striiformis f. sp. tritici) on wheat in Quebec, Canada." Communication brève 95, no. 1 (February 2, 2015): 7–9. http://dx.doi.org/10.7202/1028400ar.

Full text
Abstract:
Stripe rust, Puccinia striiformis f. sp. tritici, is one of the world’s most important diseases of wheat. In Canada, stripe rust is found mainly in the western provinces (British Columbia, Alberta and Saskatchewan) and, more recently, in the provinces of Manitoba and Ontario. Here, we report the first detection of stripe rust on wheat in the province of Quebec, Canada. Leaves showing yellowish sporulation arranged in narrow stripes were found in wheat performance trials at the research station of Université Laval, in Saint-Augustin-de-Desmaures. Morphological identification was confirmed by several PCR assays targeting specific genomic sequences and a rDNA gene segment (ITS2/28S).
APA, Harvard, Vancouver, ISO, and other styles
8

William, M., R. P. Singh, J. Huerta-Espino, S. Ortiz Islas, and D. Hoisington. "Molecular Marker Mapping of Leaf Rust Resistance Gene Lr46 and Its Association with Stripe Rust Resistance Gene Yr29 in Wheat." Phytopathology® 93, no. 2 (February 2003): 153–59. http://dx.doi.org/10.1094/phyto.2003.93.2.153.

Full text
Abstract:
Leaf and stripe rusts, caused by Puccinia triticina and P. striiformis, respectively, are globally important fungal diseases of wheat that cause significant annual yield losses. A gene that confers slow rusting resistance to leaf rust, designated as Lr46, has recently been located on wheat chromosome 1B. The objectives of our study were to establish the precise genomic location of gene Lr46 using molecular approaches and to determine if there was an association of this locus with adult plant resistance to stripe rust. A population of 146 F5 and F6 lines produced from the cross of susceptible ‘Avocet S’ with resistant ‘Pavon 76’ was developed and classified for leaf rust and stripe rust severity for three seasons. Using patterns of segregation for the two diseases, we estimated that at least two genes with additive effects conferred resistance to leaf rust and three to four genes conferred resistance to stripe rust. Bulked segregant analysis and linkage mapping using amplified fragment length polymorphisms with the ‘Avocet’ × ‘Pavon 76’ population, F3 progeny lines of a single chromosome recombinant line population from the cross ‘Lalbahadur’ × ‘Lalbahadur (Pavon 1B)’, and the International Triticeae Mapping Initiative population established the genomic location of Lr46 at the distal end of the long arm of wheat chromosome 1B. A gene that is closely linked to Lr46 and confers moderate levels of adult plant resistance to stripe rust is identified and designated as Yr29.
APA, Harvard, Vancouver, ISO, and other styles
9

Suenaga, K., R. P. Singh, J. Huerta-Espino, and H. M. William. "Microsatellite Markers for Genes Lr34/Yr18 and Other Quantitative Trait Loci for Leaf Rust and Stripe Rust Resistance in Bread Wheat." Phytopathology® 93, no. 7 (July 2003): 881–90. http://dx.doi.org/10.1094/phyto.2003.93.7.881.

Full text
Abstract:
Leaf rust and stripe rust, caused by Puccinia triticina and P. striiformis, respectively, are important diseases of wheat in many countries. In this study we sought to identify molecular markers for adult plant resistance genes that could aid in incorporating such durable resistance into wheat. We used a doubled haploid population from a Japanese cv. Fukuho-komugi × Israeli wheat Oligoculm cross that had segregated for resistance to leaf rust and stripe rust in field trials. Joint and/or single-year analyses by composite interval mapping identified two quantitative trait loci (QTL) that reduced leaf rust severity and up to 11 and 7 QTLs that might have influenced stripe rust severity and infection type, respectively. Four common QTLs reduced stripe rust severity and infection type. Except for a QTL on chromosome 7DS, no common QTL for leaf rust and stripe rust was detected. QTL-7DS derived from ‘Fukuho-komugi’ had the largest effect on both leaf rust and stripe rust severities, possibly due to linked resistance genes Lr34/Yr18. The microsatellite locus Xgwm295.1, located almost at the peak of the likelihood ratio contours for both leaf and stripe rust severity, was closest to Lr34/Yr18. QTLs located on 1BL for leaf rust severity and 3BS for stripe rust infection type were derived from ‘Oligoculm’ and considered to be due to genes Lr46 and Yr30, respectively. Most of the remaining QTLs for stripe rust severity or infection type had smaller effects. Our results indicate there is significant diversity for genes that have minor effects on stripe rust resistance, and that successful detection of these QTLs by molecular markers should be helpful both for characterizing wheat genotypes effectively and combining such resistance genes.
APA, Harvard, Vancouver, ISO, and other styles
10

KHANFRI, Siham, Mohammed BOULIF, and Rachid LAHLALI. "Yellow Rust (Puccinia striiformis): a Serious Threat to Wheat Production Worldwide." Notulae Scientia Biologicae 10, no. 3 (September 27, 2018): 410–23. http://dx.doi.org/10.15835/nsb10310287.

Full text
Abstract:
Wheat (Triticum sp. L.), as one of the first domesticated food crops, is the basic staple food for a large segment of population around the world. The crop though is susceptible to many fungal pathogens. Stripe rust is an important airborne disease caused by Puccinia striiformis (Pst) and is widespread wherever wheat is cultivated throughout the world, in temperate-cool and wet environments. The causal fungus of stripe rust or yellow rust is an obligate parasite that requires another living host to complete its life cycle. Pst includes five types of spores in the life cycle on two distinct hosts. Stripe rust is distinguished from other rusts by the dusty yellow lesions that grow systemically in the form of streaks between veins and on leaf sheaths. The importance and occurrence of stripe rust disease varies in cultivated wheat, depending on environmental conditions (moisture, temperature, and wind), inoculum levels and susceptible host varieties. Transcaucasia was previously thought to be the center of origin for the pathogen. However, new findings further underlined Himalayan and near-Himalayan regions as center of diversity and a more tenable center of origin for P. striiformis. Long-distance dispersal of stripe rust pathogen in the air and occasionally by human activities enables Pst to spread to new geographical areas. This disease affects quality and yield of wheat crop. Early seeding, foliar fungicide application and cultivation of resistant varieties are the main strategies for its control. The emergence of new races of Pst with high epidemic potential which can adapt to warmer temperatures has expanded virulence profiles. Subsequently, races are more aggressive than those previously characterized. These findings emphasize the need for more breeding efforts of resistant varieties and reinforcement of other management practices to prevent and overcome stripe rust epidemic around the world.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Stripe rust"

1

Kertho, Albert Okaba. "Evaluation of Winter Wheat Germplasm for Resistance to Stripe Rust and Leaf Rust." Thesis, North Dakota State University, 2014. https://hdl.handle.net/10365/27571.

Full text
Abstract:
Wheat leaf rust, caused by Puccinia triticina (Pt), and wheat stripe rust caused by P. striiformis f. sp. tritici (Pst) are important foliar diseases of wheat (Triticum aestivum L.) worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Winter wheat accessions were evaluated at seedling stage in the greenhouse with races of Pt and Pst that are predominant in the North Central US. Association mapping approach was performed on landrace accessions to identify new or underutilized sources of resistance to Pt and Pst. The majority of the accessions were susceptible to all the five races of Pt and one race of Pst. Association mapping studies identified 29 and two SNP markers associated with seedling resistance to leaf rust and stripe rust, respectively.
APA, Harvard, Vancouver, ISO, and other styles
2

Grabow, Bethany. "Environmental conditions associated with stripe rust and leaf rust epidemics in Kansas winter wheat." Diss., Kansas State University, 2016. http://hdl.handle.net/2097/32835.

Full text
Abstract:
Doctor of Philosophy
Department of Plant Pathology
Erick D. DeWolf
Stripe rust (caused by Puccinia striiformis f. sp. tritici) and leaf rust (caused by Puccinia triticina) are the top two diseases of winter wheat (Triticum aestivum) with a 20-year average yield loss of 4.9% in Kansas. Due to the significant yield losses caused by these diseases, the overall objective of this research was to identify environmental variables that favor stripe and leaf rust epidemics. The first objective was to verify the environmental conditions that favor P. triticina infections in an outdoor field environment. Wheat was inoculated with P. triticina and exposed to ambient weather conditions for 16 hours. Number of hours with temperature between 5 to 25°C and relative humidity >87% were highly correlated and predicted leaf rust infections with 89% accuracy. The results of this outdoor assay were used to develop variables to evaluate the association of environment with regional leaf rust epidemics. Before regional disease models can be developed for a forecast system, suitable predictors need to be identified. Objectives two and three of this research were to identify environmental variables associated with leaf rust and stripe rust epidemics and to evaluate these predictors in models. Mean yield loss on susceptible varieties was estimated for nine Kansas crop reporting districts (CRD’s). Monthly environmental variables were evaluated for association with stripe rust epidemics (>1% yield loss), leaf rust epidemics (>1% yield loss), severe stripe rust epidemics (>14% yield loss) and severe leaf rust epidemics (>7% yield loss) at the CRD scale. Stripe rust and leaf rust epidemics were both strongly associated with soil moisture conditions; however, the timing differed between these diseases. Stripe rust epidemics were associated with soil moisture in fall and winter, and leaf rust epidemics during winter and spring. Severe stripe rust and leaf rust epidemics were associated with favorable temperature (7 to 12°C) and temperature (15 to 20°C) with relative humidity (>87%) or precipitation in May using tree-based methods of classification, respectively. The preliminary models developed in this research could be coupled with disease observations and varietal resistance information to advise growers about the need for foliar fungicides against these rusts in Kansas winter wheat.
APA, Harvard, Vancouver, ISO, and other styles
3

Loladze, Alexander. "Identification of stripe rust resistance in wheat relatives and landraces." Online access for everyone, 2006. http://www.dissertations.wsu.edu/Thesis/Spring2006/A%5FLoladze%5F050306.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, Peng. "Molecular mapping of a gene for resistance to stripe rust in spring wheat cultivar IDO377s and identification of a new race of Puccinia striiformis f. sp. tritici virulent on IDO377s." [Pullman, Wash.] : Washington State University, 2008. http://www.dissertations.wsu.edu/Thesis/Fall2008/p_cheng_081808.pdf.

Full text
Abstract:
Thesis (M.S. in plant pathology)--Washington State University, December 2008.
Title from PDF title page (viewed on Sept. 23, 2008). "Department of Plant Pathology." Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
5

Evin, Bryn Anndi. "Evaluation of Management Tools for Stripe Rust in Hard Red Spring Wheat and Assessment of Virulence Phenotypes and Aggressiveness in Puccinia striiformis Isolates." Diss., North Dakota State University, 2019. https://hdl.handle.net/10365/31562.

Full text
Abstract:
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is an economically important foliar disease of wheat (Triticum aestivum). In the last decade, losses from stripe rust in North Dakota (ND) have increased, peaking at 5% in 2015. Three research studies were conducted to address questions on the pathogen, varietal resistance, and integrated management. The objective of the first study was to (i) identify virulent phenotypes of Pst isolates collected from ND from 2015 to 2017 and assign races, and (ii) determine the effect of temperature on in vitro urediniospore germination, latency, and lesion spread. Across the three years, five races were detected with PSTv 37 being the most common. The highest urediniospore germination occurred at 12oC followed by 16oC. Pst isolates had shorter latency at 21oC and larger lesion spread at 16oC. The objective of the second study was to evaluate seedling resistance and adult plant resistance in the North Dakota State University spring wheat breeding program using races PSTv 37 and PSTv 52. Results from seedling experiments indicated only four and two lines were resistant to PSTv 52 and PSTv 37, respectively. Adult plant resistance experiments were unsuccessful in 2019, and will be conducted again in the future. The objective of the third study was to develop fungicide timing recommendations for wheat rust (stripe and leaf) based on varietal resistance and time of disease onset. Rust developed in five of the eight field trials, and timing of disease onset was categorized by growth stage (tillering, flag leaf, or early-flowering). Results indicated fungicide application timing was influenced by timing of disease onset and varietal resistance. When rust was detected at the tillering growth stage on the susceptible variety, the best time to apply a fungicide was at Feekes 9. When rust was detected at flag leaf or beyond on a susceptible variety, a fungicide application at Feekes 10.51 provided the adequate disease reduction and protection of yield. Results from these research studies provide a better understanding of Pst, determined seedling resistance in the breeding program, and provides field data to refine management recommendations for wheat rusts in ND.
North Dakota Wheat Commission
State Board of Agricultural Research and Education
APA, Harvard, Vancouver, ISO, and other styles
6

Nyori, Peter Michael Bulli. "Genetics of resistance to leaf and stripe rust diseases in the spring wheat 'Amadina'." Diss., Kansas State University, 2010. http://hdl.handle.net/2097/4611.

Full text
Abstract:
Doctor of Philosophy
Department of Agronomy
Allan K. Fritz
In this research, a recombinant inbred line (RIL) population derived from cross between a leaf rust- and stripe rust-susceptible spring wheat ‘Avocet S’ and a slow leaf- and stripe-rusting resistant spring wheat ‘Amadina’ was used to postulate and map leaf rust seedling resistance genes, identify quantitative trait loci (QTL) for slow-rusting resistance against leaf and stripe rust, and study slow leaf-rusting components, latent period and infection frequency. Two known Lr genes (Lr23, and Lr26) were identified to be present in ‘Amadina’ through gene postulation, pedigree, cytogenetic, and polymerase chain reaction analyses. One unknown gene associated with seedling resistance was also mapped on chromosome 1BL. In greenhouse experiment, it was estimated that at least five genes conditioning final disease severity (FS) and latent period (LP), and four genes conditioning infection frequency (IF), segregated in the population. Correlations between LP and FS, and LP and IF were moderately negative, and that between IF and FS was moderately positive, indicating inter-dependence of the traits. Two QTL on chromosomes 1BL and 6BL were associated with LP and FS, and three QTL on chromosomes 1BL, 6BL and 2DS were associated with IF. Segregation of the RIL population in field experiment indicated that there were at least four and three adult plant resistance (APR) genes involved in resistance for leaf and stripe rust. Six QTL on chromosomes 3AL, 4AL, 1BL, 5BL, and 7BL were associated with APR for leaf rust, and seven QTL on chromosome 4AL, 5AL, 1BL, 2BL, 4BL, 5BL, 2DL, and 4D were associated with APR for stripe rust. Our results indicated that the major portion of genetic variability for slow-rusting resistance was additive gene action, and, to some extent, epistasis. In this research, we also explored the utility of remote sensing and geographic information systems (GIS) and analytical operations to discriminate leaf rust pustules from other parts of leaf and to accurately determine pustule size in ‘Amadina’ and ‘Avocet S’.
APA, Harvard, Vancouver, ISO, and other styles
7

Ramburan, Viresh Premraj. "Genetic mapping of adult plant stripe rust resistance in the wheat cultivar Kariega." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53438.

Full text
Abstract:
Thesis (PhD (Agric)) -- Stellenbosch University, 2003.
ENGLISH ABSTRACT: Stripe (yellow) rust of wheat, caused by Puccinia striiformis f.sp. tritici, was first detected as a single introduction into South Africa in 1996. Two additional pathotypes have since been identified. Control of the disease may be achieved by use of genetic adult plant resistance (APR) as is present in the local cultivar 'Kariega'. The aim of this project was to understand the genetic basis of the APR in 'Kariega' to facilitate breeding of new varieties with genetic resistance to stripe rust. A partial linkage map of a 'Kariega X Avocet S' doubled haploid population covering all 21 wheat chromosomes was generated using 208 DNA markers, viz, 62 SSR, 133 AFLP, 3 RGA and 10 SRAP markers, and 4 alternative loci. The different marker techniques detected varying polymorphism, viz, overall SSR: 46%, AFLP: 7%, SRAP: 6% and RGA: 9%, and the markers produced low levels of missing data (4%) and segregation distortion (5%). A significant feature of the linkage map was the low polymorphism found in the D genome, viz, 19% of all mapped DNA markers, 11% of all AFLP markers and 30% of the total genome map distance. A region exhibiting significant segregation distortion was mapped to chromosome 4A and a seedling resistance gene for stem rust (Puccinia graminis f.sp . tritici), Sr26, mapped to chromosome 6A close to three SSR markers. The leaf tip necrosis gene, Ltn, which was also segregating in the population, mapped to chromosome 7D. Protocols for SRAP and RGA were optimised, and SRAP marker use in wheat genetic linkage studies is reported for the first time. The linkage map was used together with growth chamber and replicated field disease scores for QTL mapping. Chromosomes showing statistically significant QTL effects were then targeted with supplementary SSR markers for higher resolution mapping. The quality of disease resistance phenotypic data was confirmed by correlation analysis between the different scorers for reaction type (0.799±0.023) and for transformed percentage leaf area infected (0.942±0.007). Major QTL were consistently identified on chromosome 7D (explaining some 25-48% of the variation) and on chromosome 2B (21-46%) using transformed percentage leaf area infected and transformed reaction type scores (early and final) with interval mapping and modified interval mapping techniques. Both chromosomal regions have previously been identified in other studies and the 7D QTL is thought likely to be the previously mapped APR gene Yr 18. Minor QTL were identified on chromosomes lA and 4A with the QTL on 4A being more prominent at the early field scoring for both score types. A QTL evidently originating from 'Avocet S' was detected under growth chamber conditions but was not detected in the field, suggesting genotype-environment interaction and highlighting the need for modifications of growth chamber conditions to better simulate conditions in the field. The genetic basis of the APR to stripe rust exhibited by 'Kariega' was established by mapping of QTL controlling this trait. The linkage map constructed will be a valuable resource for future genetic studies and provides a facility for mapping other polymorphic traits in the parents of this population with a considerable saving in costs.
AFRIKAANSE OPSOMMING: Streep of geelroes van koring word veroorsaak deur Puccinia striiformis f. sp tritici, en is die eerste keer in 1996 in Suid-Afrika na introduksie van 'n enkele patotipe waargeneem. Twee verdere patotipes is sedertdien in Suid-Afrika gei"dentifiseer. Beheer van die siekte word veral moontlik gemaak deur die gebruik van genetiese volwasseplantweerstand soos gei"dentifiseer in die plaaslike kultivar 'Kariega'. Die doel van hierdie studie was om die genetiese grondslag van die streeproesweerstand te ontrafel ten einde die teling van nuwe bestande kultivars moontlik te maak. 'n Verdubbelde haplo1ede populasie uit die kruising 'Kariega X Avocet S' is aangewend om 'n gedeeltelike koppelingskaart vir die volle stel van 21 koring chromosome saam te stel. Die kaart het uit 208 DNA merkers, nl., 62 SSR, 133 AFLP, 3 RGA, 10 SRAP merkers en 4 ander lokusse bestaan. Totale polimorfisme wat deur die verskillende merkersisteme opgespoor is, was as volg: SSR: 46%, RGA: 9%, AFLP: 7% en SRAP: 6%. Die mate van ontbrekende data was gering (4%) asook die mate van segregasie distorsie (5%) van 'n enkele geval wat op chromosoom 4A gekarteer is. 'n Prominente kenmerk van die koppelingskaart is die relatiewe gebrek aan polimorfiese merkers op die D-genoom, nl., slegs 19% van alle DNA merkers en 11% van alle AFLP merkers wat slegs 30% van die totale genoom kaartafstand bestaan het. Die stamroes (Puccinia graminis f. sp. tritici) saailingweerstandsgeen, Sr26, karteer op chromosoom 6A naby drie SSR merkers. Die geen vir blaartipnekrose, Ltn, karteer op chromosoom 7D. Protokolle vir SRAP en RGA merkers is ge-optimiseer en gebruik van SRAP merkers in koppelings-analise word vir die eerste keer in koring gerapporteer. Die koppelingskaart is in kombinasie met groeikamerdata en gerepliseerde veldproefdata gebruik om die gene (QTL) vir volwasseplant streeproesweerstand te karteer. Chromosome met statisties betekenisvolle QTL is met aanvullende SSR merkers geteiken om die resolusie van kartering verder te verhoog. Die kwaliteit van fenotipiese data, soos in die proewe aangeteken, is bevestig deur korrelasies te bereken tussen lesings geneem deur onafhanklike plantpataloe (0.799 ± 0.023 vir reaksietipe en 0.942 ± 0.007 vir getransformeerde persentasie blaaroppervlakte besmet). Hoofeffek QTL vir die twee maatstawwe van weerstand is deur middel van die metodes van interval QTL kartering en gemodifiseerde interval QTL kartering konsekwent op chromosome 7D (25-48% van variasie verklaar) en 2B (21-46% van variasie verklaar) ge"identifiseer. In vorige studies is aangetoon dat beide chromosome 7D en 2B QTL vir volwasseplant streeproesweerstand dra. Die 7D QTL is waarskynlik die weerstandsgeen, Yr 18. QTL met klein effekte op weerstand is op chromosome lA en 4A ge"identifiseer. Die effek van laasgenoemde geen was meer prominent in die velddata in die vroee datum van weerstandsbeoordeling. Een QTL, afkomstig van 'Avocet S', is slegs onder groeikamertoestande identifiseerbaar. Dit dui op moontlike genotipe-omgewing wisselwerking en beklemtoon die noodsaaklikheid om aanpassings te maak in groeikamertoestande vir beter simulasie van veldproeftoestande. Die genetiese grondslag van volwasseplantweerstand teen streeproes in die kultivar 'Kariega' is deur QTL kartering bepaal. Die 'Kariega X Avocet S' koppelingskaart kan as 'n waardevolle basis dien vir toekomstige genetiese ontledings van ander polimorfiese kenmerke in die populasie.
APA, Harvard, Vancouver, ISO, and other styles
8

Christopher, Mark David. "Identification and Mapping of Adult Plant Stripe Rust Resistance in Soft Red Winter Wheat." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/39690.

Full text
Abstract:
Since 2000, stripe rust, caused by the fungal pathogen (Puccinia striiformis Westend. f.sp. tritici Eriks.) has resulted in yield losses of wheat (Triticum aestivium L.) in the United States, that exceeded the combined losses of leaf rust (Puccinia triticina Eriks.) and stem rust (Puccinia gramins Pers.:Pers f. sp. Tritici Eriks. E. Henn.). The objectives of this study are to identify and map adult plant stripe rust resistance quantitative trait loci (QTL) in soft red winter (SRW) wheat that are effective against race PST-100, which is the predominant race of the pathogen in the eastern U.S. Adult plant resistance (APR) was characterized in the resistant wheat lines â USG 3555â , VA00W-38, and â Coker 9553â . Resistance in each of the lines was evaluated in populations derived from crosses with susceptible lines â Neuseâ , Pioneer Brand â 26R46â , and VA01W-21, respectively. On chromosomes 1AS, 4BL, and 7D of USG 3555, QTL were identified that explain on average 12.8, 73.0, and 13.6 percent of the variation for stripe rust infection type (IT), and 13.5, 72.3, and 10.5 percent of the variation for stripe rust severity. A QTL from Neuse was identified on 3A that on average explains 10.9 percent of the variation for IT and 13.0 percent of the variation for severity. On chromosomes 2AS and 4BL of VA00W-38, QTL were identified that on average explain 58.9 and 19.3 percent of the variation for stripe rust IT, and 51.9 and 12.1 percent of the variation for severity. On chromosomes 6BL and 3BL of Pioneer 26R46, QTL were identified that on average explain 8.9 and 2.1 percent of the variation for IT and 11.7 and 3.9 percent of the variation for severity. Coker 9553 possesses the QTL on 4BL that is also present in USG 3555 and VA00W-38. The SSR markers, Xgwm296, Xbarc163, and Xwmc756 were tightly linked to QTL on chromosomes 2AS, 4BL, and 6BL, respectively, and their use and development of additional diagnostic markers will facilitate the incorporation and pyramiding of stripe rust resistance QTL into SRW wheat lines via marker-assisted selection.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
9

Dawson, Andrew. "Elucidating the molecular genetics of host and nonhost resistance in barley to stripe rust." Thesis, University of East Anglia, 2015. https://ueaeprints.uea.ac.uk/58560/.

Full text
Abstract:
Plants have a remarkable ability to resist the majority of pathogenic microbes they encounter. As such, they are described as nonhosts. Nonhost resistance is often conceptualised as a qualitative separation from host resistance. Classification into these two states is generally facile, as they fail to fully describe the range of states that exist in the transition from host to nonhost. This poses a problem when studying pathosystems that cannot be classified into either of these categories due to their intermediate status relative to the two extremes. Therefore, the terms intermediate host and intermediate nonhost have been proposed to describe pathosystems in the evolutionary transition between host and nonhost status. At present, a significant amount of research exists into the molecular genetics of host and nonhost pathosystems but very little is known about intermediate systems. The work in this Ph. D. thesis focuses on the interaction of barley with Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust, as an intermediate host pathosystem. The first research chapter describes the development of two microscopic phenotypic assays used to quantify P. striformis f. sp. tritici in barley leaves challenged with the pathogen. These assays are then used to screen a large panel of barley accessions to define the intermediate host status of barley relative to a host pathosystem. Subsequently, these assays play a key role in determining that the genetic architecture of resistance in barley is underpinned by three major effect resistance loci: Rpst1, Rpst2, and Rpst3. Using a combination of classical map-based genetics and contemporary genomics information I identify a candidate NLR gene underlying Rpst2 resistance on chromosome 7HL. Furthermore, I show that distinct genes condition host and nonhost resistance in barley by mapping the host resistance gene, rps2 to chromosome 2HL.
APA, Harvard, Vancouver, ISO, and other styles
10

Shao, Mingqin. "QTL mapping of pre-harvest sprouting and stripe rust resistance in wheat cultivars Danby and Tiger." Diss., Kansas State University, 2017. http://hdl.handle.net/2097/38205.

Full text
Abstract:
Doctor of Philosophy
Department of Agronomy
Guihua Bai
Guorong Zhang
Wheat yield and quality is influenced by many abiotic and biotic environmental factors. Pre-harvest sprouting (PHS) occurs when physiologically matured spikes are exposed to wet field conditions before harvest, which results in seed germination and causes significant losses in yield and end-use quality. Wheat stripe rust is one of the most important biotic factors reducing grain yield and quality. To investigate the genetic basis of the resistance to PHS and stripe rust in hard white winter wheat cultivars Danby and Tiger and develop molecular markers for marker- assisted breeding, a double haploid (DH) population, derived from those two cultivars, was genotyped with simple sequence repeats (SSR) markers and simple nucleotide polymorphism (SNP) markers. This DH population was assessed for resistance to PHS and stripe rust in both greenhouse and field experiments. For PHS, one major resistant quantitative trait locus (QTL) was consistently detected on the short arm of chromosome 3A in all three experiments conducted and explained 21.6% to 41.0% of the phenotypic variation (PVE). This QTL is corresponding to a previously cloned gene, TaPHS1. A SNP in the promoter of TaPHS1 co- segregated with PHS resistance in this mapping population. Meanwhile, two other QTLs, Qphs.hwwg-3B.1 and Qphs.hwwg-5A.1, were consistently detected on the chromosome arms 3BS and 5AL in two experiments. These two QTLs showed significant additive effects with TaPHS1 in improving PHS resistance. For stripe rust, three major QTLs were consistently detected in four out of six environments for infection type (IT) or disease severity (DS). Two of them, QYr.hwwg-2AS1 and QYr.hwwg-4BL1, contributed by the Danby allele explained up to 28.4% of PVE for IT and 60.5% of PVE for DS. The third QTL, QYr.hwwg-3BS1, contributed by the Tiger allele, had PVE values up to 14.7% for IT and 22.9% for DS. QYr.hwwg-2AS1 and QYr.hwwg- 4BL1 are likely the same resistance genes reported previously on chromosome arms 2AS and 4BL. However, QYr.hwwg-3BS1 might be different from the reported gene cluster near the distal end of 3BS where Yr57, Yr4, Yr30 and Sr2 were located. Significant additive effects on reducing IT and DS were observed among these three major QTLs. In order to pyramid multiple QTLs in breeding, user-friendly Kompetitive allele specific PCR (KASP) markers were successfully developed for several QTLs identified in this study. The QTLs and their interactions found in this study together with those novel flanking KASP markers developed will be useful not only for understanding genetic mechanisms of PHS and stripe rust resistance but also for marker- assisted breeding to improve wheat resistance to PHS and stripe rust by gene pyramiding.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Books on the topic "Stripe rust"

1

Chen, Xianming, and Zhensheng Kang, eds. Stripe Rust. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1111-9.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Line, Roland F. Virulence, aggressiveness, evolution, and distribution of races of Puccinia striiformis (the cause of stripe rust of wheat) in North America, 1968-87 / [Line, Roland F., and Abdul Qayoum]. [Washington, D.C.?]: U.S. Dept. of Agriculture, Agricultural Research Service, 1992.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

1969-, Price Jay M., ed. Cherokee Strip land rush. Charleston, SC: Arcadia Pub., 2006.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Toboso, Yana. Rust Blaster. New York, NY: Yen Press, 2015.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
5

Rust: The boy soldier. Los Angeles, CA: Boom! Studios, 2016.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
6

Rust: Death of the rocket boy. Los Angeles: Boom! Studios, 2014.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
7

Waid, Mark. Ruse. Oldsmar, Fla: CrossGeneration Comics, 2003.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jackson, Guice, ed. Ruse. Oldsmar, Fla: CrossGeneration Comics, 2002.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
9

Lepp, Royden. Royden Lepp's Rust: Secrets of the cell. Los Angeles: Archaia, 2012.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
10

Piotrowski, Robert. Gold rush. Austin, TX: Steck Vaughn, 2007.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
More sources

Book chapters on the topic "Stripe rust"

1

Chen, Xianming. "Stripe Rust Epidemiology." In Stripe Rust, 283–352. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1111-9_4.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Meinan, and Xianming Chen. "Stripe Rust Resistance." In Stripe Rust, 353–558. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1111-9_5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Chen, Xianming, and Zhensheng Kang. "Introduction: History of Research, Symptoms, Taxonomy of the Pathogen, Host Range, Distribution, and Impact of Stripe Rust." In Stripe Rust, 1–33. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1111-9_1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Wan, Anmin, Xiaojie Wang, Zhensheng Kang, and Xianming Chen. "Variability of the Stripe Rust Pathogen." In Stripe Rust, 35–154. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1111-9_2.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Kang, Zhensheng, Chunlei Tang, Jie Zhao, Yulin Cheng, Jie Liu, Jun Guo, Xiaojie Wang, and Xianming Chen. "Wheat-Puccinia striiformis Interactions." In Stripe Rust, 155–282. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1111-9_3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

Chen, Xianming, and Zhensheng Kang. "Integrated Control of Stripe Rust." In Stripe Rust, 559–99. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1111-9_6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Chen, Xianming, and Zhensheng Kang. "Stripe Rust Research and Control: Conclusions and Perspectives." In Stripe Rust, 601–30. Dordrecht: Springer Netherlands, 2017. http://dx.doi.org/10.1007/978-94-024-1111-9_7.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Van Silfhout, C. H. "Durable Resistance in the Pathosystem: Wheat — Stripe Rust." In Durability of Disease Resistance, 135–45. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2004-3_11.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Bakshi, Suman, Johar Singh, and Sanjay J. Jambhulkar. "Isolation and characterization of yellow rust resistant mutants in wheat." In Mutation breeding, genetic diversity and crop adaptation to climate change, 103–10. Wallingford: CABI, 2021. http://dx.doi.org/10.1079/9781789249095.0010.

Full text
Abstract:
Abstract Stripe rust, also known as yellow rust, caused by Puccinia striiformis f. sp. tritici (Pst), is a major threat to wheat production leading to yield losses up to 84%. Due to climate change, new races of the yellow rust pathogen are appearing for which no durable source of resistance has been observed in the present high-yielding varieties. A mutation breeding programme was initiated in two popular varieties, namely PBW343 and HD2967, using gamma-ray and electron beam irradiation. Gamma-ray doses of 250, 300 and 350 Gy and electron beam doses of 150, 200 and 250 Gy were used for seed irradiation. The M2 population was screened in the field from seedling to adult plant stage by spraying a mixture of urediniospores of Pst pathotypes. Disease severity was recorded as the percentage of leaf area covered by the rust pathogen following a modified Cobb's scale. A total of 52 putative yellow rust resistant mutants in HD2967 and 63 in PBW343 were isolated. The number of mutants was higher in the electron beam irradiated population compared with gamma-rays. The absence of sporulation and spore production of the rust pathogen on the mutants indicated resistance. Mutant plants showing seedling resistance also showed resistance at adult plant stage. Seed yield and its contributing characters were better in the mutants compared with the parents. These rust resistant mutants could be novel sources of stripe rust or yellow rust resistance. The plant-to-row progenies of these mutants were confirmed and characterized in the M3 generation.
APA, Harvard, Vancouver, ISO, and other styles
10

Broers, L. H. M. "Breeding for Partial Resistance in Wheat to Stripe Rust." In Durability of Disease Resistance, 179–83. Dordrecht: Springer Netherlands, 1993. http://dx.doi.org/10.1007/978-94-011-2004-3_14.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Stripe rust"

1

Lihong Mo. "Prediction of wheat stripe rust using neural network." In 2010 IEEE International Conference on Intelligent Computing and Intelligent Systems (ICIS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icicisys.2010.5658476.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Wang, Haiguang, and Zhanhong Ma. "Prediction of wheat stripe rust based on support vector machine." In 2011 Seventh International Conference on Natural Computation (ICNC). IEEE, 2011. http://dx.doi.org/10.1109/icnc.2011.6022095.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Jing, Xia, Teng Zhang, and Weina Duan. "Hyperspectral monitoring of wheat stripe rust based on PSO-KELM model." In Seventh Symposium on Novel Photoelectronic Detection Technology and Application 2020, edited by Junhao Chu, Qifeng Yu, Huilin Jiang, and Junhong Su. SPIE, 2021. http://dx.doi.org/10.1117/12.2587021.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Jiang, Jinbao, Yunhao Chen, Jianxiong Zhang, and Jing Li. "Using Hyperspectral Indices to Diagnose Severity of Winter Wheat Stripe Rust." In 2006 8th international Conference on Signal Processing. IEEE, 2006. http://dx.doi.org/10.1109/icosp.2006.344504.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

He, Jia, Laigang WANG, Yan GUO, Yan ZHANG, Hongli ZHANG, and Shaobo XU. "Wheat stripe rust remote sensing monitoring based on a new vegetation index." In International Conference on Agri-Photonics and Smart Agricultural Sensing Technologies (ICASAST 2022), edited by Jiandong Hu. SPIE, 2022. http://dx.doi.org/10.1117/12.2657093.

Full text
APA, Harvard, Vancouver, ISO, and other styles
6

STRAZDINA, Vija, Valentina FETERE, Liga FEODOROVA-FEDOTOVA, Janis JASKO, and Olga TREIKALE. "REACTION OF WINTER WHEAT GENOTYPES ON THE YELLOW (STRIPE) RUST PUCCINIA STRIIFORMIS, WES." In RURAL DEVELOPMENT. Aleksandras Stulginskis University, 2018. http://dx.doi.org/10.15544/rd.2017.124.

Full text
Abstract:
Yellow rust, caused by Puccinia striiformis Wes. is one of the most significant diseases constraint to winter wheat production in the world. Since 2011 in Europe have appeared distinct new races – Warrior, Kranich, Warrior (-) that have caused wide epidemics on different cultivars of wheat. Grain yield losses can be prevented by using a combination of varietal resistance and fungicides. Information on wheat variety susceptibility to local yellow (stripe) rust Puccinia striiformis Wes. races can help to reduce the risk of yield losses in high disease pressure situations. Field trials with eight most popular and perspective winter wheat varieties in Latvia were established in the North-Western part of Latvia (Stende Research Centre) in autumn of 2016. The trial was designed as two randomized complete blocks (treated and untreated) and data were statistically interpreted. Two applications of fungicides at BBCH 29-32 by T1 (prothioconazol 53 g L-1, spiroxamin 224 g L-1, tebucanazole 148 g L-1) and at BBCH 37-39 - T2 (bixafen 65 g L-1, prothioconazol 130 g L-1, fluopyram 65 g L-1- 1.5 L ha-1) were used to control the YR. Yield and 1000 kernel weight (TKW) were determined. Preliminary results indicated the difference between genotypes resistance/susceptibility to YR. The severity of infection level was 1- 80% depending on genotype resistance. Application of fungicides increased grain yield by 2.9 % to 33.0% and TKW by 3.4% - 33.2 % depending on variety. Observations showed the difference in the occurrence of symptoms on YR in different varieties of winter wheat under conditions of 2017 in Stende.
APA, Harvard, Vancouver, ISO, and other styles
7

Wang, Liwen, Fangmin Dong, Qing Guo, Chenwei Nie, and Shuifa Sun. "Improved rotation kernel transformation directional feature for recognition of wheat stripe rust and powdery mildew." In 2014 7th International Congress on Image and Signal Processing (CISP). IEEE, 2014. http://dx.doi.org/10.1109/cisp.2014.7003793.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Jiang, Jinbao, Yunhao Chen, Adu Gong, and Jing Li. "Study on inversion models for the severity of winter wheat stripe rust using hyperspectral remote sensing." In 2007 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2007. http://dx.doi.org/10.1109/igarss.2007.4423522.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Zhao, Jinling, Lin Yuan, Juhua Luo, Shizhou Du, Linsheng Huang, and Wenjiang Huang. "Spectral differences of opposite sides of stripe rust infested winter wheat leaves using ASD's Leaf Clip." In IGARSS 2012 - 2012 IEEE International Geoscience and Remote Sensing Symposium. IEEE, 2012. http://dx.doi.org/10.1109/igarss.2012.6352090.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Yao, Zhifeng, Dongjian He, and Yu Lei. "<i>Thermal imaging for early nondestructive detection of wheat stripe rust </i>." In 2018 Detroit, Michigan July 29 - August 1, 2018. St. Joseph, MI: American Society of Agricultural and Biological Engineers, 2018. http://dx.doi.org/10.13031/aim.201801728.

Full text
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Stripe rust"

1

Kleczewski, Nathan, Carl Bradley, Martin Chilvers, Alyssa Collins, Erick DeWolf, Andrew Friskop, Alyssa Koehler, et al. Stripe Rust of Wheat. United States: Crop Protection Netework, September 2020. http://dx.doi.org/10.31274/cpn-20200922-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Breiman, Adina, Jan Dvorak, Abraham Korol, and Eduard Akhunov. Population Genomics and Association Mapping of Disease Resistance Genes in Israeli Populations of Wild Relatives of Wheat, Triticum dicoccoides and Aegilops speltoides. United States Department of Agriculture, December 2011. http://dx.doi.org/10.32747/2011.7697121.bard.

Full text
Abstract:
Wheat is the most widely grown crop on earth, together with rice it is second to maize in total global tonnage. One of the emerging threats to wheat is stripe (yellow) rust, especially in North Africa, West and Central Asia and North America. The most efficient way to control plant diseases is to introduce disease resistant genes. However, the pathogens can overcome rapidly the effectiveness of these genes when they are wildly used. Therefore, there is a constant need to find new resistance genes to replace the non-effective genes. The resistance gene pool in the cultivated wheat is depleted and there is a need to find new genes in the wild relative of wheat. Wild emmer (Triticum dicoccoides) the progenitor of the cultivated wheat can serve as valuable gene pool for breeding for disease resistance. Transferring of novel genes into elite cultivars is highly facilitated by the availability of information of their chromosomal location. Therefore, our goals in this study was to find stripe rust resistant and susceptible genotypes in Israeli T. dicoccoides population, genotype them using state of the art genotyping methods and to find association between genetic markers and stripe rust resistance. We have screened 129 accessions from our collection of wild emmer wheat for resistance to three isolates of stripe rust. About 30% of the accessions were resistant to one or more isolates, 50% susceptible, and the rest displayed intermediate response. The accessions were genotyped with Illumina'sInfinium assay which consists of 9K single nucleotide polymorphism (SNP) markers. About 13% (1179) of the SNPs were polymorphic in the wild emmer population. Cluster analysis based on SNP diversity has shown that there are two main groups in the wild population. A big cluster probably belongs to the Horanum ssp. and a small cluster of the Judaicum ssp. In order to avoid population structure bias, the Judaicum spp. was removed from the association analysis. In the remaining group of genotypes, linkage disequilibrium (LD) measured along the chromosomes decayed rapidly within one centimorgan. This is the first time when such analysis is conducted on a genome wide level in wild emmer. Such a rapid decay in LD level, quite unexpected for a selfer, was not observed in cultivated wheat collection. It indicates that wild emmer populations are highly suitable for association studies yielding a better resolution than association studies in cultivated wheat or genetic mapping in bi-parental populations. Significant association was found between an SNP marker located in the distal region of chromosome arm 1BL and resistance to one of the isolates. This region is not known in the literature to bear a stripe rust resistance gene. Therefore, there may be a new stripe rust resistance gene in this locus. With the current fast increase of wheat genome sequence data, genome wide association analysis becomes a feasible task and efficient strategy for searching novel genes in wild emmer wheat. In this study, we have shown that the wild emmer gene pool is a valuable source for new stripe rust resistance genes that can protect the cultivated wheat.
APA, Harvard, Vancouver, ISO, and other styles
3

Dubcovsky, Jorge, Tzion Fahima, and Ann Blechl. Molecular characterization and deployment of the high-temperature adult plant stripe rust resistance gene Yr36 from wheat. United States Department of Agriculture, November 2013. http://dx.doi.org/10.32747/2013.7699860.bard.

Full text
Abstract:
Stripe rust, caused by Puccinia striiformis f. sp. tritici is one of the most destructive fungal diseases of wheat. Virulent races that appeared within the last decade caused drastic cuts in yields. The incorporation of genetic resistance against this pathogen is the most cost-effective and environmentally friendly solution to this problem. However, race specific seedling resistance genes provide only a temporary solution because fungal populations rapidly evolve to overcome this type of resistance. In contrast, high temperature adult plant (HTAP) resistance genes provide a broad spectrum resistance that is partial and more durable. The cloning of the first wheat HTAP stripe rust resistance gene Yr36 (Science 2009, 323:1357), funded by our previous (2007-2010) BARD grant, provided us for the first time with an entry point for understanding the mechanism of broad spectrum resistance. Two paralogous copies of this gene are tightly linked at the Yr36 locus (WKS1 and WKS2). The main objectives of the current study were to characterize the Yr36 (WKS) resistance mechanism and to identify and characterize alternative WKSgenes in wheat and wild relatives. We report here that the protein coded by Yr36, designated WKS1, that has a novel architecture with a functional kinase and a lipid binding START domain, is localized to chloroplast. Our results suggest that the presence of the START domain may affect the kinase activity. We have found that the WKS1 was over-expressed on leaf necrosis in wheat transgenic plants. When the isolated WKS1.1 splice variant transcript was transformed into susceptible wheat it conferred resistance to stripe rust, but the truncated variant WKS1.2 did not confer resistance. WKS1.1 and WKS1.2 showed different lipid binding profiling. WKS1.1 enters the chloroplast membrane, while WKS1.2 is only attached outside of the chloroplast membrane. The ascorbate peroxidase (APX) activity of the recombinant protein of TmtAPXwas found to be reduced by WKS1.1 protein in vitro. The WKS1.1 mature protein in the chloroplast is able to phosphorylate TmtAPXprotein in vivo. WKS1.1 induced cell death by suppressing APX activity and reducing the ability of the cell to detoxify reactive oxygen. The decrease of APX activity reduces the ability of the plant to detoxify the reactive H2O2 and is the possible mechanism underlying the accelerated cell death observed in the transgenic plants overexpressing WKS1.1 and in the regions surrounding a stripe rust infection in the wheat plants carrying the natural WKS1.1 gene. WKS2 is a nonfunctional paralog of WKS1 in wild emmer wheat, probably due to a retrotransposon insertion close to the alternative splicing site. In some other wild relatives of wheat, such as Aegilops comosa, there is only one copy of this gene, highly similar to WKS2, which is lucking the retrotransposon insertion. WKS2 gene present in wheat and WKS2-Ae from A. showed a different pattern of alternative splice variants, regardless of the presence of the retrotransposon insertion. Susceptible Bobwhite transformed with WKS2-Ae (without retrotansposon insertion in intron10), which derived from Aegilops comosaconferred resistance to stripe rust in wheat. The expression of WKS2-Ae in transgenic plants is up-regulated by temperature and pathogen infection. Combination of WKS1 and WKS2-Ae shows improved stripe rust resistance in WKS1×WKS2-Ae F1 hybrid plants. The obtained results show that WKS1 protein is accelerating programmed cell death observed in the regions surrounding a stripe rust infection in the wheat plants carrying the natural or transgenic WKS1 gene. Furthermore, characterization of the epistatic interactions of Yr36 and Yr18 demonstrated that these two genes have additive effects and can therefore be combined to increase partial resistance to this devastating pathogen of wheat. These achievements may have a broad impact on wheat breeding efforts attempting to protect wheat yields against one of the most devastating wheat pathogen.
APA, Harvard, Vancouver, ISO, and other styles
4

Distelfeld, Assaf, Jan Dvorak, and Hanan Sela. Introgression of stripe rust resistance genes from Aegilops speltodies into wheat with a novel introgression methodology. United States Department of Agriculture, 2015. http://dx.doi.org/10.32747/2015.7600026.bard.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Sela, Hanan, Eduard Akhunov, and Brian J. Steffenson. Population genomics, linkage disequilibrium and association mapping of stripe rust resistance genes in wild emmer wheat, Triticum turgidum ssp. dicoccoides. United States Department of Agriculture, January 2014. http://dx.doi.org/10.32747/2014.7598170.bard.

Full text
Abstract:
The primary goals of this project were: (1) development of a genetically characterized association panel of wild emmer for high resolution analysis of the genetic basis of complex traits; (2) characterization and mapping of genes and QTL for seedling and adult plant resistance to stripe rust in wild emmer populations; (3) characterization of LD patterns along wild emmer chromosomes; (4) elucidation of the multi-locus genetic structure of wild emmer populations and its correlation with geo-climatic variables at the collection sites. Introduction In recent years, Stripe (yellow) rust (Yr) caused by Pucciniastriiformis f. sp. tritici(PST) has become a major threat to wheat crops in many parts of the world. New races have overcome most of the known resistances. It is essential, therefore, that the search for new genes will continue, followed by their mapping by molecular markers and introgression into the elite varieties by marker-assisted selection (MAS). The reservoir of genes for disease and pest resistance in wild emmer wheat (Triticumdicoccoides) is an important resource that must be made available to wheat breeders. The majority of resistance genes that were introgressed so far in cultivated wheat are resistance (R) genes. These genes, though confering near-immunity from the seedling stage, are often overcome by the pathogen in a short period after being deployed over vast production areas. On the other hand, adult-plant resistance (APR) is usually more durable since it is, in many cases, polygenic and confers partial resistance that may put less selective pressure on the pathogen. In this project, we have screened a collection of 480 wild emmer accessions originating from Israel for APR and seedling resistance to PST. Seedling resistance was tested against one Israeli and 3 North American PST isolates. APR was tested on accessions that did not have seedling resistance. The APR screen was conducted in two fields in Israel and in one field in the USA over 3 years for a total of 11 replicates. We have found about 20 accessions that have moderate stripe rust APR with infection type (IT<5), and about 20 additional accessions that have novel seedling resistance (IT<3). We have genotyped the collection using genotyping by sequencing (GBS) and the 90K SNP chip array. GBS yielded a total 341K SNP that were filtered to 150K informative SNP. The 90K assay resulted in 11K informative SNP. We have conducted a genome-wide association scan (GWAS) and found one significant locus on 6BL ( -log p >5). Two novel loci were found for seedling resistance. Further investigation of the 6BL locus and the effect of Yr36 showed that the 6BL locus and the Yr36 have additive effect and that the presence of favorable alleles of both loci results in reduction of 2 grades in the IT score. To identify alleles conferring adaption to extreme climatic conditions, we have associated the patterns of genomic variation in wild emmer with historic climate data from the accessions’ collection sites. The analysis of population stratification revealed four genetically distinct groups of wild emmer accessions coinciding with their geographic distribution. Partitioning of genomic variance showed that geographic location and climate together explain 43% of SNPs among emmer accessions with 19% of SNPs affected by climatic factors. The top three bioclimatic factors driving SNP distribution were temperature seasonality, precipitation seasonality, and isothermality. Association mapping approaches revealed 57 SNPs associated with these bio-climatic variables. Out of 21 unique genomic regions controlling heading date variation, 10 (~50%) overlapped with SNPs showing significant association with at least one of the three bioclimatic variables. This result suggests that a substantial part of the genomic variation associated with local adaptation in wild emmer is driven by selection acting on loci regulating flowering. Conclusions: Wild emmer can serve as a good source for novel APR and seedling R genes for stripe rust resistance. APR for stripe rust is a complex trait conferred by several loci that may have an additive effect. GWAS is feasible in the wild emmer population, however, its detection power is limited. A panel of wild emmer tagged with more than 150K SNP is available for further GWAS of important traits. The insights gained by the bioclimatic-gentic associations should be taken into consideration when planning conservation strategies.
APA, Harvard, Vancouver, ISO, and other styles
6

Fahima, Tzion, and Jorge Dubcovsky. Map-based cloning of the novel stripe rust resistance gene YrG303 and its use to engineer 1B chromosome with multiple beneficial traits. United States Department of Agriculture, January 2013. http://dx.doi.org/10.32747/2013.7598147.bard.

Full text
Abstract:
Research problem: Bread wheat (Triticumaestivum) provides approximately 20% of the calories and proteins consumed by humankind. As the world population continues to increase, it is necessary to improve wheat yields, increase grain quality, and minimize the losses produced by biotic and abiotic stresses. Stripe rust, caused by Pucciniastriiformisf. sp. tritici(Pst), is one of the most destructive diseases of wheat. The new pathogen races are more virulent and aggressive than previous ones and have produced large economic losses. A rich source for stripe-rust resistance genes (Yr) was found in wild emmer wheat populations from Israel. Original Project goals: Our long term goal is to identify, map, clone, characterize and deploy in breeding, novel wild emmer Yr genes, and combine them with multiple beneficial traits. The current study was aiming to map and clone YrG303 and Yr15, located on chromosome 1BS and combine them with drought resistance and grain quality genes. Positional cloning of YrG303/Yr15: Fine mapping of these genes revealed that YrG303 is actually allelic to Yr15. Fine genetic mapping using large segregating populations resulted in reduction of the genetic interval spanning Yr15 to less than 0.1 cM. Physical mapping of the YrG303/Yr15 locus was based on the complete chromosome 1BS physical map of wheat constructed by our group. Screening of 1BS BAC library with Yr15 markers revealed a long BAC scaffold covering the target region. The screening of T. dicoccoidesaccession-specific BAC library with Yr15 markers resulted in direct landing on the target site. Sequencing of T. dicoccoidesBAC clones that cover the YrG303/Yr15 locus revealed a single candidate gene (CG) with conserved domains that may indicate a role in disease resistance response. Validation of the CG was carried out using EMS mutagenesis (loss-of- function approach). Sequencing of the CG in susceptible yr15/yrG303 plants revealed three independent mutants that harbour non-functional yr15/yrG303 alleles within the CG conserved domains, and therefore validated its function as a Pstresistance gene. Evaluation of marker-assisted-selection (MAS) for Yr15. Introgressions of Yr15 into cultivated wheat are widely used now. Recently, we have shown that DNA markers linked to Yr15 can be used as efficient tools for introgression of Yr15 into cultivated wheat via MAS. The developed markers were consistent and polymorphic in all 34 tested introgressions and are the most recommended markers for the introgression of Yr15. These markers will facilitate simultaneous selection for multiple Yr genes and help to avoid escapees during the selection process. Engineering of improved chromosome 1BS that harbors multiple beneficial traits. We have implemented the knowledge and genetic resources accumulated in this project for the engineering of 1B "super-chromosome" that harbors multiple beneficial traits. We completed the generation of a chromosome including the rye 1RS distal segment associated with improved drought tolerance with the Yr gene, Yr15, and the strong gluten allele 7Bx-over-expressor (7Bxᴼᴱ). We have completed the introgression of this improved chromosome into our recently released variety Patwin-515HP and our rain fed variety Kern, as well as to our top breeding lines UC1767 and UC1745. Elucidating the mechanism of resistance exhibited by Yr36 (WKS1). The WHEAT KINASE START1 (WKS1) resistance gene (Yr36) confers partial resistance to Pst. We have shown that wheat plants transformed with WKS1 transcript are resistant to Pst. WKS1 is targeted to the chloroplast where it phosphorylates the thylakoid-associatedascorbateperoxidase (tAPX) and reduces its ability to detoxify peroxides. Based on these results, we propose that the phosphorylation of tAPX by WKS1 reduces the ability of the cells to detoxify ROS and contributes to cell death. Distribution and diversity of WKS in wild emmer populations. We have shown that WKS1 is present only in the southern distribution range of wild emmer in the Fertile Crescent. Sequence analysis revealed a high level of WKS1 conservation among wild emmer populations, in contrast to the high level of diversity observed in NB-LRR genes. This phenomenon shed some light on the evolution of genes that confer partial resistance to Pst. Three new WKS1 haplotypes displayed a resistance response, suggesting that they can be useful to improve wheat resistance to Pst. In summary, we have improved our understanding of cereals’ resistance mechanisms to rusts and we have used that knowledge to develop improved wheat varieties.
APA, Harvard, Vancouver, ISO, and other styles
7

Jacobsen, Nils. Linjebussens vekst og fall i den voksende byen: en studie av bybussenes geografiske kvalitet Stavanger – Sandnes 1920 – 2010. University of Stavanger, November 2019. http://dx.doi.org/10.31265/usps.244.

Full text
Abstract:
Linear city bus services are facing increased challenges from city growth. Increased number of inhabitants on increasing acres of built-up areas, makes it demanding to maintain adequate bus services within reasonable catchment areas. Number of departures per hour give a partial description of the bus service quality. Number of departures give reference to the time aspect of bus service quality, but say nothing about the geographical aspect. What part of the entire line network is within reach of direct bus service when frequencies are limited? To address the geographical aspect of bus service quality, the term network ratio is introduced. The term Network Ratio (NR) signifies what part of the entire line network is within reach of direct bus service to or from a certain place in the network. Network Ratio is given as a mathematical term whereby direct bus lines are calculated as a percentage of the entire network. The character and development of Network Ratio in a specific city is illustrated through an analysis of the urban growth of line network and built-up areas in the twin cities of Stavanger and Sandnes. The analysis is covering the period 1920 – 2000 in intervals of 20 years from the first bus lines were established in the urban area. Year 2010 is also included due to major changes implemented right after the turn of the millennium. Development show there is a close relation between bus network and built-up areas. When areas are being built, bus lines follow. The initial fase 1920 – 40 with extensive development of bus lines combined with some areal growth, is followed by a fase of consolidation 1940 – 60. The latter period is characterized by moderate areal growth, extended lines reducing network ratios, and increasing frequencies on the best bus lines. Extensive areal growth in the following period 1960 – 80, implies increased number of bus lines. As a consequence network ratios as well as frequencies are falling in the entire network. In 1960 certain lines had developed as much as 6 departures per hour, while maximum bus line frequency in 1980 has diminished to 2. New bus service development is introduced in the following period between 1980 and 2000. Numerous bus companies are united, and a more comprehensive planning of bus services are applied. The number of bus lines is stabilized at about 40, the fall in network ratio is reduced, and certain lines develop 4 departures per hour. Parallell to the bus development, growth of built-up areas is slowing down due to increased urban renewal with higher densities within built-up areas. In the period 2000 – 2010 new efforts are given to the development of bus services. Development of Network Ratio takes a new direction: The length of network links with high NR is increasing, while links with very low NR are diminishing. Number of bus lines is decreasing, and by 2010 almost 50% of the bus lines are served with 4 departures or more. Passenger comfort is improved in buses as well as on bus stops, and low floor buses are introduced to ease accessibility. Bus service quality is further developed after 2010. Digital services are introduced including digital ticketing, bus service information and real-time information on internet. In addition real-time information is presented at high frequency bus stops through visual screen and auditory speaker. Inside the buses name of next stop is given on screen and through loudspeaker. Further development of the bus services, should include improved Network Ratios in the entire network, as well as increased frequencies on major bus corridors. The latter is a task not only for the bus service planners, but just as well for the city planners and politicians in collaboration with the developers implementing urban density and allocation of important destinations. A last, but not least, objective for bus service development will be to improve punctuality and total travel time. Today a considerable proportion of city bus services are delayed in car traffic congestions. This is occurring especially on main streets and during rush hours. A set of different solutions are needed to address this question: 1. Dedicated bus streets (including car access to limited addresses) 2. Bus lines through local streets in concentrated housing, office and shopping areas. 3. Dedicated bus lane on main streets where possible. 4. Car traffic regulations on main streets without space for extra bus lane. As an overall vision, we need to cultivate the word of Flemming Larsen: urban growth as pearls on a string, as shown in fig. 13 and fig. 14.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography