To see the other types of publications on this topic, follow the link: Stripe rust.

Dissertations / Theses on the topic 'Stripe rust'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 24 dissertations / theses for your research on the topic 'Stripe rust.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse dissertations / theses on a wide variety of disciplines and organise your bibliography correctly.

1

Kertho, Albert Okaba. "Evaluation of Winter Wheat Germplasm for Resistance to Stripe Rust and Leaf Rust." Thesis, North Dakota State University, 2014. https://hdl.handle.net/10365/27571.

Full text
Abstract:
Wheat leaf rust, caused by Puccinia triticina (Pt), and wheat stripe rust caused by P. striiformis f. sp. tritici (Pst) are important foliar diseases of wheat (Triticum aestivum L.) worldwide. Breeding for disease resistance is the preferred strategy of managing both diseases. The continued emergence of new races of Pt and Pst requires a constant search for new sources of resistance. Winter wheat accessions were evaluated at seedling stage in the greenhouse with races of Pt and Pst that are predominant in the North Central US. Association mapping approach was performed on landrace accessions to identify new or underutilized sources of resistance to Pt and Pst. The majority of the accessions were susceptible to all the five races of Pt and one race of Pst. Association mapping studies identified 29 and two SNP markers associated with seedling resistance to leaf rust and stripe rust, respectively.
APA, Harvard, Vancouver, ISO, and other styles
2

Grabow, Bethany. "Environmental conditions associated with stripe rust and leaf rust epidemics in Kansas winter wheat." Diss., Kansas State University, 2016. http://hdl.handle.net/2097/32835.

Full text
Abstract:
Doctor of Philosophy
Department of Plant Pathology
Erick D. DeWolf
Stripe rust (caused by Puccinia striiformis f. sp. tritici) and leaf rust (caused by Puccinia triticina) are the top two diseases of winter wheat (Triticum aestivum) with a 20-year average yield loss of 4.9% in Kansas. Due to the significant yield losses caused by these diseases, the overall objective of this research was to identify environmental variables that favor stripe and leaf rust epidemics. The first objective was to verify the environmental conditions that favor P. triticina infections in an outdoor field environment. Wheat was inoculated with P. triticina and exposed to ambient weather conditions for 16 hours. Number of hours with temperature between 5 to 25°C and relative humidity >87% were highly correlated and predicted leaf rust infections with 89% accuracy. The results of this outdoor assay were used to develop variables to evaluate the association of environment with regional leaf rust epidemics. Before regional disease models can be developed for a forecast system, suitable predictors need to be identified. Objectives two and three of this research were to identify environmental variables associated with leaf rust and stripe rust epidemics and to evaluate these predictors in models. Mean yield loss on susceptible varieties was estimated for nine Kansas crop reporting districts (CRD’s). Monthly environmental variables were evaluated for association with stripe rust epidemics (>1% yield loss), leaf rust epidemics (>1% yield loss), severe stripe rust epidemics (>14% yield loss) and severe leaf rust epidemics (>7% yield loss) at the CRD scale. Stripe rust and leaf rust epidemics were both strongly associated with soil moisture conditions; however, the timing differed between these diseases. Stripe rust epidemics were associated with soil moisture in fall and winter, and leaf rust epidemics during winter and spring. Severe stripe rust and leaf rust epidemics were associated with favorable temperature (7 to 12°C) and temperature (15 to 20°C) with relative humidity (>87%) or precipitation in May using tree-based methods of classification, respectively. The preliminary models developed in this research could be coupled with disease observations and varietal resistance information to advise growers about the need for foliar fungicides against these rusts in Kansas winter wheat.
APA, Harvard, Vancouver, ISO, and other styles
3

Loladze, Alexander. "Identification of stripe rust resistance in wheat relatives and landraces." Online access for everyone, 2006. http://www.dissertations.wsu.edu/Thesis/Spring2006/A%5FLoladze%5F050306.pdf.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Cheng, Peng. "Molecular mapping of a gene for resistance to stripe rust in spring wheat cultivar IDO377s and identification of a new race of Puccinia striiformis f. sp. tritici virulent on IDO377s." [Pullman, Wash.] : Washington State University, 2008. http://www.dissertations.wsu.edu/Thesis/Fall2008/p_cheng_081808.pdf.

Full text
Abstract:
Thesis (M.S. in plant pathology)--Washington State University, December 2008.
Title from PDF title page (viewed on Sept. 23, 2008). "Department of Plant Pathology." Includes bibliographical references.
APA, Harvard, Vancouver, ISO, and other styles
5

Evin, Bryn Anndi. "Evaluation of Management Tools for Stripe Rust in Hard Red Spring Wheat and Assessment of Virulence Phenotypes and Aggressiveness in Puccinia striiformis Isolates." Diss., North Dakota State University, 2019. https://hdl.handle.net/10365/31562.

Full text
Abstract:
Stripe rust, caused by Puccinia striiformis f. sp. tritici (Pst), is an economically important foliar disease of wheat (Triticum aestivum). In the last decade, losses from stripe rust in North Dakota (ND) have increased, peaking at 5% in 2015. Three research studies were conducted to address questions on the pathogen, varietal resistance, and integrated management. The objective of the first study was to (i) identify virulent phenotypes of Pst isolates collected from ND from 2015 to 2017 and assign races, and (ii) determine the effect of temperature on in vitro urediniospore germination, latency, and lesion spread. Across the three years, five races were detected with PSTv 37 being the most common. The highest urediniospore germination occurred at 12oC followed by 16oC. Pst isolates had shorter latency at 21oC and larger lesion spread at 16oC. The objective of the second study was to evaluate seedling resistance and adult plant resistance in the North Dakota State University spring wheat breeding program using races PSTv 37 and PSTv 52. Results from seedling experiments indicated only four and two lines were resistant to PSTv 52 and PSTv 37, respectively. Adult plant resistance experiments were unsuccessful in 2019, and will be conducted again in the future. The objective of the third study was to develop fungicide timing recommendations for wheat rust (stripe and leaf) based on varietal resistance and time of disease onset. Rust developed in five of the eight field trials, and timing of disease onset was categorized by growth stage (tillering, flag leaf, or early-flowering). Results indicated fungicide application timing was influenced by timing of disease onset and varietal resistance. When rust was detected at the tillering growth stage on the susceptible variety, the best time to apply a fungicide was at Feekes 9. When rust was detected at flag leaf or beyond on a susceptible variety, a fungicide application at Feekes 10.51 provided the adequate disease reduction and protection of yield. Results from these research studies provide a better understanding of Pst, determined seedling resistance in the breeding program, and provides field data to refine management recommendations for wheat rusts in ND.
North Dakota Wheat Commission
State Board of Agricultural Research and Education
APA, Harvard, Vancouver, ISO, and other styles
6

Nyori, Peter Michael Bulli. "Genetics of resistance to leaf and stripe rust diseases in the spring wheat 'Amadina'." Diss., Kansas State University, 2010. http://hdl.handle.net/2097/4611.

Full text
Abstract:
Doctor of Philosophy
Department of Agronomy
Allan K. Fritz
In this research, a recombinant inbred line (RIL) population derived from cross between a leaf rust- and stripe rust-susceptible spring wheat ‘Avocet S’ and a slow leaf- and stripe-rusting resistant spring wheat ‘Amadina’ was used to postulate and map leaf rust seedling resistance genes, identify quantitative trait loci (QTL) for slow-rusting resistance against leaf and stripe rust, and study slow leaf-rusting components, latent period and infection frequency. Two known Lr genes (Lr23, and Lr26) were identified to be present in ‘Amadina’ through gene postulation, pedigree, cytogenetic, and polymerase chain reaction analyses. One unknown gene associated with seedling resistance was also mapped on chromosome 1BL. In greenhouse experiment, it was estimated that at least five genes conditioning final disease severity (FS) and latent period (LP), and four genes conditioning infection frequency (IF), segregated in the population. Correlations between LP and FS, and LP and IF were moderately negative, and that between IF and FS was moderately positive, indicating inter-dependence of the traits. Two QTL on chromosomes 1BL and 6BL were associated with LP and FS, and three QTL on chromosomes 1BL, 6BL and 2DS were associated with IF. Segregation of the RIL population in field experiment indicated that there were at least four and three adult plant resistance (APR) genes involved in resistance for leaf and stripe rust. Six QTL on chromosomes 3AL, 4AL, 1BL, 5BL, and 7BL were associated with APR for leaf rust, and seven QTL on chromosome 4AL, 5AL, 1BL, 2BL, 4BL, 5BL, 2DL, and 4D were associated with APR for stripe rust. Our results indicated that the major portion of genetic variability for slow-rusting resistance was additive gene action, and, to some extent, epistasis. In this research, we also explored the utility of remote sensing and geographic information systems (GIS) and analytical operations to discriminate leaf rust pustules from other parts of leaf and to accurately determine pustule size in ‘Amadina’ and ‘Avocet S’.
APA, Harvard, Vancouver, ISO, and other styles
7

Ramburan, Viresh Premraj. "Genetic mapping of adult plant stripe rust resistance in the wheat cultivar Kariega." Thesis, Stellenbosch : Stellenbosch University, 2003. http://hdl.handle.net/10019.1/53438.

Full text
Abstract:
Thesis (PhD (Agric)) -- Stellenbosch University, 2003.
ENGLISH ABSTRACT: Stripe (yellow) rust of wheat, caused by Puccinia striiformis f.sp. tritici, was first detected as a single introduction into South Africa in 1996. Two additional pathotypes have since been identified. Control of the disease may be achieved by use of genetic adult plant resistance (APR) as is present in the local cultivar 'Kariega'. The aim of this project was to understand the genetic basis of the APR in 'Kariega' to facilitate breeding of new varieties with genetic resistance to stripe rust. A partial linkage map of a 'Kariega X Avocet S' doubled haploid population covering all 21 wheat chromosomes was generated using 208 DNA markers, viz, 62 SSR, 133 AFLP, 3 RGA and 10 SRAP markers, and 4 alternative loci. The different marker techniques detected varying polymorphism, viz, overall SSR: 46%, AFLP: 7%, SRAP: 6% and RGA: 9%, and the markers produced low levels of missing data (4%) and segregation distortion (5%). A significant feature of the linkage map was the low polymorphism found in the D genome, viz, 19% of all mapped DNA markers, 11% of all AFLP markers and 30% of the total genome map distance. A region exhibiting significant segregation distortion was mapped to chromosome 4A and a seedling resistance gene for stem rust (Puccinia graminis f.sp . tritici), Sr26, mapped to chromosome 6A close to three SSR markers. The leaf tip necrosis gene, Ltn, which was also segregating in the population, mapped to chromosome 7D. Protocols for SRAP and RGA were optimised, and SRAP marker use in wheat genetic linkage studies is reported for the first time. The linkage map was used together with growth chamber and replicated field disease scores for QTL mapping. Chromosomes showing statistically significant QTL effects were then targeted with supplementary SSR markers for higher resolution mapping. The quality of disease resistance phenotypic data was confirmed by correlation analysis between the different scorers for reaction type (0.799±0.023) and for transformed percentage leaf area infected (0.942±0.007). Major QTL were consistently identified on chromosome 7D (explaining some 25-48% of the variation) and on chromosome 2B (21-46%) using transformed percentage leaf area infected and transformed reaction type scores (early and final) with interval mapping and modified interval mapping techniques. Both chromosomal regions have previously been identified in other studies and the 7D QTL is thought likely to be the previously mapped APR gene Yr 18. Minor QTL were identified on chromosomes lA and 4A with the QTL on 4A being more prominent at the early field scoring for both score types. A QTL evidently originating from 'Avocet S' was detected under growth chamber conditions but was not detected in the field, suggesting genotype-environment interaction and highlighting the need for modifications of growth chamber conditions to better simulate conditions in the field. The genetic basis of the APR to stripe rust exhibited by 'Kariega' was established by mapping of QTL controlling this trait. The linkage map constructed will be a valuable resource for future genetic studies and provides a facility for mapping other polymorphic traits in the parents of this population with a considerable saving in costs.
AFRIKAANSE OPSOMMING: Streep of geelroes van koring word veroorsaak deur Puccinia striiformis f. sp tritici, en is die eerste keer in 1996 in Suid-Afrika na introduksie van 'n enkele patotipe waargeneem. Twee verdere patotipes is sedertdien in Suid-Afrika gei"dentifiseer. Beheer van die siekte word veral moontlik gemaak deur die gebruik van genetiese volwasseplantweerstand soos gei"dentifiseer in die plaaslike kultivar 'Kariega'. Die doel van hierdie studie was om die genetiese grondslag van die streeproesweerstand te ontrafel ten einde die teling van nuwe bestande kultivars moontlik te maak. 'n Verdubbelde haplo1ede populasie uit die kruising 'Kariega X Avocet S' is aangewend om 'n gedeeltelike koppelingskaart vir die volle stel van 21 koring chromosome saam te stel. Die kaart het uit 208 DNA merkers, nl., 62 SSR, 133 AFLP, 3 RGA, 10 SRAP merkers en 4 ander lokusse bestaan. Totale polimorfisme wat deur die verskillende merkersisteme opgespoor is, was as volg: SSR: 46%, RGA: 9%, AFLP: 7% en SRAP: 6%. Die mate van ontbrekende data was gering (4%) asook die mate van segregasie distorsie (5%) van 'n enkele geval wat op chromosoom 4A gekarteer is. 'n Prominente kenmerk van die koppelingskaart is die relatiewe gebrek aan polimorfiese merkers op die D-genoom, nl., slegs 19% van alle DNA merkers en 11% van alle AFLP merkers wat slegs 30% van die totale genoom kaartafstand bestaan het. Die stamroes (Puccinia graminis f. sp. tritici) saailingweerstandsgeen, Sr26, karteer op chromosoom 6A naby drie SSR merkers. Die geen vir blaartipnekrose, Ltn, karteer op chromosoom 7D. Protokolle vir SRAP en RGA merkers is ge-optimiseer en gebruik van SRAP merkers in koppelings-analise word vir die eerste keer in koring gerapporteer. Die koppelingskaart is in kombinasie met groeikamerdata en gerepliseerde veldproefdata gebruik om die gene (QTL) vir volwasseplant streeproesweerstand te karteer. Chromosome met statisties betekenisvolle QTL is met aanvullende SSR merkers geteiken om die resolusie van kartering verder te verhoog. Die kwaliteit van fenotipiese data, soos in die proewe aangeteken, is bevestig deur korrelasies te bereken tussen lesings geneem deur onafhanklike plantpataloe (0.799 ± 0.023 vir reaksietipe en 0.942 ± 0.007 vir getransformeerde persentasie blaaroppervlakte besmet). Hoofeffek QTL vir die twee maatstawwe van weerstand is deur middel van die metodes van interval QTL kartering en gemodifiseerde interval QTL kartering konsekwent op chromosome 7D (25-48% van variasie verklaar) en 2B (21-46% van variasie verklaar) ge"identifiseer. In vorige studies is aangetoon dat beide chromosome 7D en 2B QTL vir volwasseplant streeproesweerstand dra. Die 7D QTL is waarskynlik die weerstandsgeen, Yr 18. QTL met klein effekte op weerstand is op chromosome lA en 4A ge"identifiseer. Die effek van laasgenoemde geen was meer prominent in die velddata in die vroee datum van weerstandsbeoordeling. Een QTL, afkomstig van 'Avocet S', is slegs onder groeikamertoestande identifiseerbaar. Dit dui op moontlike genotipe-omgewing wisselwerking en beklemtoon die noodsaaklikheid om aanpassings te maak in groeikamertoestande vir beter simulasie van veldproeftoestande. Die genetiese grondslag van volwasseplantweerstand teen streeproes in die kultivar 'Kariega' is deur QTL kartering bepaal. Die 'Kariega X Avocet S' koppelingskaart kan as 'n waardevolle basis dien vir toekomstige genetiese ontledings van ander polimorfiese kenmerke in die populasie.
APA, Harvard, Vancouver, ISO, and other styles
8

Christopher, Mark David. "Identification and Mapping of Adult Plant Stripe Rust Resistance in Soft Red Winter Wheat." Diss., Virginia Tech, 2011. http://hdl.handle.net/10919/39690.

Full text
Abstract:
Since 2000, stripe rust, caused by the fungal pathogen (Puccinia striiformis Westend. f.sp. tritici Eriks.) has resulted in yield losses of wheat (Triticum aestivium L.) in the United States, that exceeded the combined losses of leaf rust (Puccinia triticina Eriks.) and stem rust (Puccinia gramins Pers.:Pers f. sp. Tritici Eriks. E. Henn.). The objectives of this study are to identify and map adult plant stripe rust resistance quantitative trait loci (QTL) in soft red winter (SRW) wheat that are effective against race PST-100, which is the predominant race of the pathogen in the eastern U.S. Adult plant resistance (APR) was characterized in the resistant wheat lines â USG 3555â , VA00W-38, and â Coker 9553â . Resistance in each of the lines was evaluated in populations derived from crosses with susceptible lines â Neuseâ , Pioneer Brand â 26R46â , and VA01W-21, respectively. On chromosomes 1AS, 4BL, and 7D of USG 3555, QTL were identified that explain on average 12.8, 73.0, and 13.6 percent of the variation for stripe rust infection type (IT), and 13.5, 72.3, and 10.5 percent of the variation for stripe rust severity. A QTL from Neuse was identified on 3A that on average explains 10.9 percent of the variation for IT and 13.0 percent of the variation for severity. On chromosomes 2AS and 4BL of VA00W-38, QTL were identified that on average explain 58.9 and 19.3 percent of the variation for stripe rust IT, and 51.9 and 12.1 percent of the variation for severity. On chromosomes 6BL and 3BL of Pioneer 26R46, QTL were identified that on average explain 8.9 and 2.1 percent of the variation for IT and 11.7 and 3.9 percent of the variation for severity. Coker 9553 possesses the QTL on 4BL that is also present in USG 3555 and VA00W-38. The SSR markers, Xgwm296, Xbarc163, and Xwmc756 were tightly linked to QTL on chromosomes 2AS, 4BL, and 6BL, respectively, and their use and development of additional diagnostic markers will facilitate the incorporation and pyramiding of stripe rust resistance QTL into SRW wheat lines via marker-assisted selection.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
9

Dawson, Andrew. "Elucidating the molecular genetics of host and nonhost resistance in barley to stripe rust." Thesis, University of East Anglia, 2015. https://ueaeprints.uea.ac.uk/58560/.

Full text
Abstract:
Plants have a remarkable ability to resist the majority of pathogenic microbes they encounter. As such, they are described as nonhosts. Nonhost resistance is often conceptualised as a qualitative separation from host resistance. Classification into these two states is generally facile, as they fail to fully describe the range of states that exist in the transition from host to nonhost. This poses a problem when studying pathosystems that cannot be classified into either of these categories due to their intermediate status relative to the two extremes. Therefore, the terms intermediate host and intermediate nonhost have been proposed to describe pathosystems in the evolutionary transition between host and nonhost status. At present, a significant amount of research exists into the molecular genetics of host and nonhost pathosystems but very little is known about intermediate systems. The work in this Ph. D. thesis focuses on the interaction of barley with Puccinia striiformis f. sp. tritici, the causal agent of wheat stripe rust, as an intermediate host pathosystem. The first research chapter describes the development of two microscopic phenotypic assays used to quantify P. striformis f. sp. tritici in barley leaves challenged with the pathogen. These assays are then used to screen a large panel of barley accessions to define the intermediate host status of barley relative to a host pathosystem. Subsequently, these assays play a key role in determining that the genetic architecture of resistance in barley is underpinned by three major effect resistance loci: Rpst1, Rpst2, and Rpst3. Using a combination of classical map-based genetics and contemporary genomics information I identify a candidate NLR gene underlying Rpst2 resistance on chromosome 7HL. Furthermore, I show that distinct genes condition host and nonhost resistance in barley by mapping the host resistance gene, rps2 to chromosome 2HL.
APA, Harvard, Vancouver, ISO, and other styles
10

Shao, Mingqin. "QTL mapping of pre-harvest sprouting and stripe rust resistance in wheat cultivars Danby and Tiger." Diss., Kansas State University, 2017. http://hdl.handle.net/2097/38205.

Full text
Abstract:
Doctor of Philosophy
Department of Agronomy
Guihua Bai
Guorong Zhang
Wheat yield and quality is influenced by many abiotic and biotic environmental factors. Pre-harvest sprouting (PHS) occurs when physiologically matured spikes are exposed to wet field conditions before harvest, which results in seed germination and causes significant losses in yield and end-use quality. Wheat stripe rust is one of the most important biotic factors reducing grain yield and quality. To investigate the genetic basis of the resistance to PHS and stripe rust in hard white winter wheat cultivars Danby and Tiger and develop molecular markers for marker- assisted breeding, a double haploid (DH) population, derived from those two cultivars, was genotyped with simple sequence repeats (SSR) markers and simple nucleotide polymorphism (SNP) markers. This DH population was assessed for resistance to PHS and stripe rust in both greenhouse and field experiments. For PHS, one major resistant quantitative trait locus (QTL) was consistently detected on the short arm of chromosome 3A in all three experiments conducted and explained 21.6% to 41.0% of the phenotypic variation (PVE). This QTL is corresponding to a previously cloned gene, TaPHS1. A SNP in the promoter of TaPHS1 co- segregated with PHS resistance in this mapping population. Meanwhile, two other QTLs, Qphs.hwwg-3B.1 and Qphs.hwwg-5A.1, were consistently detected on the chromosome arms 3BS and 5AL in two experiments. These two QTLs showed significant additive effects with TaPHS1 in improving PHS resistance. For stripe rust, three major QTLs were consistently detected in four out of six environments for infection type (IT) or disease severity (DS). Two of them, QYr.hwwg-2AS1 and QYr.hwwg-4BL1, contributed by the Danby allele explained up to 28.4% of PVE for IT and 60.5% of PVE for DS. The third QTL, QYr.hwwg-3BS1, contributed by the Tiger allele, had PVE values up to 14.7% for IT and 22.9% for DS. QYr.hwwg-2AS1 and QYr.hwwg- 4BL1 are likely the same resistance genes reported previously on chromosome arms 2AS and 4BL. However, QYr.hwwg-3BS1 might be different from the reported gene cluster near the distal end of 3BS where Yr57, Yr4, Yr30 and Sr2 were located. Significant additive effects on reducing IT and DS were observed among these three major QTLs. In order to pyramid multiple QTLs in breeding, user-friendly Kompetitive allele specific PCR (KASP) markers were successfully developed for several QTLs identified in this study. The QTLs and their interactions found in this study together with those novel flanking KASP markers developed will be useful not only for understanding genetic mechanisms of PHS and stripe rust resistance but also for marker- assisted breeding to improve wheat resistance to PHS and stripe rust by gene pyramiding.
APA, Harvard, Vancouver, ISO, and other styles
11

Vatter, Thomas [Verfasser]. "Locating QTL conferring resistance against net blotch, leaf rust, and stripe rust in the wild barley nested association mapping (NAM) population HEB-25 / Thomas Vatter." Halle, 2018. http://d-nb.info/1175950580/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Eddy, Rachel. "Logistic regression models to predict stripe rust infections on wheat and yield response to foliar fungicide application on wheat in Kansas." Thesis, Manhattan, Kan. : Kansas State University, 2009. http://hdl.handle.net/2097/2298.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Carpenter, Neal Ryan. "Identification and Mapping of Resistance to Puccinia striiformis and Puccinia triticina in Soft Red Winter Wheat." Diss., Virginia Tech, 2017. http://hdl.handle.net/10919/89628.

Full text
Abstract:
Disease resistance is critical in soft red winter wheat (Triticum aestivum L.) cultivars. Leaf rust caused by Puccinia triticina Eriks and stripe rust caused by Puccinia striiformis Westend. f.sp. tritici Eriks. are destructive pathogens of wheat. From 2014 to 2015 phenotypic data was collected at diverse locations for resistance to leaf rust (North Carolina, Texas, and Virginia) and stripe rust (Arkansas, North Carolina, Georgia, Texas, and Virginia) in a Pioneer ‘25R47’ /‘Jamestown’ (P47/JT) population composed of 186 F5:9 recombinant inbred lines (RILs). Analysis of the P47/JT population identified two quantitative trait loci (QTL) for leaf rust resistance on chromosome 5B and two QTL for stripe rust resistance on chromosomes 3B and 6A. Phenotypic variation (%) explained by the putative leaf rust resistance QTL of Jamestown on 5B was as high as 22.1%. Variation explained by the putative stripe rust resistance QTL of Jamestown on 3B and 6A was as high as 11.1 and 14.3%, respectively. Jamestown is postulated to contain gene Lr18. Seedlings of 186 F5:9 recombinant inbred lines from the P47/JT population and 200 F2 seedlings from eight other crosses including Jamestown and/or the Lr18 host differential line RL6009 (Thatcher*6/Africa 43) were screened with P. triticina race TNRJJ. Genetic analysis of the populations was conducted to validate the presence of Lr18 in Jamestown. Results of linkage analysis identified SNP maker IWB41960 linked within 5 cM of gene Lr18 in all three populations. From 2016 to 2017 phenotypic data was collected at diverse locations for resistance to leaf rust (Illinois, North Carolina, and Virginia) in a ‘2013412’ (PI 667644) / VA10W-21 (PI 676295) population (412/21) composed of 157 doubled haploid (DH) lines. The 412/21 DH lines were genotyped via genotyping by sequence (GBS). Analysis of the 412/21 population identified one quantitative trait loci (QTL) region associated with adult plant resistance to leaf rust on chromosome 1B. Phenotypic variation (%) explained by the putative leaf rust resistance QTL of 2013412 on 1B was as high as 40.1%. Kompetitive allele-specific (KASP) markers KASP_S1B_8414614 and KASP_S1B_8566239 were developed as markers for use in marker assisted selection.
Ph. D.
APA, Harvard, Vancouver, ISO, and other styles
14

Vatter, Thomas [Verfasser]. "Locating QTL conferring resistance against net blotch, leaf rust, and stripe rust in the wild barley nested association mapping (NAM) population HEB-25 / Thomas Vatter ; Julius Kühn-Institut, Institut für Resistenzforschung und Stresstoleranz; Naturwissenschaftliche Fakultät III, Agrar‐ und Ernährungswissenschaften, Geowissenschaften und Informatik der Martin‐Luther‐Universität Halle‐Wittenberg." Quedlinburg : Julius Kühn-Institut, 2019. http://d-nb.info/1175469270/34.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

El, Amil Rola. "Effet de l’hôte et de la température sur la structure de la population de Puccinia striiformis f. sp. tritici, agent de la rouille jaune du blé au Moyen Orient." Thesis, Paris 11, 2015. http://www.theses.fr/2015PA112236/document.

Full text
Abstract:
L’adaptation des pathogènes à leurs hôtes et aux variations climatiques, particulièrement à la température est étudiée sur l’agent pathogène biotrophe obligatoire responsable de la rouille jaune du blé, Puccinia striiformis f. sp. tritici (Pst) au Moyen Orient. Cette étude s’est déroulée au Liban et en Syrie situés dans le berceau de la région de domestication du blé. Des gènes de résistance spécifique ont été postulés au stade plantule pour 87 lignées élites du programme d’amélioration de l’ICARDA,28 cultivars Libanais, et 23 landraces Libanaises en utilisant 11 pathotypes français disponibles à l’INRA-BIOGER. Un seul gène et une combinaison de gènes ont été postulés dans les lignées elites. Neuf gènes de résistance ont été identifiés dans les lignées élites ; plus de génotypes résistants figuraient parmi les lignées issues du programme d’amélioration. Les landraces sont les plus sensibles mais ont montré une ségrégation de réaction résistance parmi les plants sensibles.Pour la structuration de population pathogène du Liban et de la Syrie, un échantillonnage a été fait dans les deux pays sur du blé tendre, du blé dur et des repousses durant 2010-2011. Six isolats Libanais et 48 isolats Syriens ont été pathotypés avec une gamme de 43 hôtes différentiels. 275 échantillons ont été génotypés avec 20 marqueurs SSR. La population était clonale malgré avec la présence de l’hôte secondaire Berberis sp. dans la région, toutefois un nombre élevé de 50 MLG est observé était pour une population clonale. La présence de la race invasive PstS1/PstS2 caractérise cette région. Le profil de virulence Vr2, 6, 7, 9, 27 est le plus fréquent et typique du groupe génétique Méditerranéen (Bahri et al., 2009). La virulence Vr8 n’est pas fixée dans la population malgré sa présence dans la race invasive décrite depuis l’an 2000 (Milus et al., 2009). L’adaptation de la rouille jaune à la température a été décrite par Milus et al. (2009) et Mboup et al. (2012). Notre étude d’adaptation à la température a été faite sur un échantillon de 26 isolats provenant de zones froides et chaudes avec 4 isolats de référence. Nous avons testé deux paramètres d’agressivité, efficacité d’infection et période de latence sous quatre différents régimes de température (Chaud versus froid pour période de rosée et période d’incubation). Les isolats diffèrent pour leur réponse aux variations de température. Quelques isolats montrent une efficacité d’infection et une courte période de latence sous les différents régimes, d’autres sont efficaces au froid mais pas au chaud et vice versa. Pour l’efficacité d’infection, il n’y a pas d’adaptation mais par contre pour la période de latence on montre une adaptation à la température des isolats de la zone chaude ayant une efficacité d’infection. La température chaude de rosée a retardé la période de latence mais ce phénomène a été moins marqué pour les isolats d’origine chaude quand c’est incubé au chaud. Cette étude a montré que la population est clonale avec un haut nombre de pathotypes. Le germplasme n’est pas diversifié avec des gènes de résistance contre la rouille jaune. L’adaptation de l’agent de la rouille jaune à la température parmi les isolats testés a été décrite pour la période de latence pour les isolats provenant d’origine chaude
The adaptation of fungal pathogen to its hosts and to the climate variation, in particular to the temperature, was investigated on wheat stripe (yellow) rust, caused by the biotroph fungus Puccinia striiformis f. sp. tritici (Pst) in the Middle East, focusing on Lebanon and Syria. This disease is a major problem for the crop in the region. Specific resistance genes were postulated in 138 wheat genotypes including elite lines, grown varieties and local landraces, using an array of 11 French pathotypes. Resistance gene diversity for yellow rust in wheat elite lines was higher than in current, commercial varieties grown in Lebanon, with nine Yr genes detected singly or in combination. Some varieties were resistant to all tested pathotypes and might provide interesting sources of resistance. Most of the Lebanese landraces were susceptible but also heterogeneous by their number of plants susceptible and resistant to a specific pathotype in a same landrace.A field survey was conducted in Lebanon and Syria in 2010-2011 and 275 Pst isolates were collected. The pathogen population was genotyped with 20 microsatellite markers and was found to be clonal, although the alternate host Berberis libanotica is present in the region. The dominant multilocus genotype shared similarity with the new invasive strain PstS1/PstS2 dispersed worldwide since 2000. The population was clonal with 10 pathotypes detected in Lebanon and Syria. 50 MLGs were detected considered high for clonal population. The virulence profiles combining Vr2, Vr6, Vr7, Vr9, and Vr27 are typical of the Mediterranean area according to group (Bahri et al., 2009) and corresponded to the worldwide invasive pathotype described since 2000 (Milus et al., 2009). The Vr8 was not fixed in this population, whereas this virulence is frequent in the Mediterranean genetic group (Bahri et al., 2009).Recently Pst strains have been described for adaptation to warm temperature (Milus et al., 2009; Mboup et al., 2012). The question of temperature adaptation in this study was whether the strains adapted to warm temperature are found in few clones of invasive strains or if they are selected in different pathogen genotypes locally under specific climate conditions. We selected 26 Pst isolates from the Middle East, 13 isolates from warm and 13 isolates from cold areas. We assessed their infection efficiency and latent period under four temperature regimes (high and warm temperature for the spore penetration phase, and high and warm temperature for the latency period). The isolates differed for the thermal aptitude for infection efficiency and latent period, but no clear relationship was established between the climate of the origin location of the isolate and its thermal aptitude. Some isolates were able to infect at high temperature but had long latency at high temperature and vice versa, some isolates had low infection efficiency and short latent period at high temperature, and few isolates were efficient either at high temperature or cold temperature for infection efficiency. Latency period showed pattern of local adaptation. Warm dew temperatures retarded sporulation, but this effect was far less marked for isolates from warm climates when incubated under warm conditions.This study provides details about probable effective yellow rust genes present in different genotypes and the prevalent pathotypes in the region. Moreover, the thermal aptitude for infection efficiency and latent period of some isolates under contrasting temperature will help us to build a better integrated disease management in the highlight of global warming
APA, Harvard, Vancouver, ISO, and other styles
16

Balasubramaniam, Rengasamy. "The effects of foliar diseases and irrigation on root development, yield and yield components of wheat (Triticum aestivum L.)." Lincoln College, University of Canterbury, 1985. http://hdl.handle.net/10182/1514.

Full text
Abstract:
Studies were conducted on three field trials of wheat cv. Kopara to investigate the lack of compensation by later determined components of yield because of early disease constraints. The investigation was based on the hypothesis that early disease reduces root development and thus causes the plants to be water constrained at later growth stages when soil water deficits usually occur. The reduced root development and soil water deficits may reduce the ability of the plant to compensate for reductions in early determined components. The hypothesis was tested by the application of irrigation to alleviate water stress. In a disease free crop, the possible phytotonic effects of the fungicides benomyl and triadimefon on wheat were investigated. These fungicides had no phytotonic effects on shoot, root growth, or yield under the prevailing conditions. The effect of disease on root development was analysed by root length measurements. Disease present in the crop at any stage of growth affected root development. Root development in the upper zones of the soil profile was reduced more by disease compared to those zones below 35 cm. A full disease epidemic reduced root development more than an early or late disease epidemic. The early and late disease epidemics had similar effects on root length. Alleviation of early disease constraints enabled greater development of roots to offset any earlier reductions. Soil water deficits increased root development in the lower zones of the nil disease plants. The presence of adequate soil water from irrigation reduced the requirement for further root growth in all treatments. In the 1981-1982 field trial a full disease epidemic reduced yield by 14% whereas an early disease epidemic reduced yield by 7%. The reduction in yield was attributed to a lower grain number. With irrigation the yield reduction in the full disease plants was 12% whereas in the early disease plants the reduction was only 2.4%. This indicated that plants affected by the early disease epidemic were water constrained. In this study, the results suggested that, for conditions prevailing in Canterbury, the supply of water at later growth stages increased grain weight in plants which were subject to early disease epidemics. This suggests that reduced root development caused by early disease and soil water deficits may prevent compensation by grain weight. Water use was similar in all disease treatments. After irrigation the irrigated plants of all treatments used more water. Disease affected water use in relation to yield production however, and was better expressed by water use efficiency. Water use efficiency was reduced in the full disease plants. A stepwise regression analysis suggested that water use efficiency was affected directly by disease at later growth stages, and indirectly via an effect on total green leaf area at early growth stages. This study partially proves the hypothesis that reductions in root development caused by an early disease epidemic may constrain the plants at later growth stages when water deficits usually occur. It was shown that the reduction in root development caused by disease could be counteracted by irrigation. In this respect, water served as a tool to study the effect of disease constraints on the yield of wheat. A knowledge of cereal crop physiology, root growth and function is used to explain and discuss the observations made in this research programme. The results are discussed in relation to the way in which disease affects yield through its effect on root development. The possible reasons for the continued effects of disease even after the control of disease at later growth stages are discussed. The economic use of fungicides and water in diseased crops are also outlined. Suggestions for future studies on disease-yield loss relationships are provided. The repetition of these experiments in different sites and climatic regions could provide information which may be incorporated in disease-yield loss simulation models. This could then be used to predict root development and water requirements of diseased plants, and provide a basis for economic use of fungicides and water, and for better disease management programmes.
APA, Harvard, Vancouver, ISO, and other styles
17

Castro, Tabo Ariel Julio. "Stripe rust resistance pyramids in barley." Thesis, 2002. http://hdl.handle.net/1957/29789.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Garnica, Moreno Diana Patricia. "Strategies for wheat stripe rust pathogenicity identified by "omics" technologies." Phd thesis, 2014. http://hdl.handle.net/1885/109598.

Full text
Abstract:
Stripe rust is a major constraint to wheat production worldwide. The causal agent is the fungus Puccinia striiformis f.sp. tritici (Pst). During infection, the fungus creates a specialized cellular structure within host cells called the haustorium which allows Pst to obtain the nutrients necessary for development and reproduction. The haustorium is also thought to secrete virulence molecules called 'effectors', which are suspected to manipulate the physiological and immune responses of host cells. Despite this broad outline, the molecular events that underlie host colonization and the produced effectors proteins are largely unknown. In my PhD, I extensively investigated Pst using transcriptomics and proteomics techniques to obtain a better understanding of how the pathogen establishes a compatible interaction with its host, and to identify the effector proteins that are synthesised and secreted during infection. First, by the use of next generation sequencing (454 and Illumina) the transcriptomes of two contrasting pathogenic stages (germinated spores and haustoria) were generated, de novo assembled and extensively annotated. A digital gene expression analysis revealed many differentially expressed genes which highlight key metabolic differences between these cell types, and provide insight into their different roles during infection. Spores turn on the metabolic pathways to derive energy from non carbohydrate sources, required to sustain growth and development. Conversely, haustoria deploy all the necessary machinery to take advantage of the abundant nutrients derived from the host nutrients and focus on energy production and biosynthetic pathways to support fungal growth and spore production. Further analysis of the haustoria transcriptome, allowed me to identify the first set of potential effector candidate genes of Pst, comprised of 437 genes, with two thirds of these up-regulated in haustoria compared to germinated spores. Using a bacterial system to synthesise and deliver proteins encoded by effector gene candidates, a small subset of these genes was cloned and used to establish two functional characterization methods. The first one aimed to test if these proteins could be recognised by wheat resistance genes and the second one tested their capacity to inhibit cell death triggered by a necrotic toxin. From the later one two effector gene candidates were found to partially inhibit plant cell death. In parallel, I have developed a method to isolate highly purified haustoria combining density gradients and flow cytometry. Haustoria purified by this method were successfully used for proteomics analysis. Proteomics data from haustoria, germinated and ungerminated spores were generated and analyzed preliminarily to determine the presence of effector candidates as well as non-effector proteins in each tissue. More than 3,000 proteins were validated by proteomic data, including 150 effector candidates. The correlation of transcriptomic and proteomic data suggested that the synthesis and deployment of some effector proteins could occur at different spatiotemporal sites and even could have destinations other than the host cell cytoplasm. Together, these studies have substantially increased our knowledge of Pst effectors and have provided insights into the pathogenic strategies of this important organism, opening new avenues of research with immense potential in the design of novel disease control strategies.
APA, Harvard, Vancouver, ISO, and other styles
19

Roman-Reyna, Veronica. "Understanding wheat stripe rust through studies on host and pathogen metabolism." Phd thesis, 2017. http://hdl.handle.net/1885/140914.

Full text
Abstract:
Wheat stripe rust, caused by the biotrophic Basidiomycete fungus Puccinia striiformis f. sp. tritici (Pst), is one of the most important crop diseases worldwide. Pst has a complex lifecycle with an asexual cycle and a sexual cycle, consisting of five possible spore types. The asexual cycle, which is the economically damaging phase on wheat, occurs repeatedly throughout the growing season through the germination of urediniospores, vegetative growth of the fungus and ultimate sporulation. During colonization, urediniospores germinate on the upper leaf surface and penetrate it via stomata. Vegetative growth starts when infectious hyphae branch off from a substomatal vesicle and ramify throughout the intercellular spaces. When the tip of a growing hypha touches a mesophyll cell, the fungus can develop an invasive structure called the haustorium. This specialized structure penetrates the cell wall but not the plasma membrane, expresses nutrient transporters and is the main site for secretion of virulence effector proteins. At this point the biotrophic growth starts. This stage If sufficient nutrients are available the fungus is able to complete the asexual cycle by developing spore-forming pustules that erupt from the leaf epidermis releasing millions of urediniospores (sporulation). Here I used physiological, molecular biology, metabolomics, and transcriptomics approaches to provide a broad view of metabolic processes during the infection. I measured the chitin content of infected wheat tissue as a proxy for fungal biomass, as chitin content is the major component of the fungal wall. Using this technique, I found that the Pst asexual lifecycle can be divided into two main phases. In the early part of Pst cycle from two to eight days after infection, it has limited requirements for nutrients, whereas the second phase from 9 to 15 dai leading to sporulation has high nutrient requirements. As all fungal nutrients are derived from the host, I measured aspects of carbon and nitrogen metabolic pathways. In the first phase, most photosynthesis parameters were unaffected. During the second phase, the high nutrient demand caused by the infection shifted the metabolic status of the infected tissue from source to strong sink. This conclusion was derived from the fact that all photosynthesis parameters related to carbon fixation and chlorophyll content decreased by at least half compared to healthy leaves. Moreover, genes related to asparagine and sucrose metabolism were up regulated in non-inoculated leaves while head weights were reduced. These data are consistent with a model in which the Pst infection induces nutrients reallocation from healthy to infected tissue in the second phase of infection to meet the sporulation phase demands. The second aspect that I studied was the relationship between plant development and Pst growth. One approach was to investigate the phenomenon of Adult Plant Resistance (APR), in this case conferred by the hexose transporter gene, Yr46. The Yr46 resistance is manifested as reduced production of Pst spores on the infected flag leaves of adult plants. I found that Yr46 seems to prevent the flag leaf from acting as sink tissue, possibly by accumulating sugars in the apoplast. This mechanism may reduce the cytoplasmic nutrients available for uptake by the haustoria. I suggest that immunity and plant development should be studied together, and observe that systemic responses provide additional information to understand the infection. I propose that in addition to the recognition of pathogen molecules, plant immunity may also concern the detection of pathogen manipulation of host metabolic pathways.
APA, Harvard, Vancouver, ISO, and other styles
20

Finckh, Maria Renate. "Interactive effects of stripe rust and plant competition in heterogeneous wheat populations." Thesis, 1991. http://hdl.handle.net/1957/36262.

Full text
Abstract:
Disease has been implied as an important selective force acting in plant populations. This study was conducted to determine the effects of stripe rust (Puccinia striiformis) on the population dynamics of wheat (Triticum aestivum) cultivar mixtures. Five wheat cultivars were grown in pure stands and all possible mixtures at three and two locations in 1987 and 1988, respectively. In 1989, four replacement series and their component pure stands were grown in two locations. All treatments were exposed to or protected from two stripe rust races. Disease severity and yield were determined on a per-cultivar basis for mixtures and also for pure stands. In all but one mixture, disease severity relative to the pure stands was reduced between 6 and 97%. Disease severity changes could be separated into two effects: First, selection for the more resistant or susceptible genotype reduced or increased disease in mixtures as compared to their pure stands by up to 47 and 11%, respectively. Second, epidemiological effects of host diversity reduced disease severity on individual cultivars below that of their pure stands. Disease severity on a genotype was often frequency-dependent. However, interactions among plant genotypes sometimes appeared to alter susceptibility and obscured the relationship. Non-diseased and diseased mixtures yielded 0 to 8% and 8 to 15% more than pure stands, respectively. overall, mixture yields were more influenced by plant-plant interactions than by disease. Population dynamics over time were studied by applying variable disease pressure to populations of four wheat cultivars for one-to-three generations in two locations. Fitnesses of genotypes were calculated by regressing the legit of a genotype's frequency on generation. Fitnesses were affected by disease and location and appeared constant over time. However, genotype frequency-changes were negatively correlated with planting frequencies, suggesting that fitnesses were frequency-dependent. Analysis of data from longer-term studies in the literature indicated that three generations may not have been sufficient to detect frequency-dependence. Stable equilibria may more likely exist for mixtures of genotypes that are closely related and adapted to the environment in which they are grown than for randomly selected genotypes.
Graduation date: 1992
APA, Harvard, Vancouver, ISO, and other styles
21

Prehn, Doris A. "Analysis of genetic resistance to barley stripe rust (Puccinia striiformis f. sp. hordei)." Thesis, 1993. http://hdl.handle.net/1957/36114.

Full text
Abstract:
Stripe rust (Puccinia striiformis f. sp. hordei) is a serious disease of barley that can cause up to 70% yield loss in susceptible varieties. The fungus is moving northward, threatening major barley production areas in the US, where most cultivars are susceptible. Fungicides are available for control of stripe rust, but economic and environmental considerations favor genetic resistance. Two stripe rust resistance quantitative trait loci (QTLs) located in chromosomes 4 and 7 have previously been reported. One hundred and ten doubled haploid progeny from a stripe rust susceptible x resistant cross were derived using the Hordeum bulbosum technique and phenotyped for agronomic and malting quality traits in order to assess the importance of linkage drag associated with the mapped stripe rust resistance QTLs. Data on 33 markers were combined with phenotypic data for QTL analysis. A molecular marker-assisted backcross program was implemented to initiate the transfer of the stripe rust resistance loci into susceptible US germplasm. No negative QTLs for agronomic or malting quality traits were detected within or adjacent to the intervals that were targeted for marker-assisted selection. A minor leaf rust resistance QTL, however, was found adjacent to the stripe rust locus on chromosome 7. Linkage drag in this region could operate in favor of the breeder. Epistatic interaction between the two stripe rust resistance QTLs confirms the necessity of introgressing both chromosome intervals.
Graduation date: 1994
APA, Harvard, Vancouver, ISO, and other styles
22

"Population structure of Puccinia striiformis f. sp. tritici, the cause of wheat stripe rust, in western Canada." Thesis, 2015. http://hdl.handle.net/10388/ETD-2015-03-2015.

Full text
Abstract:
Stripe rust of wheat, caused by Puccinia striiformis f. sp. tritici (Pst), is one of the most devastating diseases of wheat worldwide. Selection pressure on the pathogen population may result in a rapid shift to races virulent on wheat genotypes with specific resistance genes. For successful stripe rust management, it is important to monitor the virulence spectrum of the pathogen to detect new races. The purpose of this research was to survey Saskatchewan fields to determine the prevalence of stripe rust, characterize the race structure of Pst in western Canada and to determine the genotypic diversity of the pathogen population. Race characterization was performed by inoculating 27 near-isogenic wheat lines carrying 28 known resistance genes, four supplemental cultivars and one triticale cultivar with 61 genetically uniform Pst isolates from western Canada. Whole genome sequencing of pathogen isolates was conducted, using the Illumina HiSeq2500 platform and polymorphisms were assessed by single nucleotide polymorphism (SNP) variants. Characterization of Pst isolates identified 33 races of the pathogen. Genes Yr5, Yr15 and YrSP conditioned resistance against all isolates tested and all isolates were virulent on Yr6, Yr7, Yr9, Yr18, Yr28, Yr29 and Yr31. Variation for virulence was observed among isolates on Yr10, Yr24, YrTye, YrSu, Yr3 and Yr4. The analyses of virulence profiles divided the 61 isolates into four sub-populations or groups. These four sub-populations were distinct from each other in terms of virulence spectrum and year of collection. The Pst population in Alberta had greater diversity in terms of virulence compared with the Saskatchewan population. Diversity at the genome level was not observed to be related to geographic location or virulence phenotypes of the isolates. The SNP data revealed four sub-populations in the western Canadian Pst population. Genomic analyses of 48 Pst isolates did not reveal any relationship of the four sub-populations with their origin or year of collection. Signs of recombination were detected in the Pst population in western Canada. Genomic analyses differentiated isolates showing signs of recombination from those that did not.
APA, Harvard, Vancouver, ISO, and other styles
23

"Genetic analysis of leaf and stripe rust resistance in the spring wheat (Triticum aestivum L.) cross RL4452/AC Domain." Thesis, 2013. http://hdl.handle.net/10388/ETD-2013-06-1072.

Full text
Abstract:
Leaf rust and stripe rust of wheat (Triticum aestivum L.) are caused by the fungal pathogens Puccinia triticina, and Puccinia striiformis f.sp. tritici, respectively. In North America, the incorporation of adult-plant resistance (APR) genes into breeding lines has been an important strategy to achieve durable resistance to both diseases. Previously, the spring wheat cultivar AC Domain was reported to express an effective level of adult-plant resistance (APR) to leaf rust under field conditions. Early gene postulation work had suggested AC Domain might carry the APR gene Lr34 due to its phenotypic similarity to other Lr34 carrying lines. However, new gene specific markers have shown that AC Domain is not a carrier of Lr34. The objective of this research was to genetically localize the resistance in AC Domain, which is important because the cultivar has frequently been used as a parent in Canadian breeding programs, primarily for its value as a source of pre-harvest sprouting resistance. A mapping population of 185 doubled haploid (DH) lines derived from the cross ‘RL4452’ by ‘AC Domain’ was used for this study. RL4452 is a known carrier of Lr34. During 2011-2012, the DH population was evaluated in field leaf rust nurseries at Saskatoon, SK and Portage, MB and at a stripe rust nursery at Lethbridge, AB. Field results indicated that rust resistance in the mapping population was variable, with lines ranging from highly resistant, to highly susceptible. DH lines carrying Lr34 showed a high level of resistance to both diseases. Thus, the non-Lr34 carriers were genotyped using select SSR markers, and by an Illumina 9k Infinium iSelect SNP assay for subsequent quantitative trait loci (QTL) analysis. QTL analysis revealed that AC Domain donated a major resistance QTL located on chromosome 2BS, that mapped 46 cM proximal to markers linked to Lr16, and explained a significant portion of the leaf and stripe rust phenotypic variance in all test environments. In addition, this QTL was significantly associated with the expression leaf tip necrosis (LTN), reduction in area under the disease progress curve (AUDPC), and coefficient of infection (CI). In certain environments the interaction between the 2B QTL and Lr34 was additive resulting in a superior level of rust resistance. Indoor rust testing showed AC Domain was susceptible to both diseases at the seedling stage. Taken together these results suggest that the identified resistance in AC Domain is likely due to the presence of an APR gene, on chromosome 2BS.
APA, Harvard, Vancouver, ISO, and other styles
24

Fisk, Scott P. "FR‐H3 : a new QTL to assist in the development of fall-sown barley with superior low temperature tolerance." Thesis, 2011. http://hdl.handle.net/1957/26177.

Full text
Abstract:
Fall-sown barley will be increasingly important in the era of climate change due to higher yield potential and efficient use of water resources. Resistance/tolerance to biotic and abiotic stresses will be critical. Low temperature is an abiotic stress of great importance. Resistance to barley stripe rust (incited by Puccinia striifomis f. sp. hordei) and scald (incited by Rhynchosporium secalis) will be important in higher rainfall areas. Simultaneous gene discovery and breeding will accelerate the development of agronomically relevant germplasm. The role of FR-H1 and FR-H2 in low temperature tolerance (LTT) has been well documented. However the question still remains: is LTT due only to FR-H1 and FR-H2 or are there other, undiscovered, determinants of this critical trait? We developed two doubled haploid mapping populations using two lines from the University of Nebraska (NE) with superior cold tolerance and one line from Oregon State University (OR) with good malting quality and disease resistance: NB3437f/OR71 (facultative x facultative) and NB713/OR71 (winter x facultative). Both were genotyped with a custom 384 oligonucleotide pool assay (OPA). QTL analyses were performed for LTT, vernalization sensitivity (VS), and resistance to barley stripe rust and scald. Disease resistance QTL were identified with favorable alleles from both NE and OR germplasm. The role of VRN-H2 in VS was confirmed and a novel alternative winter allele at VRN-H3 was discovered in the Nebraska germplasm. FR-H2 was identified as a determinant of LTT and a new QTL, FR-H3, was discovered on chromosome 1H that accounted for up to 48% of the phenotypic variation in field survival at St. Paul, Minnesota, USA. The discovery of FR-H3 is a significant advancement in barley LTT genetics and will assist in developing the next generation of fall-sown varieties.
Graduation date: 2012
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography