To see the other types of publications on this topic, follow the link: Strongly continuous.

Journal articles on the topic 'Strongly continuous'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the top 50 journal articles for your research on the topic 'Strongly continuous.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Browse journal articles on a wide variety of disciplines and organise your bibliography correctly.

1

Borichev, A., R. Deville, and E. Matheron. "STRONGLY SEQUENTIALLY CONTINUOUS FUNCTIONS." Quaestiones Mathematicae 24, no. 4 (December 2001): 535–48. http://dx.doi.org/10.1080/16073606.2001.9639239.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Amann, Herbert, and Joachim Escher. "Strongly continuous dual semigroups." Annali di Matematica Pura ed Applicata 171, no. 1 (December 1996): 41–62. http://dx.doi.org/10.1007/bf01759381.

Full text
APA, Harvard, Vancouver, ISO, and other styles
3

Muñoz-Fernández, Gustavo A., Juan B. Seoane-Sepúlveda, and Andreas Weber. "Periods of strongly continuous semigroups." Bulletin of the London Mathematical Society 44, no. 3 (November 15, 2011): 480–88. http://dx.doi.org/10.1112/blms/bdr109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
4

Im, Young Bin, Joo Sung Lee, and Yung Duk Cho. "FUZZY STRONGLY $\alpha$-CONTINUOUS MAPPINGS." Far East Journal of Mathematical Sciences (FJMS) 97, no. 8 (July 7, 2015): 949–57. http://dx.doi.org/10.17654/fjmsaug2015_949_957.

Full text
APA, Harvard, Vancouver, ISO, and other styles
5

Horbaczewska, Gražyna. "On strongly countably continuous functions." Tatra Mountains Mathematical Publications 42, no. 1 (December 1, 2009): 81–86. http://dx.doi.org/10.2478/v10127-009-0008-7.

Full text
Abstract:
Abstract A real-valued function f on R is strongly countably continuous provided that there is a sequence of continuous functions (fn)n∈N such that the graph of f is contained in the union of the graphs of fn. Some examples of interesting strongly countably continuous functions are given: one for which the inverse function is not strongly countably continuous, another which is an additive discontinuous function with a big image and a function which is approximately and I-approximately continuous, but it is not strongly countably continuous.
APA, Harvard, Vancouver, ISO, and other styles
6

Hamza Geem, Methaq. "On strongly continuous ρh-semigroup." Journal of Physics: Conference Series 1234 (July 2019): 012109. http://dx.doi.org/10.1088/1742-6596/1234/1/012109.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Park, Jin Han. "Strongly θ-b-continuous functions." Acta Mathematica Hungarica 110, no. 4 (March 2006): 347–59. http://dx.doi.org/10.1007/s10474-006-0021-0.

Full text
APA, Harvard, Vancouver, ISO, and other styles
8

Caldas, M., S. Jafari, S. P. Moshokoa, and T. Noiri. "Strongly (λ, θ)-continuous functions." Rendiconti del Circolo Matematico di Palermo 56, no. 3 (October 2007): 331–42. http://dx.doi.org/10.1007/bf03032086.

Full text
APA, Harvard, Vancouver, ISO, and other styles
9

Sudha, V., A. Vadivel, and S. Tamilselvan. "Almost Strongly Nncθe-continuous Functions." Journal of Physics: Conference Series 1724, no. 1 (January 1, 2021): 012013. http://dx.doi.org/10.1088/1742-6596/1724/1/012013.

Full text
APA, Harvard, Vancouver, ISO, and other styles
10

Missier, S. Pious, and P. Anbarasi Rodrigo. "Strongly  * Continuous Functions in Topolgical Spaces." IOSR Journal of Mathematics 10, no. 4 (2014): 55–60. http://dx.doi.org/10.9790/5728-10415560.

Full text
APA, Harvard, Vancouver, ISO, and other styles
11

Ozkoc, Murad, and Gulhan Aslim. "ON STRONGLY θ-e-CONTINUOUS FUNCTIONS." Bulletin of the Korean Mathematical Society 47, no. 5 (September 30, 2010): 1025–36. http://dx.doi.org/10.4134/bkms.2010.47.5.1025.

Full text
APA, Harvard, Vancouver, ISO, and other styles
12

Özkoç, Murad, and Burcu Sünbül Ayhan. "Almost strongly θ -e-continuous functions." Journal of Nonlinear Sciences and Applications 09, no. 04 (April 22, 2016): 1619–35. http://dx.doi.org/10.22436/jnsa.009.04.19.

Full text
APA, Harvard, Vancouver, ISO, and other styles
13

Caldas, Miguel, and Saeid Jafari. "On strongly faint e-continuous functions." Proyecciones (Antofagasta) 30, no. 1 (2011): 29–41. http://dx.doi.org/10.4067/s0716-09172011000100003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
14

Eisner, Tanja. "Embedding operators into strongly continuous semigroups." Archiv der Mathematik 92, no. 5 (April 24, 2009): 451–60. http://dx.doi.org/10.1007/s00013-009-3154-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
15

Zwart, Hans. "Riesz basis for strongly continuous groups." Journal of Differential Equations 249, no. 10 (November 2010): 2397–408. http://dx.doi.org/10.1016/j.jde.2010.07.020.

Full text
APA, Harvard, Vancouver, ISO, and other styles
16

Im, Young Bin, Joo Sung Lee, and Yung Duk Cho. "FUZZY PAIRWISE STRONGLY \alpha-CONTINUOUS MAPPINGS." Far East Journal of Mathematical Sciences (FJMS) 99, no. 10 (June 11, 2016): 1465–76. http://dx.doi.org/10.17654/ms099101465.

Full text
APA, Harvard, Vancouver, ISO, and other styles
17

LIU, GENQIAN. "STRONGLY CONTINUOUS SEMIGROUPS AND STOCHASTIC REPRESENTATION." Journal of the London Mathematical Society 65, no. 03 (June 2002): 639–60. http://dx.doi.org/10.1112/s0024610701003003.

Full text
APA, Harvard, Vancouver, ISO, and other styles
18

Latrach, Khalid, and J. Martin Paoli. "Polynomially Compact-Like Strongly Continuous Semigroups." Acta Applicandae Mathematicae 82, no. 1 (May 2004): 87–99. http://dx.doi.org/10.1023/b:acap.0000026695.86402.1c.

Full text
APA, Harvard, Vancouver, ISO, and other styles
19

Graser, Thomas. "Operator Multipliers Generating Strongly Continuous Semigroups." Semigroup Forum 55, no. 1 (January 1997): 68–79. http://dx.doi.org/10.1007/pl00005912.

Full text
APA, Harvard, Vancouver, ISO, and other styles
20

Vesentini, Edoardo. "Strongly continuous semigroups satisfying polynomial equations." Annali di Matematica Pura ed Applicata 162, no. 1 (December 1992): 281–97. http://dx.doi.org/10.1007/bf01760011.

Full text
APA, Harvard, Vancouver, ISO, and other styles
21

deLaubenfels, Ralph. "C-semigroups and strongly continuous semigroups." Israel Journal of Mathematics 81, no. 1-2 (February 1993): 227–55. http://dx.doi.org/10.1007/bf02761308.

Full text
APA, Harvard, Vancouver, ISO, and other styles
22

McAllister, Sarah, and Frank Neubrander. "Stabilized approximations of strongly continuous semigroups." Journal of Mathematical Analysis and Applications 342, no. 1 (June 2008): 181–91. http://dx.doi.org/10.1016/j.jmaa.2007.11.035.

Full text
APA, Harvard, Vancouver, ISO, and other styles
23

Abbar, Arafat. "$$\Gamma $$-Supercyclicity for Strongly Continuous Semigroups." Complex Analysis and Operator Theory 13, no. 8 (July 3, 2019): 3923–42. http://dx.doi.org/10.1007/s11785-019-00941-y.

Full text
APA, Harvard, Vancouver, ISO, and other styles
24

Boua, Hamid. "Spectral Theory For Strongly Continuous Cosine." Concrete Operators 8, no. 1 (January 1, 2021): 40–47. http://dx.doi.org/10.1515/conop-2020-0110.

Full text
Abstract:
Abstract Let (C(t)) t∈ℝ be a strongly continuous cosine family and A be its infinitesimal generator. In this work, we prove that, if C(t) – cosh λt is semi-Fredholm (resp. semi-Browder, Drazin inversible, left essentially Drazin and right essentially Drazin invertible) operator and λt ∉ iπℤ, then A – λ 2 is also. We show by counterexample that the converse is false in general.
APA, Harvard, Vancouver, ISO, and other styles
25

Sklyar, G. M., and P. Polak. "Notes on the Asymptotic Properties of Some Class of Unbounded Strongly Continuous Semigroups." Zurnal matematiceskoj fiziki, analiza, geometrii 15, no. 3 (June 25, 2019): 412–24. http://dx.doi.org/10.15407/mag15.03.412.

Full text
APA, Harvard, Vancouver, ISO, and other styles
26

Kraaij, Richard. "Strongly continuous and locally equi-continuous semigroups on locally convex spaces." Semigroup Forum 92, no. 1 (February 7, 2015): 158–85. http://dx.doi.org/10.1007/s00233-015-9689-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
27

Wang Wang, Shen. "Strongly continuous integrated C-cosine operator functions." Studia Mathematica 126, no. 3 (1997): 273–89. http://dx.doi.org/10.4064/sm-126-3-273-289.

Full text
APA, Harvard, Vancouver, ISO, and other styles
28

Poongothai, A., and R. Parimelazhagan. "Strongly b*-continuous Functions in Topological Spaces." International Journal of Computer Applications 58, no. 14 (November 15, 2012): 8–11. http://dx.doi.org/10.5120/9348-3672.

Full text
APA, Harvard, Vancouver, ISO, and other styles
29

Ahmadi Kakavandi, Bijan. "Strongly continuous semigroups on locally finite graphs." Quaestiones Mathematicae 42, no. 10 (September 25, 2018): 1301–11. http://dx.doi.org/10.2989/16073606.2018.1515122.

Full text
APA, Harvard, Vancouver, ISO, and other styles
30

Malek, Alaeddin, and Ghasem Abbasi. "Heat treatment modelling using strongly continuous semigroups." Computers in Biology and Medicine 62 (July 2015): 65–75. http://dx.doi.org/10.1016/j.compbiomed.2015.03.030.

Full text
APA, Harvard, Vancouver, ISO, and other styles
31

Frerick, Leonhard, Enrique Jordá, Thomas Kalmes, and Jochen Wengenroth. "Strongly continuous semigroups on some Fréchet spaces." Journal of Mathematical Analysis and Applications 412, no. 1 (April 2014): 121–24. http://dx.doi.org/10.1016/j.jmaa.2013.10.053.

Full text
APA, Harvard, Vancouver, ISO, and other styles
32

Vîţă, Luminiţa Simona. "Extending strongly continuous functions between apartness spaces." Archive for Mathematical Logic 45, no. 3 (July 6, 2005): 351–56. http://dx.doi.org/10.1007/s00153-005-0299-6.

Full text
APA, Harvard, Vancouver, ISO, and other styles
33

Ng, Abraham C. S. "Direct integrals of strongly continuous operator semigroups." Journal of Mathematical Analysis and Applications 489, no. 2 (September 2020): 124176. http://dx.doi.org/10.1016/j.jmaa.2020.124176.

Full text
APA, Harvard, Vancouver, ISO, and other styles
34

Tzannes, V. "A Moore Strongly Rigid Space." Canadian Mathematical Bulletin 34, no. 4 (December 1, 1991): 547–52. http://dx.doi.org/10.4153/cmb-1991-086-0.

Full text
Abstract:
AbstractIt is proved that for every Hausdorff space ℝ and for every Hausdorff (regular or Moore) space X, there exists a Hausdorff (regular or Moore, respectively) space S containing X as a closed subspace and having the following properties: la)Every continuous map of S into ℝ is constant.b)For every point x of S and every open neighbourhood U of x there exists an open neighbourhood V of x, V ⊆ U such that every continuous map of V into ℝ is constant.2)Every continuous map f of S into S (f ≠ identity on S) is constant. In addition it is proved that the Fomin extension of the Moore space S has these properties.
APA, Harvard, Vancouver, ISO, and other styles
35

EL Mourchid, Samir. "On a hypercylicity criterion for strongly continuous semigroups." Discrete & Continuous Dynamical Systems - A 13, no. 2 (2005): 271–75. http://dx.doi.org/10.3934/dcds.2005.13.271.

Full text
APA, Harvard, Vancouver, ISO, and other styles
36

Albanese, Angela, Xavier Barrachina, Elisabetta M. Mangino, and Alfredo Peris. "Distributional chaos for strongly continuous semigroups of operators." Communications on Pure and Applied Analysis 12, no. 5 (January 2013): 2069–82. http://dx.doi.org/10.3934/cpaa.2013.12.2069.

Full text
APA, Harvard, Vancouver, ISO, and other styles
37

Łazarz, Marcin, and Krzysztof Siemieńczuk. "Modularity for upper continuous and strongly atomic lattices." Algebra universalis 76, no. 4 (October 14, 2016): 493–95. http://dx.doi.org/10.1007/s00012-016-0412-1.

Full text
APA, Harvard, Vancouver, ISO, and other styles
38

Nowik, Andrzej, and Tomasz Weiss. "Strongly meager sets and their uniformly continuous images." Proceedings of the American Mathematical Society 129, no. 1 (July 27, 2000): 265–70. http://dx.doi.org/10.1090/s0002-9939-00-05499-x.

Full text
APA, Harvard, Vancouver, ISO, and other styles
39

Achour, D., E. Dahia, P. Rueda, and E. A. Sánchez Pérez. "Factorization of strongly (p,σ)-continuous multilinear operators." Linear and Multilinear Algebra 62, no. 12 (October 16, 2013): 1649–70. http://dx.doi.org/10.1080/03081087.2013.839677.

Full text
APA, Harvard, Vancouver, ISO, and other styles
40

Nagel, Rainer, and Jan Poland. "The Critical Spectrum of a Strongly Continuous Semigroup." Advances in Mathematics 152, no. 1 (June 2000): 120–33. http://dx.doi.org/10.1006/aima.1998.1893.

Full text
APA, Harvard, Vancouver, ISO, and other styles
41

Lizama, Carlos. "A Representation Formula for Strongly Continuous Resolvent Families." Journal of Integral Equations and Applications 9, no. 4 (December 1997): 321–27. http://dx.doi.org/10.1216/jiea/1181076027.

Full text
APA, Harvard, Vancouver, ISO, and other styles
42

Olena Karlova. "On Baire Classification of Strongly Separately Continuous Functions." Real Analysis Exchange 40, no. 2 (2015): 371. http://dx.doi.org/10.14321/realanalexch.40.2.0371.

Full text
APA, Harvard, Vancouver, ISO, and other styles
43

Bárcenas, Diómedes, and Luis Gerardo Mármol. "On the Adjoint of a Strongly Continuous Semigroup." Abstract and Applied Analysis 2008 (2008): 1–11. http://dx.doi.org/10.1155/2008/651294.

Full text
Abstract:
Using some techniques from vector integration, we prove the weak measurability of the adjoint of strongly continuous semigroups which factor through Banach spaces without isomorphic copy ofl1; we also prove the strong continuity away from zero of the adjoint if the semigroup factors through Grothendieck spaces. These results are used, in particular, to characterize the space of strong continuity of{T**(t)}t≥0, which, in addition, is also characterized for abstractL- andM-spaces. As a corollary, it is proven that abstractL-spaces with no copy ofl1are finite-dimensional.
APA, Harvard, Vancouver, ISO, and other styles
44

Dehay, D., and R. Moché. "Strongly harmonizable approximations of bounded continuous random fields." Stochastic Processes and their Applications 23, no. 2 (December 1986): 327–31. http://dx.doi.org/10.1016/0304-4149(86)90046-3.

Full text
APA, Harvard, Vancouver, ISO, and other styles
45

Batty, Charles J. K., and Vũ Quôc Phóng. "Stability of strongly continuous representations of abelian semigroups." Mathematische Zeitschrift 209, no. 1 (January 1992): 75–88. http://dx.doi.org/10.1007/bf02570822.

Full text
APA, Harvard, Vancouver, ISO, and other styles
46

Zheng, Quan. "Strongly continuous M, N-families of bounded operators." Integral Equations and Operator Theory 19, no. 1 (March 1994): 105–19. http://dx.doi.org/10.1007/bf01202292.

Full text
APA, Harvard, Vancouver, ISO, and other styles
47

Golińska, Anna, and Sven-Ake Wegner. "Non-power bounded generators of strongly continuous semigroups." Journal of Mathematical Analysis and Applications 436, no. 1 (April 2016): 429–38. http://dx.doi.org/10.1016/j.jmaa.2015.12.015.

Full text
APA, Harvard, Vancouver, ISO, and other styles
48

Karlova, Olena, and Tomáš Visnyai. "On strongly separately continuous functions on sequence spaces." Journal of Mathematical Analysis and Applications 439, no. 1 (July 2016): 296–306. http://dx.doi.org/10.1016/j.jmaa.2016.02.064.

Full text
APA, Harvard, Vancouver, ISO, and other styles
49

Łazarz, Marcin, and Krzysztof Siemieńczuk. "Distributivity for Upper Continuous and Strongly Atomic Lattices." Studia Logica 105, no. 3 (December 31, 2016): 471–78. http://dx.doi.org/10.1007/s11225-016-9697-5.

Full text
APA, Harvard, Vancouver, ISO, and other styles
50

Xu, Luoshan, and Xuxin Mao. "Strongly continuous posets and the local Scott topology." Journal of Mathematical Analysis and Applications 345, no. 2 (September 2008): 816–24. http://dx.doi.org/10.1016/j.jmaa.2008.04.067.

Full text
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography