Academic literature on the topic 'Structural Ductility Testing'

Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles

Select a source type:

Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structural Ductility Testing.'

Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.

You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.

Journal articles on the topic "Structural Ductility Testing"

1

Park, R. "Evaluation of ductility of structures and structural assemblages from laboratory testing." Bulletin of the New Zealand Society for Earthquake Engineering 22, no. 3 (September 30, 1989): 155–66. http://dx.doi.org/10.5459/bnzsee.22.3.155-166.

Full text
Abstract:
Definitions for the required and available ductility used in seismic design are discussed. Methods for estimating the yield deformation and the maximum available deformation are described and suggestions are made for appropriate definitions. Examples are given of different imposed histories of inelastic displacement which have been used in the experimental testing of structures and structural assemblages in which cycles of quasi-static loading are applied. A quasi-static procedure for establishing the available ductility factor of a subassemblage by laboratory testing is recommended.
APA, Harvard, Vancouver, ISO, and other styles
2

Zhou, Yingwu, Li Zhuang, Zhiheng Hu, Biao Hu, Xiaoxu Huang, and Zhongfeng Zhu. "Perforated steel for realizing extraordinary ductility under compression: Testing and finite element modeling." REVIEWS ON ADVANCED MATERIALS SCIENCE 61, no. 1 (January 1, 2022): 195–207. http://dx.doi.org/10.1515/rams-2022-0021.

Full text
Abstract:
Abstract One key obstacle restricting the application of fiber-reinforced polymer (FRP) bars from being used as reinforcement in structural concrete is the significantly reduced ductility because FRP under tension is linear elastic up to brittle rupture at small strain. Recently, a new structural concept, compression yielding (CY), has been proposed as a way to overcome the insufficient ductility of concrete structures reinforced with FRP bars or other non-ductile materials. In the CY structural system, the compression-zone of normal concrete is replaced by a ductile material within the plastic hinge. This enables the flexural deformation to be achieved by the compressive deformation of CY material rather than a tensile deformation of longitudinal reinforcing bars. To this end, an ideal CY material requires strength to be maintained during the extraordinarily large deformation process. This study tries to identify methods for developing this kind of CY material by designing and optimizing perforations inside a mild steel block. The effects of key parameters, including ratio, diameter, and arrangement of perforations on the stiffness, strength, and ductility of CY materials were experimentally investigated. In addition, a finite element (FE) model was developed to predict the behavior of the proposed CY material.
APA, Harvard, Vancouver, ISO, and other styles
3

Park, R. "A static force-based procedure for the seismic assessment of existing reinforced concrete moment resisting frames." Bulletin of the New Zealand Society for Earthquake Engineering 30, no. 3 (September 30, 1997): 213–26. http://dx.doi.org/10.5459/bnzsee.30.3.213-226.

Full text
Abstract:
A force-based seismic assessment procedure for existing reinforced concrete moment resisting frames is discussed. The assessment procedure is based on determining the probable strength and ductility of the critical mechanism of post-elastic deformation of the frame. Account is taken of the likely seismic behaviour of reinforced concrete beams, columns and beam-column joints with substandard reinforcement details typical of structures designed before the 1970s, as determined by the results of experimental testing and analytical studies. The assessment aims at determining the available lateral load strength and structural (displacement) ductility factor of the frames so that the designer can determine the likely seismic performance of the structure by referring to acceleration response spectra for design earthquake forces for various levels of structural ductility factor.
APA, Harvard, Vancouver, ISO, and other styles
4

Hou, Hetao, Weiqi Fu, Canxing Qiu, Jirun Cheng, Zhe Qu, Wencan Zhu, and Tianxiang Ma. "Effect of axial compression ratio on concrete-filled steel tube composite shear wall." Advances in Structural Engineering 22, no. 3 (August 28, 2018): 656–69. http://dx.doi.org/10.1177/1369433218796407.

Full text
Abstract:
This study proposes a new type of shear wall, namely, the concrete-filled steel tube composite shear wall, for high performance seismic force resisting structures. In order to study the seismic behavior of concrete-filled steel tube composite shear wall, cyclic loading tests were conducted on three full-scale specimens. One conventional reinforced concrete shear wall was included in the testing program for comparison purpose. Regarding the seismic performance of the shear walls, the failure mode, deformation capacity, bearing capacity, ductility, hysteretic characteristics, and energy dissipation are key parameters in the analysis procedure. The testing results indicated that the bearing capacity, the ductility, and the energy dissipation of the concrete-filled steel tube composite shear walls are greater than that of conventional reinforced concrete shear walls. In addition, the influence of axial compression ratio on the seismic behavior of concrete-filled steel tube composite shear wall is also investigated. It was found that higher axial compression ratio leads to an increase in the bearing capacity of concrete-filled steel tube composite shear walls while a reduction in the ductility capacity.
APA, Harvard, Vancouver, ISO, and other styles
5

Lee, Hee Keun, Jin Yong Kim, and In Hwan Hwang. "Analysis of Weld Defects in Offshore Structural H Beams." Materials Science Forum 580-582 (June 2008): 37–40. http://dx.doi.org/10.4028/www.scientific.net/msf.580-582.37.

Full text
Abstract:
H beam welds along rolling and transverse direction were investigated with nondestructive testing, mechanical testing and microstructural analysis. Crack and fracture occurred, during guided bend testing, in the specimens welded along rolling direction between flanges of the H beams with higher S content although no defect was detected prior to the bend test. The fracture seemed to be lamellar tearing because of step-like fracture propagation and terrace and wall fracture appearance of the ruptured bend test specimen. On top of this, lamellar tear was already created in the base metal area near the HAZ before the bend test in microstructural analysis on the welds. It seems that lamellar tearing occurred in the specimens welded along rolling direction between flanges of the H beams with higher S content as cracks were formed and propagated into a ferrite phase region in α-γ band structure in combination with low ductility in transverse direction due to MnS inclusions elongated along rolling direction.
APA, Harvard, Vancouver, ISO, and other styles
6

Bradley, Cameron R., Larry A. Fahnestock, Eric M. Hines, and Joshua G. Sizemore. "Full-Scale Cyclic Testing of Low-Ductility Concentrically Braced Frames." Journal of Structural Engineering 143, no. 6 (June 2017): 04017029. http://dx.doi.org/10.1061/(asce)st.1943-541x.0001760.

Full text
APA, Harvard, Vancouver, ISO, and other styles
7

Hajj, Ramez, Rachel Hure, and Amit Bhasin. "Evaluation of Stiffness, Strength, and Ductility of Asphalt Binders at an Intermediate Temperature." Transportation Research Record: Journal of the Transportation Research Board 2632, no. 1 (January 2017): 44–51. http://dx.doi.org/10.3141/2632-05.

Full text
Abstract:
The search for a test and parameter that can effectively describe the fatigue cracking resistance of an asphalt binder has led to many approaches. Of these, researchers have used stiffness, strength, and ductility-based criteria to screen binders on the basis of inherent resistance to cracking. In this study, poker chip testing on thin films of asphalt binder was used at intermediate temperatures to obtain both stress and ductility-based properties of eight binders. In addition, a dynamic shear rheometer frequency sweep at an intermediate temperature was conducted to obtain stiffnesses of the binders and a surrogate parameter for ductility. The results showed no relationship between strength and stiffness. In most cases, binders that were rated to have high ductility on the basis of the dynamic shear rheometer parameter also had high toughness on the basis of the poker chip test. However, some binders clearly departed from this trend, with at least one binder exhibiting both ideally desired high stiffness and toughness. Examination of failure surfaces from the poker chip test provided additional information about the mechanisms that drove failure.
APA, Harvard, Vancouver, ISO, and other styles
8

Fukumoto, Y., T. Takaku, T. Aoki, and K. A. S. Susantha. "Innovative Use of Profiled Steel Plates for Seismic Structural Performance." Advances in Structural Engineering 8, no. 3 (July 2005): 247–57. http://dx.doi.org/10.1260/1369433054349051.

Full text
Abstract:
This paper presents the innovative use of hot-rolled thickness-tapered mill products, longitudinally profiled (LP) plates, for the seismic performance of bridge bents of single and portal framed piers. The study involves the inelastic cyclic testing and numerical analysis of tested beam-columns and portal frames in order to evaluate the effects of tapering ratios of LP plates, penetration of yielding, and number of locally buckled panels on their structural ductility. A structural design method is proposed for the portal frames having LP panels under cyclic loadings.
APA, Harvard, Vancouver, ISO, and other styles
9

Radnic, Jure, Radoslav Markic, Alen Harapin, Domagoj Matesan, and Goran Baloevic. "Stirrup effects on compressive strength and ductility of confined concrete columns." World Journal of Engineering 10, no. 6 (December 1, 2013): 497–506. http://dx.doi.org/10.1260/1708-5284.10.6.497.

Full text
Abstract:
The results of experimental testing of stirrup effects on compressive strength and ductility of axially loaded confined reinforced concrete columns of rectangular cross-section are presented. Effects of different concrete strengths, different stirrup bar diameters and different stirrup spacing on column's bearing capacity and ductility have been researched.
APA, Harvard, Vancouver, ISO, and other styles
10

Bu, Yonghong, Qi Yang, Yihong Wang, and Dongfang Zhang. "Cyclic Testing of Bolt-Weld Joints Reinforced by Sleeves Connecting Circular CFST Columns to Steel Beams." Advances in Civil Engineering 2020 (January 28, 2020): 1–12. http://dx.doi.org/10.1155/2020/9674128.

Full text
Abstract:
This study examined the design of joints reinforced by sleeves for connecting circular concrete-filled steel tube columns to steel beams. Six half-scale specimens, including four bolt-weld joints reinforced by sleeves and two bolt and stiffened end-plate joints, were designed and tested under cyclic loading to evaluate the seismic behavior of these joints. The joint construction and beam-column stiffness ratio were taken as the main parameters in the tests. The seismic behaviors, including the failure modes, hysteretic curves, ductility, strength and stiffness degradation, and energy dissipation, were investigated. The experimental results showed that no obvious bolt loosening, fracture, or widespread weld cracking appeared in the joints reinforced by sleeves. Furthermore, the joint strength and stiffness were markedly increased by the sleeves in the joint core area. Overall, most specimens exhibited full hysteresis loops and excellent ductilities, the equivalent viscous damping coefficients were 0.263∼0.532, and the ductility coefficients were 1.77∼3.42. The interstory drift ratios satisfied the requirements specified by technical regulations. The connections of these types exhibit favorable energy dissipations and can be effectively utilized for building construction in earthquake-prone areas. This research should contribute to the future engineering applications of concrete-filled steel tube to composite structure.
APA, Harvard, Vancouver, ISO, and other styles
More sources

Dissertations / Theses on the topic "Structural Ductility Testing"

1

Lokuge, W. P. (Weena Priyanganie) 1967. "Stress-strain behaviour of confined high strength concrete under monotonically increasing and cyclic loadings." Monash University, Dept. of Civil Engineering, 2003. http://arrow.monash.edu.au/hdl/1959.1/9425.

Full text
APA, Harvard, Vancouver, ISO, and other styles
2

Nassiri, Esmail. "Modelling nonlinear behaviour of two-dimensional steel structures subjected to cyclic loading." Thesis, Queensland University of Technology, 1998.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Books on the topic "Structural Ductility Testing"

1

CSNI Workshop on Ductile Fracture Test Methods (2nd 1985 Paris, France). Proceedings of the Second CSNI Workshop on Ductile Fracture Test Methods: Held at Paris, France, April 17-19, 1985. [Washington, D.C.]: The Commission, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
2

CSNI Workshop on Ductile Fracture Test Methods (2nd 1985 Paris, France). Proceedings of the Second CSNI Workshop on Ductile Fracture Test Methods: Held at Paris, France, April 17-19, 1985. [Washington, D.C.]: The Commission, 1988.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
3

Dhakal, Rajesh P. Curvature ductility of reinforced concrete plastic hinges: Assessment of curvature limits for different forms of plastic hinges in reinforced concrete structures. Saarbrücken: VDM, Verlag Dr. Müller, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles
4

Dhakal, Rajesh P. Curvature ductility of reinforced concrete plastic hinges: Assessment of curvature limits for different forms of plastic hinges in reinforced concrete structures. Saarbrücken: VDM, Verlag Dr. Müller, 2008.

Find full text
APA, Harvard, Vancouver, ISO, and other styles

Book chapters on the topic "Structural Ductility Testing"

1

Zatar, Wael, and Hai Nguyen. "Towards Innovative and Sustainable Construction of Architectural Structures by Employing Self-Consolidating Concrete Reinforced with Polypropylene Fibers." In Architectural Design – Progress Towards Sustainable Construction [Working Title]. IntechOpen, 2020. http://dx.doi.org/10.5772/intechopen.95091.

Full text
Abstract:
Self-consolidating concrete (SCC) has been successfully employed to reduce construction time and enhance the quality, performance, and esthetic appearance of concrete structures. This research aimed at developing environmentally friendly fiber-reinforced concrete (FRC) consisting of SCC and recycled polypropylene (PP) fibers for sustainable construction of city buildings and transportation infrastructure. The addition of the PP fibers to SCC helps reducing shrinkage cracks and providing enhanced mechanical properties, durability, and ductility of the concrete materials. Several mix designs of self-consolidating fiber-reinforced concrete (SCFRC) were experimentally examined. Material and esthetic properties of the SCFRC mixtures that include micro silica, fly ash, and PP fibers were evaluated. Trial-and-adjustment method was employed to obtain practically optimum SCFRC mixtures, mixtures that are affordable and easy to make possessing enhanced compressive strength and esthetic properties. Slump flow and air content testing methods were used to determine the fresh properties of the SCFRC mixtures, and the esthetic properties of the mixtures were also evaluated. The hardened properties of the SCFRC mixtures were examined using three- and seven-day compression tests. The amount of fine/coarse aggregate, water, and other admixtures were varied while the Portland cement content in all mixtures was maintained unchanged. The maximum three-day compressive strength was 43.17 MPa and the largest slump flow was 736.6 mm. Test results showed enhanced material properties such as slump flow, air content and compressive strength values of the SCFRC mixtures and their excellent esthetic appearance. The favorable seven-day compressive strength of the SCFRC mixture, with 4.8 percent air content and 660.4 mm slump flow, is 39.26 MPa. The mixtures’ in this study are proven to be advantageous for potential SCFRC applications in architectural structures including building façades and esthetically-pleasing bridges.
APA, Harvard, Vancouver, ISO, and other styles

Conference papers on the topic "Structural Ductility Testing"

1

Warren, Maria, Marc Sanborn, and Lauren K. Stewart. "Characterization of A325 Structural Bolts Subjected to Impulsive Loads." In ASME 2021 International Mechanical Engineering Congress and Exposition. American Society of Mechanical Engineers, 2021. http://dx.doi.org/10.1115/imece2021-71763.

Full text
Abstract:
Abstract Structural connections must maintain strength and ductility during and after impulsive loading to prevent widespread failure of a structure. However, a decrease in ductility in response to impulsive loads has been observed both experimentally and in situ. Further, experimental data on the residual capacity of steel structures is limited, especially the residual capacity of impulsively-damaged steel connections. To ensure the safe design of structures, it is necessary to characterize the dynamic and residual capacity of steel connections. To address the lack of data in this realm, an experimental method has been developed to determine the dynamic and residual behavior of A325 high-strength structural steel bolts in single-shear. A high-speed hydraulic actuator is employed for structure-scale experimentation, with impact energies varied from 760 J – 1370 J. Then, surviving bolts are quasi-statically loaded to failure to evaluate their residual capacity properties. Results demonstrate that, below a critical impact energy, A325 steel structural bolts have residual strength commensurate to undamaged bolts, but lessened residual ductility and energy absorption capacity. These data suggest that metrics other than residual strength should be explicitly included in residual capacity analyses. Further, above a critical impact energy, dynamic bolt fracture with a significant loss of ductility has been observed. A loss of deformation capacity at high impact energies (and thus, capacity to absorb energy through plasticity) may increase the susceptibility of a structure to progressive collapse. Therefore, these results prompted further investigation into the dynamic behavior of A325 bolts. Specifically, the sensitivity of material behavior to strain rate is studied using a Split-Hopkinson Pressure Bar (SHPB) testing apparatus. These results, in tandem with the single-shear bolt impulsive test data, are used to evaluate the role of strain hardening in the loss of ductility observed in A325 bolts at high impact energies.
APA, Harvard, Vancouver, ISO, and other styles
2

Mashal, Mustafa, Karma Gurung, and Mahesh Acharya. "Full-scale experimental testing of Structural Concrete Insulated Panels (SCIPs)." In IABSE Congress, Christchurch 2021: Resilient technologies for sustainable infrastructure. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2021. http://dx.doi.org/10.2749/christchurch.2021.0833.

Full text
Abstract:
<p>Structural Concrete Insulated Panels (SCIPs) are relatively new addition to construction industry. SCIPs have previously been used in construction of residential, commercial, and military structures. Despite applications overseas and a few in the United States, SCIPs have still remained a relatively unknown construction methodology among structural engineers in the United States and other countries. SCIPs offer advantages such as fast construction, lightweight, thermal insulation, sound insulation, cost-efficiency, and good seismic and wind performance. These advantages make SCIPs a competitive construction methodology compared to traditional wood and masonry construction. In this study, the SCIP construction is introduced, followed by experimental results from full-scale testing of 14 SCIPs slab and wall panels under gravity and lateral loads. 11 full-scale slabs, ranging from 3-5.5 m (10-18 ft.) span, are tested under four-point bending tests in accordance with ASTM standards. The strength, ductility, and failure pattern of the panels are discussed. In addition, the adequacy of splicing details for SCIP slab panels are investigated experimentally using three 5.5 m (18 ft.) slab panels. Three full-scale cantilever wall panels are tested under quasi-static cyclic loading in accordance with ACI seismic testing load protocols. The wall-to-footing connection is a socket connection. This is a novel type of connection for precast wall connection in seismic regions. Experimental results and observations from testing of slab and wall panels showed good strength, ductility, and performance of the specimens.</p>
APA, Harvard, Vancouver, ISO, and other styles
3

Zhang, Fei, and Jianxun Ma. "Experimental Study on Hybrid Masonry Structure with RC Frame under Lateral Reversed Cyclic Loading." In IABSE Conference, Kuala Lumpur 2018: Engineering the Developing World. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2018. http://dx.doi.org/10.2749/kualalumpur.2018.0142.

Full text
Abstract:
<p>As a new type of structural system, hybrid masonry (HM) structure with reinforced concrete (RC) frame is constructed of reinforced block masonry wall and reinforced concrete frame. This structural system combines the advantages of reinforced concrete frame structure and reinforced concrete block masonry structure, also overcomes some limitations of them. In order to study the seismic performance of the structural system, the lateral reversed cyclic loading experiment on the HM structure with RC frame was conducted. In the experiment, two specimens that were constructed with different connecting type were designed and tested, in one of them the masonry blocks was separated from the RC frame and only connected with steel keys at the top part of the specimen, while in the other there was no spacing between the RC frame and the masonry blocks. According to the data of the experiment, the paper analyzed the failure process and patterns, hysteretic characteristic, skeleton curve, stiffness degradation and displacement ductility of the structural system, and compared the results of the two specimens. The experimental study indicated that the HM structure with RC frame showed extraordinary good seismic performance during testing, and this form of construction had fairly good displacement ductility and energy dissipation, which would provide a basis for further theoretical analysis and design method.</p>
APA, Harvard, Vancouver, ISO, and other styles
4

Thapa, Aashish, Mustafa Mashal, and Mahesh Acharya. "Large-Scale Flexural Testing of Concrete Beams Reinforced with Conventional Steel and Titanium Alloy Bars." In IABSE Symposium, Prague 2022: Challenges for Existing and Oncoming Structures. Zurich, Switzerland: International Association for Bridge and Structural Engineering (IABSE), 2022. http://dx.doi.org/10.2749/prague.2022.0272.

Full text
Abstract:
<p>The research focuses on the use of Titanium Alloy Bars (TiABs) in concrete cap beams. TiABs offer good ductility, high strength, lightweight, superior corrosion resistance, lower overstrength, and better fatigue performance. TiABs have recently been used in several existing bridges in Oregon and Texas in the United States to increase shear and flexural capacities of concrete beams. While TiABs have been implemented in retrofitting of existing bridges in the United States, their application in new structures have not been tested and compared against conventional steel rebars. Idaho State University (ISU) has been investigating application of TiABs in new concrete structures through large-scale testing. Past research at ISU has shown that the use of titanium alloy (Ti-6Al-4V) in new bridges can reduce rebar congestion and residual drift after an earthquake by 50% while providing adequate ductility and strength compared to cast-in-place construction. The research in this paper proposes concept for an innovative cap beam reinforced with longitudinal TiABs. The cap beam integrates both structural performance and durability. Flexural and shear design procedures for the cap beam in accordance with the AASHTO LRFD Design are discussed. To investigate structural performance, a large-scale cap beam reinforced with longitudinal grade 5 titanium alloy (Ti-6Al-4V) is tested under three-point bending test protocol. The results are compared against a benchmark cast-in-place beam with normal rebars under the same testing arrangement and loading protocol.</p>
APA, Harvard, Vancouver, ISO, and other styles
5

Auerkari, Pertti, Stefan Holmstro¨m, Juhani Rantala, and Jorma Salonen. "Creep Damage, Ductility and Expected Life for Materials With Defects." In ASME 2008 Pressure Vessels and Piping Conference. ASMEDC, 2008. http://dx.doi.org/10.1115/pvp2008-61428.

Full text
Abstract:
Defects can pre-exist and grow by creep in structures subjected to loading at high temperatures. As structural integrity is not necessarily conveniently predicted and managed by applying design and life assessment techniques intended for nominally defect-free material, it is important that methods are available for quantified and safe assessment of defects. In addition to the assessment methods, also materials behaviour will affect the likely outcome. In particular, ductility of the materials is important, and unfortunately ductility tends to decrease when shifting from short-term testing to long term creep conditions. In this paper, two examples are shown of materials with such ductility effects when combined with defects. The first example involves 316H stainless steel subjected to creep loading with an extensive crack-like defect, resulting in a transformation from microscopically ductile to brittle intergranular cracking within a relatively modest time span. The second example will demonstrate a corresponding shift in OFP copper that shows a radical ductility and life reduction in creep when including so small weld defects that they would be undetectable in conventional NDT.
APA, Harvard, Vancouver, ISO, and other styles
6

Roy, Ajit K., Lalit Savalia, Narendra Kothapalli, and Raghunandan Karamcheti. "Mechanical Properties and Cracking Behavior of High-Temperature Heat-Exchanger Materials." In ASME 2005 Pressure Vessels and Piping Conference. ASMEDC, 2005. http://dx.doi.org/10.1115/pvp2005-71781.

Full text
Abstract:
The structural materials selected for high-temperature heat-exchanger applications are expected to withstand very severe operating conditions including elevated temperatures and aggressive chemical species during hydrogen generation using nuclear power. Three different cycles namely sulfur-iodine, calcium-bromine and high temperature electrolysis have been identified for hydrogen generation. Three different structural materials namely Alloy C-22, Alloy C-276 and Waspaloy have been tested to evaluate their high-temperature tensile properties and stress corrosion cracking (SCC) resistance in an acidic solution. The data indicate that all three alloys are capable of maintaining appreciably high tensile strength upto a temperature of 600°C. The results of SCC testing indicate that all three materials are highly resistant to cracking in an acidic solution retaining much of their ductility and time to failure in the tested environment. Fractographic evaluation by scanning electron microscopy revealed dimple microstructure indicating significant ductility in all three alloys.
APA, Harvard, Vancouver, ISO, and other styles
7

Petley, Vijay, Shweta Verma, K. M. Ashique, D. M. Purushothama, and R. Rajendran. "Weld Ductility Evaluation of Aeroengine Materials by Performing Bend Tests." In ASME 2013 Gas Turbine India Conference. American Society of Mechanical Engineers, 2013. http://dx.doi.org/10.1115/gtindia2013-3640.

Full text
Abstract:
Welding is an integral part of the fabrication process for realization of the components and sub-components for any structural system. The weld process and the evaluation of the weld zone properties become more significant for the critical application like structural components of an aero engine. Standard tensile testing of the welded specimens provides the ductility for the composite joint i.e. the parent, heat affected zone and the weld zone. Standard bend tests (Three point bend) are specified as the qualitative tests for evaluating the ductility of the welded joints. For these bend tests, the ductility of the parent specimens are utilized for calculating the bend test parameters and the bend angles are specified after performing the tests on the parent specimens. But during the bend tests on the TIG welded specimens of specific materials and the thickness combinations like Ti-64 with thickness of 1.2 and 4.0 mm, it was observed that the specimens used to get fractured during bend tests before the specified bend angle is achieved. Though this suggests that the ductility of the welded joint is lesser than that of the parent specimens, it is not quantified with the premature failure of the test specimen. In the present study, bend tests on these material samples are performed on TIG welded specimens. Load and the displacement were monitored during the bend tests and maximum plunger depth and bend angle was recorded. A term called virtual plunger diameter is introduced in this work. Based on this plunger depth, span length, virtual plunger diameter is estimated at the onset of the fracture. From this plunger diameter the ductility of the weld joint is recalculated and is found to be lesser than the ductility of the welded joint as observed during the tensile test. The proposed bend test result analysis technique provides the quantitative results i.e. weld ductility from the bend test data.
APA, Harvard, Vancouver, ISO, and other styles
8

Verdy, C., C. Coddet, J. B. Martin, J. C. Garcia, and F. Pellerin. "Impact Toughness of Thick Multilayer Thermal Spray Deposits." In ITSC 1998, edited by Christian Coddet. ASM International, 1998. http://dx.doi.org/10.31399/asm.cp.itsc1998p1239.

Full text
Abstract:
Abstract The aim of this study was to investigate potential weight savings using multi-layer blade containment systems for turboengines. The association of an external ductile layer with an internal hard layer could provide a good ductility of the armor with the capability to withstand the perforation of high kinetic projectiles. Comparisons between several thick deposits obtained by the vacuum plasma spray process were performed using a Charpy impact testing machine. Mechanical and structural characterisations of these two-layer structures were performed and compared to the behavior monolithic ones. Heat treatment effects were also considered.
APA, Harvard, Vancouver, ISO, and other styles
9

Palkovic, Steven, Parth Patel, Soheil Safari, and Simon C. Bellemare. "Nondestructive Evaluation of Metal Strength, Toughness, and Ductility Through Frictional Sliding." In ASME 2019 Pressure Vessels & Piping Conference. American Society of Mechanical Engineers, 2019. http://dx.doi.org/10.1115/pvp2019-93770.

Full text
Abstract:
Abstract Traditional assessment of mechanical properties requires the removal of a standardized specimen for destructive laboratory testing. A nondestructive in-situ method is a cost-effective and efficient solution for applications where sample cutouts are not feasible. This work describes developments in contact mechanics that use frictional sliding to evaluate the material strength and toughness of steel pressure vessels and pipelines. Hardness, Strength, and Ductility (HSD) testing is a portable implementation of frictional sliding that provides a tensile stress-strain curve for assessment of the yield, ultimate tensile strength (UTS), and strain hardening exponent for power-law hardening metals. HSD testing incorporates four styluses of different geometry that generate grooves on the surface of a material as they travel. The measured geometry of these grooves along with the normal reaction forces on the stylus are correlated to representative tensile stress-strain values through finite element analysis (FEA) simulations. These principles have been extended to account for nonlinear strength behavior through the thickness of seam-welded steel pipes by using a combination of the HSD surface measurement, microstructure grain size, and chemistry. Frictional sliding tests are also used to assess material variation across a welded seam to identify different welding processes and the effectiveness of post-weld-heat-treatments (PWHT). A second implementation of frictional sliding is Nondestructive Toughness Testing (NDTT), which provides an NDE solution for measuring fracture toughness by using a wedge-shaped stylus with an internal stretch passage to generate a Mode I tensile loading condition on the surface of a sample. The test produces a raised fractured surface whose height provides an indication of the materials ability to stretch near a propagating crack and is correlated to the crack-tip-opening-displacement (CTOD) measured from traditional laboratory toughness testing. Experiments on pipeline steel indicate that NDTT can provide an index of fracture toughness to benchmark materials tested under similar conditions. Implementation of these new instruments to gather data for integrity management programs, fitness for service assessments, and quality control of new manufacturing will help to reduce risk and uncertainty in structural applications.
APA, Harvard, Vancouver, ISO, and other styles
10

Vlcek, Johannes, Kedar Hardikar, and Daniel R. Juliano. "A Method for Mechanical Characterization of Cold Spray Sputter Targets in PV Manufacturing." In ITSC2015, edited by A. Agarwal, G. Bolelli, A. Concustell, Y. C. Lau, A. McDonald, F. L. Toma, E. Turunen, and C. A. Widener. ASM International, 2015. http://dx.doi.org/10.31399/asm.cp.itsc2015p0881.

Full text
Abstract:
Abstract In this work the Brazilian disc test technique is applied to mechanical characterization of cold-sprayed Cu-In-Ga deposits. The main advantage of the test is that the material can be tested in its end product form while naturally attending to the distribution of micro-structural phases and flaws by choosing an appropriate specimen size. The stress state of the test specimen can be obtained in analytical closed form and testing can be readily extended to obtain the stress-strain curve. While limited to low ductility materials the Brazilian disc test appears ideal for testing as-sprayed cold spray deposits due to their typically brittle nature.
APA, Harvard, Vancouver, ISO, and other styles

Reports on the topic "Structural Ductility Testing"

1

LOW-CYCLE FATIGUE PROPERTIES OF AUSTENITIC STAINLESS STEEL S30408 UNDER LARGE PLASTIC STRAIN AMPLITUDE. The Hong Kong Institute of Steel Construction, March 2022. http://dx.doi.org/10.18057/ijasc.2022.18.1.10.

Full text
Abstract:
The application of stainless steel materials in civil structures for seismic protection lies in its low-cycle fatigue characteristic. However, the data of existing research are mainly based on the low-cycle fatigue in small strain amplitudes. To this end, we perform low-cycle fatigue testing of Austenitic stainless steel S30408, which has low yield point and good elongation performance, under the cyclic load with a maximum strain amplitude reaching up to 5%, to fill the gap. The stress-strain response characteristics of the stainless steel material under the cyclic load are analyzed; then, the parameters of the strain-fatigue life relationship and the cyclic-plastic constitutive model used for FEA simulation are extracted. Results show that the stainless steel’s stress-strain curve is nonlinear without a yield plateau, thus presenting a high strength yield ratio and ductility. The hysteresis loops of the material are plump with a shuttle shape and are symmetric to the origin, indicating a fine energy dissipation capacity. The skeleton curve under cyclic loading with cyclic hardening can be significantly reflected by the Ramberg Osgood model, which is affected by the strain amplitude and loading history; it is also different from the monotonic tensile skeleton curve. The strain-fatigue life curve fitted by the Baqusin Manson Coffin model can predict the materials’ fatigue life under different strain amplitudes. The mixed hardening model, including isotropic and kinematic hardening, based on the Chaboche model, is able to simulate the cyclic stress-strain relationship. Further, its parameters can provide basic data information for the seismic design of civil structures when Austenitic stainless steel S30408 is used.
APA, Harvard, Vancouver, ISO, and other styles
We offer discounts on all premium plans for authors whose works are included in thematic literature selections. Contact us to get a unique promo code!

To the bibliography