Academic literature on the topic 'Structural Engineering and Mechanics'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structural Engineering and Mechanics.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Structural Engineering and Mechanics"
Elishakoff, Isaac. "Stochastic Structural Mechanics." Probabilistic Engineering Mechanics 4, no. 1 (March 1989): 56. http://dx.doi.org/10.1016/0266-8920(89)90009-x.
Full textMacdonald, John H. G. "Briefing: Current trends in engineering mechanics: structural dynamics." Proceedings of the Institution of Civil Engineers - Engineering and Computational Mechanics 165, no. 2 (June 2012): 81–82. http://dx.doi.org/10.1680/eacm.11.00019.
Full textAdeli, Hojjat, M. P. Kamat, Girish Kulkarni, and R. D. Vanluchene. "High‐Performance Computing in Structural Mechanics and Engineering." Journal of Aerospace Engineering 6, no. 3 (July 1993): 249–67. http://dx.doi.org/10.1061/(asce)0893-1321(1993)6:3(249).
Full textWalker, George. "Structural engineering and resilience." Australian Journal of Structural Engineering 17, no. 4 (December 2016): 213–14. http://dx.doi.org/10.1080/13287982.2017.1285497.
Full textKong, Hailing, Luzhen Wang, and Hualei Zhang. "Seepage Mechanics in Rock Engineering." Advances in Civil Engineering 2018 (October 29, 2018): 1–4. http://dx.doi.org/10.1155/2018/5076905.
Full textMang, H. A., Ch Hellmich, R. Lackner, and B. Pichler. "Computational structural mechanics." International Journal for Numerical Methods in Engineering 52, no. 56 (October 20, 2001): 569–87. http://dx.doi.org/10.1002/nme.298.
Full textSelvadurai, A. P. S. "Elasticity in engineering mechanics." Canadian Journal of Civil Engineering 16, no. 3 (June 1, 1989): 411–12. http://dx.doi.org/10.1139/l89-067.
Full textJeronimidis, G., and A. G. Atkins. "Mechanics of Biological Materials and Structures: Nature's Lessons for the Engineer." Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science 209, no. 4 (July 1995): 221–35. http://dx.doi.org/10.1243/pime_proc_1995_209_149_02.
Full textHarrison, J. P., and J. W. Cosgrove. "Integrating rock mechanics and structural geology in rock engineering." IOP Conference Series: Earth and Environmental Science 833, no. 1 (August 1, 2021): 012001. http://dx.doi.org/10.1088/1755-1315/833/1/012001.
Full textMackerle, Jaroslav. "Structural mechanics database." Computer-Aided Design 17, no. 7 (September 1985): 338. http://dx.doi.org/10.1016/0010-4485(85)90179-4.
Full textDissertations / Theses on the topic "Structural Engineering and Mechanics"
Lea, Patrick D. "Fluid Structure Interaction with Applications in Structural Failure." Thesis, Northwestern University, 2014. http://pqdtopen.proquest.com/#viewpdf?dispub=3605735.
Full textMethods for modeling structural failure with applications for fluid structure interaction (FSI) are developed in this work. Fracture as structural failure is modeled in this work by both the extended finite element method (XFEM) and element deletion. Both of these methods are used in simulations coupled with fluids modeled by computational fluid dynamics (CFD). The methods presented here allow the fluid to pass through the fractured areas of the structure without any prior knowledge of where fracture will occur. Fracture modeled by XFEM is compared to an experimental result as well as a test problem for two phase coupling. The element deletion results are compared with an XFEM test problem, showing the differences and similarities between the two methods.
A new method for modeling fracture is also proposed in this work. The new method combines XFEM and element deletion to provide a robust implementation of fracture modeling. This method integrates well into legacy codes that currently have element deletion functionality. The implementation allows for application by a wide variety of users that are familiar with element deletion in current analysis tools. The combined method can also be used in conjunction with the work done on fracture coupled with fluids, discussed in this work.
Structural failure via buckling is also examined in an FSI framework. A new algorithm is produced to allow for structural subcycling during the collapse of a pipe subjected to a hydrostatic load. The responses of both the structure and the fluid are compared to a non-subcycling case to determine the accuracy of the new algorithm.
Overall this work looks at multiple forms of structural failure induced by fluids modeled by CFD. The work extends what is currently possible in FSI simulations.
Bousfield, R. A. "Applications of differential geometry to structural mechanics." Thesis, University of Hertfordshire, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.372544.
Full textDrazin, Paul Luke. "Modeling and Analysis of Elements in Structural Mechanics." Thesis, University of California, Berkeley, 2017. http://pqdtopen.proquest.com/#viewpdf?dispub=10276506.
Full textThe focus of this work is to advance the theoretical and modeling techniques for the fields of hybrid simulation and multi-slider friction pendulum systems (MSFPs). Hybrid Simulation is a simulation technique involving the integration of a physical system and a computational system with the use of actuators and sensors. This method has a strong foundation in the experimental mechanics community where it has been used for many years. The hybrid simulation experiments are performed with the assumption of an accurate result as long as the main causes of error are reduced. However, the theoretical background on hybrid testing needs to be developed in order validate these findings using this technique. To achieve this objective, a model for hybrid simulation is developed and applied to three test cases: an Euler-Bernoulli beam, a nonlinear damped, driven pendulum, and a boom crane structure. Due to the complex dynamics that these three test cases exhibit, L2 norms, Lyapunov exponents, and Lyapunov dimensions, as well as correlation exponents were utilized to analyze the error in hybrid simulation tests. From these three test cases it was found that hybrid simulations are highly dependent on the natural frequencies of the dynamical system as well as how and where the hybrid split is located. Thus, proper care must be taken when conducting a hybrid experiment in order to guarantee reliable results.
Multi-stage friction pendulum systems (MSFPs), such as the triple friction pendulum (TFP), are currently being developed as seismic isolators. However, all current analytical models are inadequate in modeling many facets of these devices. Either the model can only handle uni-directional ground motions while incorporating the kinetics of the TFP system, or the model ignores the kinetics and can handle bi-directional motion. And in all cases, the model is linearized to simplify the equations. The second part of this dissertation presents an all-in-one model that incorporates the full nonlinear kinetics of the TFP system, while allowing for bi-directional ground motion. In this way, the model presented here is the most complete single model currently available. It was found that the non-linear model can more accurately predict the experimental results for large displacements due to the nonlinear kinematics used to describe the system. The model is also able to successfully predict the experimental results for bi-directional ground motions.
Jang, Jae Won. "Characterization of live modeling performance boundaries for computational structural mechanics /." Thesis, Connect to this title online; UW restricted, 2007. http://hdl.handle.net/1773/10178.
Full textZhang, Junjie. "The mechanics of foams and honeycombs." Thesis, University of Cambridge, 1989. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.333386.
Full textKwok, Raymond Moon Keung. "Mechanics of damaged thin-walled cylindrical shells." Thesis, University of Surrey, 1991. http://epubs.surrey.ac.uk/993/.
Full textRuparel, Tejas. "Multiple Grid Multiple Time-Scale (MGMT) Simulations in Linear Structural Dynamics." Thesis, The George Washington University, 2015. http://pqdtopen.proquest.com/#viewpdf?dispub=3669113.
Full textThe work presented in this dissertation describes a general algorithm and its Finite Element (FE) implementation for performing concurrent multiple sub-domain simulations in linear structural dynamics. Using this approach one can solve problems in which the domain under analysis can be selectively discretized spatially and temporally, hence allowing the user to obtain a desired level of accuracy in critical regions whilst improving computational efficiency globally. The mathematical background for this approach is largely derived from the fundamental principles of Domain Decomposition Methods (DDM) and Lagrange Multipliers, used to obtain coupled equations of motion for distinct regions of a continuous domain. These methods when combined together systematically yield constraint forces that not only ensure conservation of energy, but also enforce continuity of field quantities across sub-domain interfaces. Multiple Grid (MG) coupling between conforming or non-conforming sub-domains is achieved in the form of linear multi-point constraints that are modeled using Mortar Finite Element Method (M-FEM); whereas coupled Multiple Time-scale (MT) equations are derived for the classical Newmark integration scheme and its constituent algorithms. A rigorous proof of stability is provided using Energy Method and necessary conditions for enforcing energy balance are discussed in reference with field variables that are selected to enforce sub-domain interface continuity. Fully discretized equations of motion for component sub-domains, augmented with an interface continuity condition are then solved using block elimination method and Crout factorization. A step-by-step solution approach, utilizing recursive black box sub-routines, is modeled in order to allow efficient implementation within existing finite element frameworks.
Proposed MGMT Method and corresponding solution algorithm is systematically implemented by using the finite element approach and programming in FORTRAN 90. Resulting in-house code - FEAPI (Finite Element Analysis Programming Interface) is capable of solving linear structural dynamics problems that are modeled using independently discretized sub-domains. Auxiliary sub-routines for defining pre simulation parameters and for viewing global/component sub-domain results are built into FEAPI and work in conjugation with GiD; a universal, adaptive and user-friendly pre and post-processor. Overall stability, numerical accuracy and computational efficiency of MGMT Method is evaluated and verified using a series of benchmark examples. Verification matrices take into consideration performance evaluation factors such as energy balance (at global and component-sub-domain levels), interface continuity, evolution/distribution of kinematic quantities and propagation of structural waves across connecting sub-domains. Assessment of computational efficiency is derived by comparing the size of respective FE problems (nodes, elements, number of equations, skyline storage requirements) and the required computation times (CPU solution time). Discussed examples highlight the greatest advantage of MGMT Method; which is significant gain in simulation speedups (at the cost of reasonably small errors).
Agar, S. "The mechanics of drag anchor systems in sand." Thesis, University of Newcastle Upon Tyne, 1986. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.374842.
Full textWalls, Kenneth Cline. "Multi-material contact for computational structural mechanics." Birmingham, Ala. : University of Alabama at Birmingham, 2008. https://www.mhsl.uab.edu/dt/2008m/walls.pdf.
Full textEl, Sayed Mostafa. "Multiscale mechanics and structural design of periodic cellular materials." Thesis, McGill University, 2011. http://digitool.Library.McGill.CA:80/R/?func=dbin-jump-full&object_id=97009.
Full textLes matériaux cellulaires périodiques, aussi connus sous le nom de matériaux réseaux, sont constitués d'un grand nombre d'éléments de micro-treillis réticulés qui sont assemblés de manière périodique ; ils sont construits en assemblant un grand nombre de cellules composées d'un petit nombre d'éléments pour former un pavé dont la périodicité peut être infinie. Les matériaux réseaux servent à modifier les propriétés des matériaux solides qui les constituent selon la topologie des cellules ou la densité relative, . Le développement des matériaux réseaux permet d'élargir la gamme de matériaux pouvant servir dans la conception d'applications avancées.Les progrès récents dans cette nouvelle famille de matériaux ont mené à leur regroupement dans deux catégories: les matériaux dominés par le fléchissement et ceux dominés par l'étirement. Les premiers contiennent des matériaux réseaux qui s'affaissent par le fléchissement localisé de leurs cellules, conduisant à des propriétés qui ne sont pas optimales. Les derniers contiennent une topologie de cellules qui s'affaissent par l'étirement de leurs éléments, produisant ainsi une plus grande résistance par unité de masse. Malgré les avancés récentes dans la compréhension du mécanisme d'affaiblissement des matériaux réseaux, certains défis importants demeurent. i) Les modèles existants de structures réseaux périodiques sont applicables à certaines topologies seulement. Une procédure robuste, automatisée et analytique pour caractériser les propriétés mécaniques des matériaux réseaux ayant une topologie microscopique arbitraire doit être développée. ii) La stratégie utilisée dans la littérature pour former la section transversale d'éléments de cellule minces en formes circulaires mène à un affaiblissement des éléments du treillis par gondolement. Pour éviter cet affaissement, les chercheurs ont proposé d'augmenter la taille de la section transversale des éléments microscopiques. Cependant, cette augmentation de la résistance se fait au détriment du poids du matériau. iii) Les matériaux réseaux qui sont dominés par l'étirement offrent des propriétés mécaniques très supérieures à celles des matériaux dominés par le fléchissement. Leur structure, constituée uniquement de topologies triangulaires, pourrait toutefois contenir plusieurs membres superflus qui ajoutent un poids indésirable et un comportement structurel qui ne se conforme pas aisément.Le travail décrit dans cette thèse a pour but d'améliorer les modèles mécaniques existants à plusieurs échelles ainsi que les outils d'analyse structurelle servant à la conception de matériaux réseaux.
Books on the topic "Structural Engineering and Mechanics"
Bakhoum, Michel. Structural Mechanics. Giza, Egypt: M.M. Bakhoum, Structural Engineering Dept., Faculty of Engineering, Cairo University, 1992.
Find full textChamis, C. C. Computational structural mechanics for engine structures. [Washington, DC]: National Aeronautics and Space Administration, 1989.
Find full textBucciarelli, Louis L. Engineering mechanics for structures. Mineola, N.Y: Dover, 2008.
Find full textMittelstedt, Christian. Structural Mechanics in Lightweight Engineering. Cham: Springer International Publishing, 2021. http://dx.doi.org/10.1007/978-3-030-75193-7.
Full textHjelmstad, Keith D. Fundamentals of structural mechanics. 2nd ed. New York, NY: Springer, 2005.
Find full textFundamentals of structural mechanics. Upper Saddle River, N.J: Prentice Hall, 1997.
Find full textHaftka, Raphael T. Elements of Structural Optimization. Dordrecht: Springer Netherlands, 1990.
Find full textDrew, H. R. New Approaches to Structural Mechanics, Shells and Biological Structures. Dordrecht: Springer Netherlands, 2002.
Find full textBook chapters on the topic "Structural Engineering and Mechanics"
Gutierrez-Lemini, Danton. "Structural Mechanics." In Engineering Viscoelasticity, 113–48. Boston, MA: Springer US, 2013. http://dx.doi.org/10.1007/978-1-4614-8139-3_5.
Full textBisby, Luke A. "Structural Mechanics." In SFPE Handbook of Fire Protection Engineering, 255–76. New York, NY: Springer New York, 2016. http://dx.doi.org/10.1007/978-1-4939-2565-0_8.
Full textWriggers, Peter. "Structural Mechanics." In High Performance Computing in Science and Engineering ’01, 454. Berlin, Heidelberg: Springer Berlin Heidelberg, 2002. http://dx.doi.org/10.1007/978-3-642-56034-7_44.
Full textRoorda, John. "Engineering Design and Computers." In Trends in Structural Mechanics, 367–77. Dordrecht: Springer Netherlands, 1997. http://dx.doi.org/10.1007/978-94-011-5476-5_37.
Full textNagel, Wolfgang E., and Erwin Stein. "Structural Mechanics and Electrical Engineering." In High Performance Computing in Science and Engineering ’99, 401. Berlin, Heidelberg: Springer Berlin Heidelberg, 2000. http://dx.doi.org/10.1007/978-3-642-59686-5_37.
Full textValliappan, Somasundaram, and Calvin Chee. "Ageing Degradation of Concrete Dams Based on Damage Mechanics Concepts." In Computational Structural Engineering, 21–35. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2822-8_3.
Full textSong, Yuntao, Weiyue Wu, Weiwei Xu, Xufeng Liu, and Sumei Liu. "Electromagnetic, Structural and Thermal Analyses of the Vacuum Vessel." In Tokamak Engineering Mechanics, 47–98. Berlin, Heidelberg: Springer Berlin Heidelberg, 2013. http://dx.doi.org/10.1007/978-3-642-39575-8_3.
Full textJiang, Meng, Lihua Han, and Rixiang Zhang. "Study on Design and Mechanics of Bucket Foundation Offshore Platform with Two Pillars." In Computational Structural Engineering, 1155–62. Dordrecht: Springer Netherlands, 2009. http://dx.doi.org/10.1007/978-90-481-2822-8_130.
Full textBucalem, Miguel Luiz, and Klaus-Jürgen Bathe. "Mathematical models used in engineering structural analysis." In Computational Fluid and Solid Mechanics, 179–365. Berlin, Heidelberg: Springer Berlin Heidelberg, 2011. http://dx.doi.org/10.1007/978-3-540-26400-2_4.
Full textYamada, Minoru, and Takeshi Yamada. "Mathematical Expressions of Non-Linear Behaviors in Structural Mechanics." In Progress in Structural Engineering, 437–42. Dordrecht: Springer Netherlands, 1991. http://dx.doi.org/10.1007/978-94-011-3616-7_30.
Full textConference papers on the topic "Structural Engineering and Mechanics"
Katti, Dinesh R., Shashindra M. Pradhan, and Kalpana S. Katti. "Collagen Mechanics: Role of Structural Hierarchy." In Biomedical Engineering. Calgary,AB,Canada: ACTAPRESS, 2012. http://dx.doi.org/10.2316/p.2012.764-050.
Full textSchlieter, T., and A. Długosz. "STRUCTURAL OPTIMIZATION OF AEROFOILS FOR MANY CRITERIA." In Engineering Mechanics 2020. Institute of Thermomechanics of the Czech Academy of Sciences, Prague, 2020. http://dx.doi.org/10.21495/5896-3-448.
Full textMusil, M., O. Chlebo, J. Úradniček, F. Havelka, and M. Milata. "STRUCTURAL MODAL MODIFICATION OF NON-PROPORTIONALLY DAMPED SYSTEM." In Engineering Mechanics 2020. Institute of Thermomechanics of the Czech Academy of Sciences, Prague, 2020. http://dx.doi.org/10.21495/5896-3-366.
Full textMusiał, J., R. Polasik, T. Kałaczyński, and M. Szmajda. "SURFACE ROUGHNESS OF STRUCTURAL POLYMER MATERIALS AFTER MILLING." In Engineering Mechanics 2020. Institute of Thermomechanics of the Czech Academy of Sciences, Prague, 2020. http://dx.doi.org/10.21495/5896-3-362.
Full text"DOPROC METHOD IMPROVEMENTS AND ITS APPLICATION IN STRUCTURAL FATIGUE ANALYSIS." In Engineering Mechanics 2019. Institute of Thermomechanics of the Czech Academy of Sciences, Prague, 2019. http://dx.doi.org/10.21495/71-0-207.
Full text"Thermo-structural brake squeal FEM analysis considering temperature dependent thermal expansion." In Engineering Mechanics 2018. Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, 2018. http://dx.doi.org/10.21495/91-8-429.
Full textHarzheim, Lothar, and Gerhard Graf. "Optimization of Engineering Components with the SKO Method." In International Conference On Vehicle Structural Mechanics & Cae. 400 Commonwealth Drive, Warrendale, PA, United States: SAE International, 1995. http://dx.doi.org/10.4271/951104.
Full textBurton, Belinda, and Viktor Verijenko. "Structural Health Monitoring in Marine Structures." In ASME 2002 21st International Conference on Offshore Mechanics and Arctic Engineering. ASMEDC, 2002. http://dx.doi.org/10.1115/omae2002-28278.
Full text"Selected structural issues of the waterjet method in industrial recycling of tires." In Engineering Mechanics 2018. Institute of Theoretical and Applied Mechanics of the Czech Academy of Sciences, 2018. http://dx.doi.org/10.21495/91-8-305.
Full textMucha, W., W. Kuś, J. C. Viana, and J. P. Nunes. "EXPERIMENTAL VALIDATION OF NUMERICAL MODEL OF COMPOSITE PANEL FOR AEROSPACE STRUCTURAL APPLICATIONS." In Engineering Mechanics 2020. Institute of Thermomechanics of the Czech Academy of Sciences, Prague, 2020. http://dx.doi.org/10.21495/5896-3-358.
Full textReports on the topic "Structural Engineering and Mechanics"
Author, Not Given. Structural engineering, mechanics and materials: Final report. Office of Scientific and Technical Information (OSTI), January 1988. http://dx.doi.org/10.2172/6253183.
Full textHinkle, Jason. Precision Structural Mechanics Instrumentation System. Fort Belvoir, VA: Defense Technical Information Center, August 2003. http://dx.doi.org/10.21236/ada418971.
Full textInman, Daniel J. Structural Mechanics for Adaptive Optics. Fort Belvoir, VA: Defense Technical Information Center, July 2009. http://dx.doi.org/10.21236/ada504036.
Full textFerencz, R. M. Technical Spotlight: NEAMS Structural Mechanics with Diablo. Office of Scientific and Technical Information (OSTI), October 2013. http://dx.doi.org/10.2172/1113410.
Full textFerencz, R. SHARP Structural Mechanics Verification & Validation Plan. Office of Scientific and Technical Information (OSTI), August 2014. http://dx.doi.org/10.2172/1159265.
Full textNeedleman, Allan. Future Directions for Solid and Structural Mechanics. Fort Belvoir, VA: Defense Technical Information Center, July 1998. http://dx.doi.org/10.21236/ada349083.
Full textRedmond, James M., and Lisa Zimmer Raver. Structural Mechanics Research & Applications Quarterly Newsletter. Office of Scientific and Technical Information (OSTI), August 2018. http://dx.doi.org/10.2172/1463951.
Full textCrabb, R. L. An uncertainty analysis for the structural mechanics laboratory. Office of Scientific and Technical Information (OSTI), March 1988. http://dx.doi.org/10.2172/6295692.
Full textDvorak, George J., and R. J. Diefendorf. High Temperature Advanced Structural Composites. Volume 3. Mechanics. Fort Belvoir, VA: Defense Technical Information Center, April 1993. http://dx.doi.org/10.21236/ada267024.
Full textFerencz, R., and N. Hodge. Adding a MOAB Geometry Interface to SHARP Structural Mechanics. Office of Scientific and Technical Information (OSTI), May 2012. http://dx.doi.org/10.2172/1043640.
Full text