Academic literature on the topic 'Structural variants'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structural variants.'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Structural variants"
Welsch, Christoph, Sabine Schweizer, Tetsuro Shimakami, Francisco S. Domingues, Seungtaek Kim, Stanley M. Lemon, and Iris Antes. "Ketoamide Resistance and Hepatitis C Virus Fitness in Val55 Variants of the NS3 Serine Protease." Antimicrobial Agents and Chemotherapy 56, no. 4 (January 17, 2012): 1907–15. http://dx.doi.org/10.1128/aac.05184-11.
Full textAhdesmäki, Miika J., Brad A. Chapman, Pablo Cingolani, Oliver Hofmann, Aleksandr Sidoruk, Zhongwu Lai, Gennadii Zakharov, et al. "Prioritisation of structural variant calls in cancer genomes." PeerJ 5 (April 4, 2017): e3166. http://dx.doi.org/10.7717/peerj.3166.
Full textLaddach, Anna, Joseph Chi Fung Ng, and Franca Fraternali. "Pathogenic missense protein variants affect different functional pathways and proteomic features than healthy population variants." PLOS Biology 19, no. 4 (April 28, 2021): e3001207. http://dx.doi.org/10.1371/journal.pbio.3001207.
Full textKhanna, Tarun, Gordon Hanna, Michael J. E. Sternberg, and Alessia David. "Missense3D-DB web catalogue: an atom-based analysis and repository of 4M human protein-coding genetic variants." Human Genetics 140, no. 5 (January 27, 2021): 805–12. http://dx.doi.org/10.1007/s00439-020-02246-z.
Full textLiao, Wen-Wei, Mobin Asri, Jana Ebler, Daniel Doerr, Marina Haukness, Glenn Hickey, Shuangjia Lu, et al. "A draft human pangenome reference." Nature 617, no. 7960 (May 10, 2023): 312–24. http://dx.doi.org/10.1038/s41586-023-05896-x.
Full textNeuser, Sonja, Ilona Krey, Annemarie Schwan, Rami Abou Jamra, Tobias Bartolomaeus, Jan Döring, Steffen Syrbe, et al. "Prenatal phenotype of PNKP-related primary microcephaly associated with variants affecting both the FHA and phosphatase domain." European Journal of Human Genetics 30, no. 1 (October 25, 2021): 101–10. http://dx.doi.org/10.1038/s41431-021-00982-y.
Full textChowdhury, Murad, Brent S. Pedersen, Fritz J. Sedlazeck, Aaron R. Quinlan, and Ryan M. Layer. "Searching thousands of genomes to classify somatic and novel structural variants using STIX." Nature Methods 19, no. 4 (April 2022): 445–48. http://dx.doi.org/10.1038/s41592-022-01423-4.
Full textHain, Carsten, Rudolf Stadler, and Jörn Kalinowski. "Unraveling the Structural Variations of Early-Stage Mycosis Fungoides—CD3 Based Purification and Third Generation Sequencing as Novel Tools for the Genomic Landscape in CTCL." Cancers 14, no. 18 (September 14, 2022): 4466. http://dx.doi.org/10.3390/cancers14184466.
Full textKHACHATRYAN, Lalik. "STRUCTURAL TYPES OF ARMENIAN LANGUAGE VARIANT- UNITS IN THE TRANSLATION BOOKS OF THE BIBLE." Main Issues Of Pedagogy And Psychology 17, no. 1 (April 28, 2020): 126–36. http://dx.doi.org/10.24234/miopap.v17i1.372.
Full textFlynn, C. P., and J. A. Eades. "Structural variants in heteroepitaxial growth." Thin Solid Films 389, no. 1-2 (June 2001): 116–37. http://dx.doi.org/10.1016/s0040-6090(01)00768-4.
Full textDissertations / Theses on the topic "Structural variants"
Bruce, David. "Antithrombin : structural variants and thrombosis." Thesis, Open University, 1994. http://ethos.bl.uk/OrderDetails.do?uin=uk.bl.ethos.386084.
Full textSeabra, Catarina Morais. "Rare structural variants in severe spermatogenic impairment." Master's thesis, Universidade de Aveiro, 2012. http://hdl.handle.net/10773/9537.
Full textA azoospermia afeta aproximadamente 15% de todos os homens inférteis e é frequentemente causada por anomalias cromossómicas e microdeleções do cromossoma Y. No entanto, em aproximadamente 70% dos casos de azoospermia não-obstrutiva (NOA) as causas permanecem por identificar. Nos últimos anos, a descoberta de variantes genómicas de número de cópia (CNVs), como as causadas por deleções, revelou uma fonte de variação genómica que afecta a dosagem génica e que poderá resultar em haploinsuficiência. De facto, observa-se uma sobre-representação de CNVs raros (<1% na população), sobretudo de grandes deleções de novo, em pacientes com diferentes distúrbios do desenvolvimento, comparados com controlos saudáveis. Porém, uma possível contribuição, para a infertilidade masculina, de variantes estruturais ligados ao cromossoma X e aos autossomas foi ainda pouco explorada. Este estudo foca-se na validação de deleções encontradas apenas em pacientes inférteis, no cromossoma X e em 11p13, que contêm genes candidatos a participar na espermatogénese. Estas deleções, previamente identificadas por arrays de oligonucleótidos, de elevada densidade (Affymetrix 6.0 SNP Array), numa coorte de 171 pacientes Portugueses com disfunção severa da espermatogénese (NOA e oligozoospermia severa), foram agora confirmadas por técnicas convencionais de genética molecular. Adicionalmente, a caraterização dos locais de quebra nestas deleções foi realizada por aCGH. Ainda que não se tenham validado as deleções menos extensas (em Xq21.1, Xq25, Xp11.4, Xq22.1 e Xq26.3), confirmou-se a nulizigotia em Xq28 nestes indivíduos, que abrange genes candidatos com uma função sugestiva na espermatogénese: MAGE-A8, expresso em testículo e em alguns cancros e o microRNA hsa-miR-4330, envolvido na regulação pós-transcricional de vários genes com expressão na linha germinal. Foi ainda validada, por MLPA, uma deleção extensa num paciente infértil não-sindrómico da nossa coorte. Estes resultados apontam a haploinsuficiência de WT1 como a causa mais provável de azoospermia neste paciente, já que não foram detetadas mutações germinais no alelo restante. Mutações no gene WT1, que codifica um factor de transcrição muito conservado, crucial para o desenvolvimento e manutenção gonadal em mamíferos, geralmente interferem com a ligação desta proteína ao DNA e estão principalmente associadas a síndromes que envolvem anomalias reprodutivas. Motivados pela nossa descoberta de uma deleção de WT1 num homem infértil embora saudável, decidimos abordar a contribuição de mutações exónicas no gene WT1 para a azoospermia isolada. Testámos a hipótese de que mutações localizadas em domínios que não aqueles essenciais à ligação ao DNA pudessem resultar na disfunção não-sindrómica da espermatogénese. Assim, analisámos a sequência codificante de WT1 num subgrupo de 40 pacientes azoospérmicos. Como resultado, descrevemos uma nova variação missense c.185C>T (P130L; ENST00000332351) no primeiro exão de WT1, inserida no domínio proteico de auto-associação. A nova variante descrita deverá ter um impacto menos drástico na função da proteína WT1, comparativamente com as mutações descritas no mesmo exão até à data, as quais resultam em proteínas truncadas e fenótipos severos de disfunção gonadal, incluindo a formação de tumores renais. Estes resultados revelam novos genes candidatos a um papel na espermatogénese e sugerem que a haploinsuficiência de proteínas importantes para o desenvolvimento do sistema reprodutor masculino podem resultar em azoospermia. Estudos futuros poderão clarificar a utilidade dos nossos genes candidatos como biomarcadores da infertilidade masculina. A implementação de novos biomarcadores beneficiaria os doentes azoospérmicos através da melhoria do diagnóstico, aconselhamento genético e acompanhamento destes pacientes, podendo vir a limitar a necessidade de procedimentos invasivos.
Azoospermia affects approximately 15% of all infertile males and it is frequently caused by chromosomal abnormalities and Yq microdeletions. However, despite considerable research efforts in the last decades, in approximately 70% of the cases of non-obstructive azoospermia (NOA) the causes are yet to be identified. In the last years, the discovery of genomic copy number variants, such as those caused by deletions, revealed a source of genomic variation which impacts gene dosage and may result in haploinsufficiency. In fact, rare CNVs (<1% population), mainly large de novo deletions, are over-represented in patients with different developmental disorders, compared to healthy controls. However, a possible contribution of X-linked and autosomal structural variants to male infertility is still largely unexplored. This study focused on the validation of rare patient-specific deletions found on the X chromosome and at 11p13 of infertile patients, which harbor candidate spermatogenesis genes. These deletions had been previously identified by high density oligonucleotide arrays (Affymetrix 6.0 SNP Array), in a cohort of 171 Portuguese patients with severe spermatogenic impairment (non-obstructive azoospermia and severe oligozoospermia) and were now confirmed by conventional molecular genetics techniques. Additionally, breakpoint characterization was carried out by aCGH. In fact, even though the smaller deletions (at Xq21.1, Xq25, Xp11.4, Xq22.1 and Xq26.3) were not validated, we confirmed nullizygosity at Xq28 in two patients, spanning either MAGE-A8, a known cancer-testis antigen, or hsa-miR-4330, a microRNA involved in post-transcription regulation, both with a suggestive role in spermatogenesis pathways. We have also validated by MLPA a large deletion at 11p13, in a non-syndromic infertile patient from our cohort. These results support WT1 haploinsufficiency as the likely cause of azoospermia in this patient, as no other germline mutations were detected in the remaining WT1 copy. Mutations in WT1, an evolutionarily conserved transcription factor crucial for gonadal development and maintenance in mammals, typically interfere with the DNA-binding properties of the protein and are mainly associated with syndromes involving reproductive abnormalities. Motivated by our finding of a WT1 deletion in an infertile but otherwise healthy man we addressed the contribution of WT1 exonic mutations to isolated azoospermia. We reasoned that mutations located in domains not essential for DNA binding could result in non-syndromic spermatogenic impairment. Thus, we analyzed the WT1 coding sequence in a subgroup of 40 azoospermic patients. As a result of the exon screening, we report a novel c.185C>T (P130L; ENST00000332351) WT1 missense variant on exon 1, within the protein self-association domain. While all exon 1 mutations as yet reported result in truncated proteins and severe phenotypes, including the formation of renal tumors, this novel variant is expected to have a milder impact on WT1 function. These results reveal new candidate genes for a role in spermatogenesis and suggest that haploinsufficiency of proteins important for the development of the male reproductive system can lead to azoospermia. Further studies will clarify the utility of our candidate genes as biomarkers of male infertility. The implementation of new biomarkers would benefit azoospermic men by improving diagnosis, genetic counseling and patient care, eventually limiting the need for invasive procedures.
Toyama, Brandon Hiroyuki. "The structural basis of yeast prion strain variants." Diss., Search in ProQuest Dissertations & Theses. UC Only, 2009. http://gateway.proquest.com/openurl?url_ver=Z39.88-2004&rft_val_fmt=info:ofi/fmt:kev:mtx:dissertation&res_dat=xri:pqdiss&rft_dat=xri:pqdiss:3378511.
Full textLecompte, Lolita. "Structural variant genotyping with long read data." Thesis, Rennes 1, 2020. http://www.theses.fr/2020REN1S054.
Full textStructural Variants (SVs) are genomic rearrangements of more than 50 base pairs. Since SVs can reach several thousand base pairs, they can have huge impacts on genome functions, studying SVs is, therefore, of great interest. Recently, a new generation of sequencing technologies has been developed and produce long read data of tens of thousand of base pairs which are particularly useful for spanning over SV breakpoints. So far, bioinformatics methods have focused on the SV discovery problem with long read data. However, no method has been proposed to specifically address the issue of genotyping SVs with long read data. The purpose of SV genotyping is to assess for each variant of a given input set which alleles are present in a newly sequenced sample. This thesis proposes a new method for genotyping SVs with long read data, based on the representation of each allele sequences. We also defined a set of conditions to consider a read as supporting an allele. Our method has been implemented in a tool called SVJedi. Our tool has been validated on both simulated and real human data and achieves high genotyping accuracy. We show that SVJedi obtains better performances than other existing long read genotyping tools and we also demonstrate that SV genotyping is considerably improved with SVJedi compared to other approaches, namely SV discovery and short read SV genotyping approaches
Masciangioli, Tina Marie. "Structural and dynamic studies of bacteriorhodopsin and its variants." Diss., Georgia Institute of Technology, 1999. http://hdl.handle.net/1853/30551.
Full textNASCIMENTO, JÚNIOR Francisco do. "ScreenVar - a biclustering-based methodology for evaluating structural variants." Universidade Federal de Pernambuco, 2017. https://repositorio.ufpe.br/handle/123456789/25375.
Full textApproved for entry into archive by Alice Araujo (alice.caraujo@ufpe.br) on 2018-08-03T19:38:31Z (GMT) No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) TESE Francisco do Nascimento Junior.pdf: 1104753 bytes, checksum: 794ee127f9a27d065eb71104d4849c0e (MD5)
Made available in DSpace on 2018-08-03T19:38:31Z (GMT). No. of bitstreams: 2 license_rdf: 811 bytes, checksum: e39d27027a6cc9cb039ad269a5db8e34 (MD5) TESE Francisco do Nascimento Junior.pdf: 1104753 bytes, checksum: 794ee127f9a27d065eb71104d4849c0e (MD5) Previous issue date: 2017-02-17
CAPES
The importance of structural variants as a source of phenotypic variation has grown in recent years. At the same time, the number of tools that detect structural variations using Next- Generation Sequencing (NGS) has increased considerably with the dramatic drop in the cost of sequencing in last ten years. Then evaluating properly the detected structural variants has been featured prominently due to the uncertainty of such alterations, bringing important implications for researchers and clinicians on scrutinizing thoroughly the human genome. These trends have raised interest about careful procedures for assessing the outcomes from variant calling tools. Here, we characterize the relevant technical details of the detection of structural variants, which can affect the accuracy of detection methods and also we discuss the most important caveats related to the tool evaluation process. This study emphasizes common assumptions, a variety of possible limitations, and valuable insights extracted from the state-of-the-art in CNV (Copy Number Variation) detection tools. Among such points, a frequently mentioned and extremely important is the lack of a gold standard of structural variants, and its impact on the evaluation of existing detection tools. Next, this document describes a biclustering-based methodology to screen a collection of structural variants and provide a set of reliable events, based on a defined equivalence criterion, that is supported by different studies. Finally, we carry out experiments with the proposed methodology using as input data the Database of Genomic Variants (DGV). We found relevant groups of equivalent variants across different studies. In summary, this thesis shows that there is an alternative approach to solving the open problem of the lack of gold standard for evaluating structural variants.
A importância das variantes estruturais como fonte de variação fenotípica tem se proliferado nos últimos anos. Ao mesmo tempo, o número de ferramentas que detectam variações estruturais usando Next-Generation Sequencing (NGS) aumentou consideravelmente com a dramática queda no custo de seqüenciamento nos últimos dez anos. Neste cenário, avaliar corretamente as variantes estruturais detectadas tem recebido destaque proeminente devido à incerteza de tais alterações, trazendo implicações importantes para os pesquisadores e clínicos no exame minucioso do genoma humano. Essas tendências têm impulsionado o interesse em procedimentos criteriosos para avaliar os variantes identificados. Inicialmente, caracterizamos os detalhes técnicos relevantes em torno da detecção de variantes estruturais, os quais podem afetar a precisão. Além disso, apresentamos advertências fundamentais relacionadas ao processo de avaliação de uma ferramenta. Desta forma, este estudo enfatiza questões como suposições comuns à maioria das ferramentas, juntamente com limitações e vantagens extraídas do estadoda- arte em ferramentas de detecção de variantes estruturais. Entre esses pontos, há uma muito questão bastante citada que é a falta de um gold standard de variantes estruturais, e como sua ausência impacta na avaliação das ferramentas de detecção existentes. Em seguida, este documento descreve uma metodologia baseada em biclustering para pesquisar uma coleção de variantes estruturais e fornecer um conjunto de eventos confiáveis, com base em um critério de equivalência definido e apoiado por diferentes estudos. Finalmente, realizamos experimentos com essa metodologia usando o Database of Genomic Variants (DGV) como dados de entrada e encontramos grupos relevantes de variantes equivalentes em diferentes estudos. Desta forma, esta tese mostra que existe uma abordagem alternativa para o problema em aberto da falta de gold standard para avaliar variantes estruturais.
Lee, Seung-Joo. "Structural and functional consequences of disease-related protein variants." Case Western Reserve University School of Graduate Studies / OhioLINK, 2010. http://rave.ohiolink.edu/etdc/view?acc_num=case1269545015.
Full textBoulding, Hannah. "Identifying causative elements within structural variants associated with developmental disorders." Thesis, University of Oxford, 2013. http://ora.ox.ac.uk/objects/uuid:d9af47cc-1c91-4a66-a6ac-86655f1ff375.
Full textSuliman, Muna. "Identifying Sortase A Variants With Higher Catalytic Effeciency." VCU Scholars Compass, 2012. http://scholarscompass.vcu.edu/etd/383.
Full textBoopathy, Sivakumar. "Investigating Structural and Functional Defects in ALS-causing Profilin 1 Variants." eScholarship@UMMS, 2009. http://escholarship.umassmed.edu/gsbs_diss/923.
Full textBooks on the topic "Structural variants"
Feuk, Lars, ed. Genomic Structural Variants. New York, NY: Springer New York, 2012. http://dx.doi.org/10.1007/978-1-61779-507-7.
Full textHenschen, A., and B. Henssel, eds. Structural variants and interactions. Berlin, Boston: De Gruyter, 1985. http://dx.doi.org/10.1515/9783110855951.
Full textProukakis, Christos, ed. Genomic Structural Variants in Nervous System Disorders. New York, NY: Springer US, 2022. http://dx.doi.org/10.1007/978-1-0716-2357-2.
Full textWorkshop on Fibrinogen. (1983 Stockholm, Sweden). Fibrinogen, structural variants and interactions: Proceedings workshop on Fibrinogen, Stockholm, Sweden, July 9-10, 1983. Edited by Henschen A. 1935-. Berlin: W. de Gruyter, 1985.
Find full textBuunk, Bram. Variant lifestyles and relationships. Newbury Park, Calif: Sage Publications, 1989.
Find full textNatke, Hans G., Geoffrey R. Tomlinson, and James T. P. Yao. Safety Evaluation Based on Identification Approaches Related to Time-Variant and Nonlinear Structures. Wiesbaden: Vieweg+Teubner Verlag, 1993. http://dx.doi.org/10.1007/978-3-322-89467-0.
Full textG, Natke H., Tomlinson Geoffrey R, Yao James Tsu-ping 1932-, and International Workshop on Safety Evaluation Based On Identification Approaches Related to Time-Variant and Nonlinear Structures (1992 : Lambrecht, Germany), eds. Safety evaluation based on system identification approaches related to time-variant and nonlinear structures. Braunschweig: F. Vieweg, 1993.
Find full textGutiérrez, Gladys M. Sirvent. Colonia La Tabacalera: Varias lecturas sobre un mismo patrimonio. México, D.F: Universidad Autónoma Metropolitana-Xochimilco, División Ciencias y Artes para el Diseño, Depto. de Teoría y Análisis, 1994.
Find full textKiem, Karl. Die Gartenstadt Staaken (1914-1917): Typen, Gruppen, Varianten. Berlin: Gebr. Mann, 1997.
Find full textPodgaet͡skiĭ, V. V. Goroda Ukrainy v gody NĖPA: Variant kliometricheskogo podkhoda k analizu sot͡sialʹnykh struktur : monografii͡a. Dnipropetrovsʹk: Vyd-vo DDU, 1994.
Find full textBook chapters on the topic "Structural variants"
Fromer, Menachem, and Shaun Purcell. "Rare Structural Variants." In Assessing Rare Variation in Complex Traits, 45–56. New York, NY: Springer New York, 2015. http://dx.doi.org/10.1007/978-1-4939-2824-8_4.
Full textSybenga, Jacob. "Karyotype Variants A: Chromosome Structural Variants." In Cytogenetics in Plant Breeding, 101–39. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992. http://dx.doi.org/10.1007/978-3-642-84083-8_5.
Full textHenschen, A. "Two thousand years of fibrinogen research and evidence for fibrin being the first protein." In Structural variants and interactions, edited by A. Henschen and B. Henssel, 1–8. Berlin, Boston: De Gruyter, 1985. http://dx.doi.org/10.1515/9783110855951-002.
Full textFowlkes, D. M., N. T. Mullis, C. M. Comeau, and G. R. Crabtree. "Fibrinogen evolution - The structure and evolution of fibrinogen: The coiled coil region." In Structural variants and interactions, edited by A. Henschen and B. Henssel, 11–22. Berlin, Boston: De Gruyter, 1985. http://dx.doi.org/10.1515/9783110855951-003.
Full textCourtois, G., G. Uzan, Z. Assouline, G. Marguerie, and A. Kahn. "Absence of gross defect of fibrinogen genes in one patient with congenital afibrinogenemia." In Structural variants and interactions, edited by A. Henschen and B. Henssel, 23–30. Berlin, Boston: De Gruyter, 1985. http://dx.doi.org/10.1515/9783110855951-004.
Full textBlombäck, B. "Fibrinogen to fibrin - an overview." In Structural variants and interactions, edited by A. Henschen and B. Henssel, 33–42. Berlin, Boston: De Gruyter, 1985. http://dx.doi.org/10.1515/9783110855951-005.
Full textMatsueda, G. R., K. Y. Hui, and E. Haber. "Fibrin - specific monoclonal antibodies are elicited by immunization with a synthetic fibrin-like peptide." In Structural variants and interactions, edited by A. Henschen and B. Henssel, 43–50. Berlin, Boston: De Gruyter, 1985. http://dx.doi.org/10.1515/9783110855951-006.
Full textKaminski, M., and J. McDonagh. "Enhancement of fibrin polymerization by active site - inhibited thrombin." In Structural variants and interactions, edited by A. Henschen and B. Henssel, 51–64. Berlin, Boston: De Gruyter, 1985. http://dx.doi.org/10.1515/9783110855951-007.
Full textHarenberg, J., J. X. de Vries, and S. Waibel. "Peptides released from human fibrinogen by thrombic enzymes." In Structural variants and interactions, edited by A. Henschen and B. Henssel, 65–72. Berlin, Boston: De Gruyter, 1985. http://dx.doi.org/10.1515/9783110855951-008.
Full textSouthan, C., and A. Hensc. "The analysis of fibrinopeptide release from S--carboxymethylated fibrinogen chains using high-performance liquid chromatography." In Structural variants and interactions, edited by A. Henschen and B. Henssel, 73–82. Berlin, Boston: De Gruyter, 1985. http://dx.doi.org/10.1515/9783110855951-009.
Full textConference papers on the topic "Structural variants"
Tyrell, Stacey, Mark Robeson, Courtney Kube, Dennis McCarthy, and Ronald Lavin. "Dual-Use Structures: Composite Wing with Structural Antenna Aperture." In Vertical Flight Society 72nd Annual Forum & Technology Display, 1–8. The Vertical Flight Society, 2016. http://dx.doi.org/10.4050/f-0072-2016-11552.
Full textYang, Yaning, Jiawei Wang, Xiaoqi Wang, Liwen Xu, Liangrui Pan, and Shaoliang Peng. "TranSVPath: A TabTransformer-Based Model for Predicting the Pathogenicity of Structural Variants." In 2024 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), 1289–95. IEEE, 2024. https://doi.org/10.1109/bibm62325.2024.10822287.
Full textWinkels, Jan, Felix Özkul, Robin Sutherland, Jannik Löhn, Sigrid Wenzel, and Jakob Rehof. "Component-Based Synthesis of Structural Variants of Simulation Models for Changeable Material Flow Systems." In 2024 Winter Simulation Conference (WSC), 1657–68. IEEE, 2024. https://doi.org/10.1109/wsc63780.2024.10838927.
Full textMahmod, N. M., and Wong Yan Chiew. "Structural similarity of business process variants." In 2010 IEEE Conference on Open Systems (ICOS 2010). IEEE, 2010. http://dx.doi.org/10.1109/icos.2010.5720057.
Full textMagomedov, Daniyal. "Structural-syntactical variants of Avar paremias." In Proceedings of the International Conference on Man-Power-Law-Governance: Interdisciplinary Approaches (MPLG-IA 2019). Paris, France: Atlantis Press, 2019. http://dx.doi.org/10.2991/mplg-ia-19.2019.20.
Full textČerničková, Ivona, Marek Mihalkovič, Libor Ďuriška, Peter Švec, Peter Švec, and Jozef Janovec. "Atomic models of εn structural variants - Overview." In APPLIED PHYSICS OF CONDENSED MATTER (APCOM 2022). AIP Publishing, 2023. http://dx.doi.org/10.1063/5.0135821.
Full textHuiqiang Jia, Haicho Wei, Daming Zhu, Jingjing Ma, Hai Yang, Ruizhi Wang, and Xianzhong Feng. "Mining structural variants of Heduo12 using paired-end reads." In 2016 IEEE International Conference on Bioinformatics and Biomedicine (BIBM). IEEE, 2016. http://dx.doi.org/10.1109/bibm.2016.7822502.
Full textCardoso, Rosa, Shalom Goldberg, Jinquan Luo, Alexander Barnakov, Edward Swift, Steven Jacobs, and Gary Gilliland. "Abstract 3222: Structural evaluation of several antitumor Tencon variants." In Proceedings: AACR Annual Meeting 2014; April 5-9, 2014; San Diego, CA. American Association for Cancer Research, 2014. http://dx.doi.org/10.1158/1538-7445.am2014-3222.
Full textLazar, Andrew, Mario Banuelos, Suzanne Sindi, and Roummel F. Marcia. "Detecting novel genomic structural variants through negative binomial optimization." In 2020 54th Asilomar Conference on Signals, Systems, and Computers. IEEE, 2020. http://dx.doi.org/10.1109/ieeeconf51394.2020.9443308.
Full textFaugere, Jean-Charles, Ayoub Otmani, Ludovic Perret, Frederic de Portzamparc, and Jean-Pierre Tillich. "Structural weakness of compact variants of the McEliece cryptosystem." In 2014 IEEE International Symposium on Information Theory (ISIT). IEEE, 2014. http://dx.doi.org/10.1109/isit.2014.6875127.
Full textReports on the topic "Structural variants"
Welch, David, and Gregory Deierlein. Technical Background Report for Structural Analysis and Performance Assessment (PEER-CEA Project). Pacific Earthquake Engineering Research Center, University of California, Berkeley, CA, November 2020. http://dx.doi.org/10.55461/yyqh3072.
Full textSommer, Steven S. Do Structural Missense Variants in the ATM Gene Found in Women With Breast Cancer Cause Breast Cancer in Knock-in" Mouse Strains?". Fort Belvoir, VA: Defense Technical Information Center, April 2006. http://dx.doi.org/10.21236/ada458176.
Full textZaman, Saeed. A Unified Framework to Estimate Macroeconomic Stars. Federal Reserve Bank of Cleveland, May 2024. http://dx.doi.org/10.26509/frbc-wp-202123r2.
Full textChesher, Andrew. Identification of Structural Functions when Endogenous Variabls are Discrete". The IFS, January 2009. http://dx.doi.org/10.1920/re.ifs.2024.0740.
Full textPetrova, Katerina. On the Validity of Classical and Bayesian DSGE-Based Inference. Federal Reserve Bank of New York, January 2024. http://dx.doi.org/10.59576/sr.1084.
Full textRead, Matthew. Sign Restrictions and Supply-demand Decompositions of Inflation. Reserve Bank of Australia, August 2024. http://dx.doi.org/10.47688/rdp2024-05.
Full textSmith, H. A. Adaptive Control of Smart Structures with Time Variant Stiffness and Damping. Fort Belvoir, VA: Defense Technical Information Center, March 1997. http://dx.doi.org/10.21236/ada326843.
Full textZyphur, Michael. Dynamic Structural Equation Modeling in Mplus. Instats Inc., 2023. http://dx.doi.org/10.61700/aypvl8azm5nlr469.
Full textSrivastava, Shiv. Structure and Function of the Splice Variants of TMPRSS2-ERG, a Prevalent Genomic Alteration in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2009. http://dx.doi.org/10.21236/ada517260.
Full textSrivastava, Shiv. Structure and Function of the Splice Variants of TMPRSS2-ERG, a Prevalent Genomic Alteration in Prostate Cancer. Fort Belvoir, VA: Defense Technical Information Center, September 2012. http://dx.doi.org/10.21236/ada566991.
Full text