Academic literature on the topic 'Structure-activity relationship (Biochemistry)'
Create a spot-on reference in APA, MLA, Chicago, Harvard, and other styles
Consult the lists of relevant articles, books, theses, conference reports, and other scholarly sources on the topic 'Structure-activity relationship (Biochemistry).'
Next to every source in the list of references, there is an 'Add to bibliography' button. Press on it, and we will generate automatically the bibliographic reference to the chosen work in the citation style you need: APA, MLA, Harvard, Chicago, Vancouver, etc.
You can also download the full text of the academic publication as pdf and read online its abstract whenever available in the metadata.
Journal articles on the topic "Structure-activity relationship (Biochemistry)"
Wawer, Mathias J., David E. Jaramillo, Vlado Dančík, Daniel M. Fass, Stephen J. Haggarty, Alykhan F. Shamji, Bridget K. Wagner, Stuart L. Schreiber, and Paul A. Clemons. "Automated Structure–Activity Relationship Mining." Journal of Biomolecular Screening 19, no. 5 (April 7, 2014): 738–48. http://dx.doi.org/10.1177/1087057114530783.
Full textHu, J. P., M. Calomme, A. Lasure, T. De Bruyne, L. Pieters, A. Vlietinck, and D. A. Vanden Berghe. "Structure-activity relationship of flavonoids with superoxide scavenging activity." Biological Trace Element Research 47, no. 1-3 (January 1995): 327–31. http://dx.doi.org/10.1007/bf02790134.
Full textNagamurthi, G., and S. Rambhav. "Gramicidin-S: Structure-activity relationship." Journal of Biosciences 7, no. 3-4 (June 1985): 323–29. http://dx.doi.org/10.1007/bf02716794.
Full textÁvila, Hugo Pereira, Elza de Fátima Albino Smânia, Franco Delle Monache, and Artur Smânia. "Structure–activity relationship of antibacterial chalcones." Bioorganic & Medicinal Chemistry 16, no. 22 (November 2008): 9790–94. http://dx.doi.org/10.1016/j.bmc.2008.09.064.
Full textBonafoux, Dominique F., Sheri L. Bonar, Michael Clare, Ann M. Donnelly, Jeanette L. Glaenzer, Julia A. Guzova, He Huang, et al. "Aminopyridinecarboxamide-based inhibitors: Structure–activity relationship." Bioorganic & Medicinal Chemistry 18, no. 1 (January 2010): 403–14. http://dx.doi.org/10.1016/j.bmc.2009.10.040.
Full textShih-Fong, Chen, Lisa M. Papp, Robert J. Ardecky, Ganti V. Rao, David P. Hesson, Martin Forbes, and Daniel L. Dexter. "Structure-activity relationship of quinoline carboxylic acids." Biochemical Pharmacology 40, no. 4 (August 1990): 709–14. http://dx.doi.org/10.1016/0006-2952(90)90305-5.
Full textMa, Anqi, Wenyu Yu, Yan Xiong, Kyle V. Butler, Peter J. Brown, and Jian Jin. "Structure–activity relationship studies of SETD8 inhibitors." MedChemComm 5, no. 12 (2014): 1892–98. http://dx.doi.org/10.1039/c4md00317a.
Full textDesai, A., C. Lee, L. Sharma, and A. Sharma. "Lysozyme refolding with cyclodextrins: structure–activity relationship." Biochimie 88, no. 10 (October 2006): 1435–45. http://dx.doi.org/10.1016/j.biochi.2006.05.008.
Full textDeng, Lisheng, Zana Muhaxhiri, Mary K. Estes, Timothy Palzkill, B. V. Venkataram Prasad, and Yongcheng Song. "Synthesis, activity and structure–activity relationship of noroviral protease inhibitors." MedChemComm 4, no. 10 (2013): 1354. http://dx.doi.org/10.1039/c3md00219e.
Full textTsukano, Chihiro, and Makoto Sasaki. "Structure–activity relationship studies of gymnocin-A." Tetrahedron Letters 47, no. 38 (September 2006): 6803–7. http://dx.doi.org/10.1016/j.tetlet.2006.07.081.
Full textDissertations / Theses on the topic "Structure-activity relationship (Biochemistry)"
Nahas, Roger I. "Synthesis and structure-activity relationship of a series of sigma receptor ligands." Diss., Columbia, Mo. : University of Missouri-Columbia, 2007. http://hdl.handle.net/10355/4840.
Full textThe entire dissertation/thesis text is included in the research.pdf file; the official abstract appears in the short.pdf file (which also appears in the research.pdf); a non-technical general description, or public abstract, appears in the public.pdf file. Title from title screen of research.pdf file (viewed on February 26, 2008) Vita. Includes bibliographical references.
Lanevskij, Kiril. "Absorption and Tissue Distribution of Drug-Like Compounds: Quantitative Structure-Activity Relationship Analysis." Doctoral thesis, Lithuanian Academic Libraries Network (LABT), 2011. http://vddb.laba.lt/obj/LT-eLABa-0001:E.02~2011~D_20111003_114235-89858.
Full textŠiame darbe pristatomi mechanistiniai kiekybinio struktūros ir aktyvumo ryšio modeliai, skirti vaistinių junginių savybių, charakterizuojančių jų absorbciją ir pasiskirstymą organizme prognozavimui. Nagrinėjama keletas parametrų, apibūdinančių paprastos difuzijos per biologines membranas greitį, taip pat termodinaminės konstantos, aprašančios vaistų pasiskirstymą tarp kraujo plazmos ir audinių. Ląstelinių pernašos barjerų pralaidumas buvo modeliuojamas netiesinėmis lygtimis, siejančiomis paprastos difuzijos greitį su vaistų fizikocheminėmis savybėmis, tokiomis kaip lipofiliškumas, jonizacija, vandenilinių ryšių sudarymo potencialas ir molekulių dydis. Nustatyta, kad smegenų endotelyje ir žarnyno epitelyje stebima panašaus pobūdžio difuzijos greičio priklausomybė nuo jonizacijos – katijonai ir anijonai difunduoja atitinkamai 2 ir 3 eilėmis lėčiau už neutralias molekules. Pademonstruota, kad analizuojant vaistų pasiskirstymo tarp audinių ir kraujo duomenis, būtina paversti pradines eksperimentines vertes kitais dydžiais, atspindinčiais vaistų jungimosi prie plazmos ir audinių komponentų stiprumą. Vaistų giminingumas audiniams gali būti aprašytas jų lipofiliškumu, o neigiama jonizacijos įtaka stebima tik rūgštiniams junginiams. Taip pat parodyta, kad vaistų pernašos per hematoencefalinę užtvarą kiekybinių parametrų tiesinė kombinacija leidžia 94% tikslumu klasifikuoti vaistus pagal jų prieinamumą centrinei nervų sistemai.
DeBord, Michael. "Synthesis, characterization, and anti-cancer structure-activity relationship studies of imidazolium salts." University of Akron / OhioLINK, 2017. http://rave.ohiolink.edu/etdc/view?acc_num=akron1489414733025495.
Full textPandit, Bulbul. "Study of structure activity relationship of analogs derived from SU-5416 and thalidomide and mechanism of antiproliferative activity." Columbus, Ohio : Ohio State University, 2007. http://rave.ohiolink.edu/etdc/view?acc%5Fnum=osu1187127289.
Full textAzizeh, Bassem Yousef. "Structure-activity relationship analysis: Developing glucagon agonists and antagonists for studies of glucagon action in normal and diabetic states." Diss., The University of Arizona, 1996. http://hdl.handle.net/10150/282252.
Full textHall, Sara M. "Bradykinin Ligands and Receptors Involved in Neuropathic Pain." Diss., The University of Arizona, 2015. http://hdl.handle.net/10150/578606.
Full textAndersson, Karl. "Characterization of Biomolecular Interactions Using a Multivariate Approach." Doctoral thesis, Uppsala : Acta Universitatis Upsaliensis : Univ.-bibl. [distributör], 2004. http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-4322.
Full textJennings, Megan Christina. "Bioorganic Investigation of Quaternary Ammonium Compounds: Probing Antibacterial Activity and Resistance Development with Diverse Polyamine Scaffolds." Diss., Temple University Libraries, 2017. http://cdm16002.contentdm.oclc.org/cdm/ref/collection/p245801coll10/id/434038.
Full textPh.D.
Quaternary ammonium compounds (QACs) have long served as lead disinfectants in residential, industrial, and hospital settings. Their simple yet effective amphiphilic nature makes them an ideal class of compounds through which to explore antibacterial activity. We have developed novel multiQAC scaffolds through simple and cost-efficient syntheses, yielding hundreds of diverse compounds strategically designed to examine various aspects of antibacterial and anti-biofilm activity, as well as toxicity. Many of these bis-, tris-, and tetraQACs display antibacterial activity 10 to 100 times greater than conventional monoQACs, and are among the most potent biofilm eradicators to date. Through analyzing their activity against several strains, we have uncovered and provided further evidence for key tenets of amphiphilic QAC bioactivity: a balance of hydrophobic side chains with cationic head groups generates optimal antibacterial activity, though toxicity to eukaryotic cells needs to be mitigated. Given their ubiquitous nature and chemical robustness, the overuse of QACs has led to the development of QAC resistance genes that are spreading throughout the microbial world at an alarming rate. These resistant strains, when found in bacterial biofilms, are able to persist in the presence of lead commercial QAC disinfectants, warranting the development of next-generation biocides. Several of our scaffolds were designed with QAC resistance machinery in mind; thus, we utilized these compounds not only as antibacterial agents but also as chemical probes to better understand and characterize QAC-resistance in methicillin-resistant Staphylococcus aureus (MRSA). Our findings support previous postulations that triscationic QACs would retain potency against QAC-resistant strains. Furthermore, we have identified monocationic and aromatic moieties, as well as conformational rigidity, as being more prone to recognition by the resistance machinery. Using our chemical toolbox comprised of QACs of various charge state and scaffold, we explored both the mechanism and scope of QAC-resistance by examining their structure-resistance relationship. Our holistic findings have allowed us to better understand the dynamics of this system towards the design and development of next-generation QACs that will: (1) allow us to better probe the resistance machinery, and (2) remain efficacious against a variety of microbial pathogens.
Temple University--Theses
Goff, Randal Donald. "Structure-Activity Studies of Glycosphingolipids as Antigens of Natural Killer T Cells." BYU ScholarsArchive, 2006. https://scholarsarchive.byu.edu/etd/942.
Full textTrabbic, Christopher J. "Chemoenzymatic Synthesis of NAADP Derivatives: Probing the Unknown NAADP Receptor." University of Toledo Health Science Campus / OhioLINK, 2012. http://rave.ohiolink.edu/etdc/view?acc_num=mco1333749803.
Full textBooks on the topic "Structure-activity relationship (Biochemistry)"
1937-, Hall Lowell H., ed. Molecular connectivity in structure-activity analysis. Letchworth, Hertfordshire, England: Research Studies Press, 1986.
Find full text1954-, Benner Steven A., and Schweizerischer Chemiker-Verband, eds. Redesigning the molecules of life: Conference papers of the International Symposium on Bioorganic Chemistry, Interlaken, May 4-6, 1988. Berlin: Springer-Verlag, 1988.
Find full textConversation in Biomolecular Stereodynamics (5th 1987 State University of New York at Albany). Structure & expression: Proceedings of the Fifth Conversation in the Discipline Biomolecular Stereodynamics held at the State University of New York at Albany, June 2-6, 1987. Schenectady, NY: Adenine Press, 1988.
Find full text1939-, Sarma Ramaswamy H., and Sarma M. H. 1940-, eds. Structural biology: The state of the art : proceedings of the eighth Conversation in the Discipline Biomolecular Stereodynamics, held at the State University of New York at Albany, June 22-26, 1993. Schenectady, N.Y: Adenine Press, 1994.
Find full textD, Hegeman Adrian, ed. Enzymatic reaction mechanisms. New York: Oxford University Press, 2006.
Find full textMartin, Yvonne Connolly. Quantitative drug design: A critical introduction. 2nd ed. Boca Raton, FL: Taylor & Francis, 2010.
Find full textMartin, Yvonne Connolly. Quantitative drug design: A critical introduction. 2nd ed. Boca Raton: CRC Press/Taylor & Francis, 2010.
Find full textLin, Guo-Qiang. Chiral drugs: Chemistry and biological action. Hoboken, N.J: Wiley, 2011.
Find full textMartin, Yvonne Connolly. Quantitative drug design: A critical introduction. 2nd ed. Boca Raton, FL: Taylor & Francis, 2010.
Find full textBook chapters on the topic "Structure-activity relationship (Biochemistry)"
Brandenburg, K., A. B. Schromm, and T. Gutsmann. "Endotoxins: Relationship Between Structure, Function, and Activity." In Subcellular Biochemistry, 53–67. Dordrecht: Springer Netherlands, 2010. http://dx.doi.org/10.1007/978-90-481-9078-2_3.
Full textWenger, Roland M., Trevor G. Payne, and Max H. Schreier. "Cyclosporine: Chemistry, Structure-Activity Relationships and Mode of Action." In Progress in Clinical Biochemistry and Medicine, 157–91. Berlin, Heidelberg: Springer Berlin Heidelberg, 1986. http://dx.doi.org/10.1007/978-3-642-70998-2_5.
Full textFliri, Hans G., and Roland M. Wenger. "Chapter 10. Cyclosporine: Synthetic Studies, Structure- Activity Relationships, Biosynthesis and Mode of Action." In Biochemistry of Peptide Antibiotics, edited by Horst Kleinkauf and Hans von Döhren, 245–88. Berlin, Boston: De Gruyter, 1990. http://dx.doi.org/10.1515/9783110886139-011.
Full textLorch, Mark. "3. Proteins." In Biochemistry: A Very Short Introduction, 34–51. Oxford University Press, 2021. http://dx.doi.org/10.1093/actrade/9780198833871.003.0003.
Full textKatekar, Gerard F. "Structure-activity relationships of plant growth regulators." In Biochemistry and Molecular Biology of Plant Hormones, 89–111. Elsevier, 1999. http://dx.doi.org/10.1016/s0167-7306(08)60484-6.
Full textZhao, Zheng, and Philip E. Bourne. "Using the Structural Kinome to Systematize Kinase Drug Discovery." In Biochemistry. IntechOpen, 2021. http://dx.doi.org/10.5772/intechopen.100109.
Full textBlow, David. "Images and X-rays." In Outline of Crystallography for Biologists. Oxford University Press, 2002. http://dx.doi.org/10.1093/oso/9780198510512.003.0005.
Full text